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Weak metric approximation properties and nice
projections

TROND A. ABRAHAMSEN

ABSTRACT. We prove that a Banach space X has the weak MAP (the
weak MCAP) [the very weak MCAP] if and only if there exists a norm
one projection P on X with X C P(X™*) such that P is in the weak*-
closure of F(X, X) (K(X, X)) [K(X,X™)] in L(X**, X**).

1. Introduction

Let X and Y be Banach spaces. We denote by £(Y, X) the Banach space
of bounded linear operators from Y to X, and by F(Y, X), K(Y, X), W(Y, X)
its subspaces of finite rank operators, compact operators, and weakly com-
pact operators, respectively.

We denote by X®,Y the (completed) projective tensor product of X and
Y. Recall that we may identify the dual of X®,Y with £(Y,X*) and that
the action of an operator T : Y — X*, as a linear functional on X ®7Y, is
given by

<T, an ® yn> = Z(Tyn)(mn)
n=1

n=1

Let Ix denote the identity operator on X. Recall that X is said to have
the approzimation property (AP) if there exists a net (S,) C F(X,X) such
that Sy — Ix uniformly on compact sets in X. If the net (S,) can be chosen
such that sup, |[|Sa|| < 1, then X is said to have the metric approzimation
property (MAP).

In [8] Lima and Oja introduced and studied the weak metric approxima-
tion property. Following Lima and Oja a Banach space X is said to have the
weak metric approzimation property (weak MAP) if, for every Banach space
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Y and every operator T € W(X,Y'), there exists a net (S,) C F(X, X) with
sup,, [|T'Sa|| < ||T|| such that S, — Ix uniformly on compact sets in X.

It is immediate from the definitions that MAP = weak MAP = AP. Ho-
wever, the AP does not imply the weak MAP in general as was shown in
[8, Proposition 2.2]. Recently it was also shown [10, Corollary 1] that if a
Banach space has the weak MAP then it has the MAP if either its dual or its
bidual has the Radon-Nikodym property (RNP). It is, however, not known
whether the weak MAP and the MAP in general are equivalent properties.

Let X be a subspace of a Banach space Y. A linear operator ¢ : X* — Y*
is called a Hahn-Banach extension operator if (pz*)(z) = z*(z) and ||pz*|| =
lz*|| for every z € X and z* € X*. We denote the set of Hahn-Banach exten-
sion operators ¢ : X* — Y™ by lB(X,Y’). It is easy to show that HB(X,Y) is
non-void if and only if X is an ideal in Y (in the sense of Godefroy, Kalton,
and Saphar [2]).

The following result [5, Proposition 2.1 and Proposition 2.5] of Lima es-
tablishes a connection between the weak MAP and the existence of a Hahn-
Banach extension operator.

Theorem 1.1 (Lima). Let X be a Banach space. Then X has the weak MAP
if and only if there exists a Hahn-Banach extension operator ¢ € HB(X, X**)
such that @*|x« is in the weak®-closure of F(X, X) in L(X**, X**).

Note that we can consider F(X, X) as a subspace of £L(X**, X**) through
the embedding operator which maps an operator T' € F(X, X) to its second
adjoint T™* € L(X™**, X**).

In Section 2 we improve Theorem 1.1 by showing that we can replace
the Hahn-Banach extension operator ¢ : X* — X*** by a Hahn-Banach
extension operator ¢p : X* — X*** such that P = ¢} |y« is a projection on
X**. This result is then thereafter used to improve other characterizations
of the weak MAP.

In Section 3 we establish characterizations similar to those in Section 2 for
two, recently introduced [6], natural compact companions of the weak MAP.

We will consider Banach spaces over the real scalar field only. We use
standard Banach space notation, as can be found e.g. in [9]. The closed unit
ball of a Banach space X is denoted by By and the unit sphere of X by Sx.
The closure of a set A C X is denoted by A, its linear span by spanA, and
its convex hull by convA. We will write X* for the dual of X.

2. The weak MAP

We might ask what more can be said about the Hahn-Banach extension
operator in Theorem 1.17 In fact, by using a technique of Godefroy and
Kalton from [1], we will prove that we can replace the Hahn-Banach exten-
sion operator ¢ € H3(X, X**) in Theorem 1.1 by a Hahn-Banach extension
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operator ¢p € HB(X, X*) such that P = ¢}
More explicitly we have the following theorem.

x*= 1S a projection on X**.

Theorem 2.1. Let X be a Banach space.

(a) If P is a norm one projection on X** with X C P(X**) such that P
15 1n the weak®-closure of F (X, X) in L(X**, X**), then there erists
a Hahn-Banach extension operator ¢ € HB(X, X**) such that ¢*|x+-
is 1n the weak™-closure of F(X, X) in L(X**, X**).

(b) If there exists a Hahn-Banach extension operator ¢ € HB(X,X**)
such that o*|x« is in the weak*-closure of F(X, X) in L(X**, X**),
then there exists a norm one projection P on X** with X C P(X**)
such that P is in the weak*-closure of F(X,X) in L(X**, X**).

Proof. (a) Assume that there exists a norm one projection P on X** with
X C P(X**) such that P is in the weak*-closure of F(X, X) in £(X**, X**).
Then put ¢p = P*ix- where iy- : X* — X*** is the natural embedding
of X* into X***. Finally observe that pp : X* — X*** is a Hahn-Banach
extension operator such that ¢%|x« = P.

(b) We use an argument from the proof of [1, Theorem II1.1]. Assume
that there exists a Hahn-Banach extension operator ¢ € HB(X, X**) such
that ¢*|x« is in the weak*-closure of F(X, X) in £L(X**, X**). Now, pick
anet (So) C F(X,X) such that Si* — ¢*|x-- weak* in £(X**, X**). Let
G be the convex semi-group generated by the net (S:*), i.e. the smallest
convex semi-group in L(X**, X**) that contains (S**). Let &* denote the
weak*-closure of 6. Now G* is a convex semi-group. To see this let U and
V be in G* and write

U=w-lmU

V=uw-limV;*
where U5" and V5™ are in 6. Choose u = > °° z* ® 1 € X*®, X*™
arbitrarily. Then it follows that
o
UV (u) = hmz zh, US V) = Z R (e (1)
n=1 n=1

o0
= hmhm; (Urz} Vg ) = hénhén(Uan) (u).

Hence UV € G*. It is obvious that &* is convex.

Now put &¢* = {T € &* : T|x = Ix, ||T|| = 1}. Note that Gy* #  since
©*|x= € &p". Since &¢" is closed under composition, it is a semi-group. It
is straightforward to show that it is convex and weak*-closed.

Equip G¢" with the order-relation < defined by S < T if ||Sz**|| < 1Tz ]
for every z** € X**. Now let N be any maximal chain in (&%, <) and for
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SeNlet Ng={T € N:T <S5} We can write N = Usen Ns. Note
that each Ng is weak*-closed. Indeed, choose a net (V,) in Ng and assume
Vo = V' weak*, where V' € &§. Then for every z** € X** we get

[e3

[V'z*|| < liminf||V,2z™*| < ||Sz**||.

By the maximality of N it follows that V' € N so Ng is weak*-closed. Now
choose (S;)f., C N arbitrarily. Then (Ng,)%, is a finite family of weak*-
" closed sets and

n
(Ns, ={T € N:T < min ;} # 0.
i=1 1<i<n
Since Gy* is weak*-compact, every family of closed sets having the finite
intersection property has a non-void intersection. Hence (\gcy Ns # 0. By
the Hausdorff maximality theorem every chain is contained in a maximal
chain. Hence, by the above argument, every chain in Gy* has a lower bound.
It now follows by Zorn’s lemma that Gp* has a minimal element. Denote
such a minimal element by P.

We now show that P is a projection of norm one. Since P is minimal and
[|S]| =1 for all S € &p* we have ||SPz**| = ||Pz**| for all S € Gy* and all
z** € X**. Applying this observation to

1~
Sn _ ;L—(Z P1)7
=1
which by convexity is in G¢*, gives
1(SnP? = SuP)z**|| = [|So P(Pz™ — ™))

= [|[P(Pz™ — ™)

= |P?z™ — Pz**|.
Since we have

1
Sy P? — S, P ==(P"? - p?),
n

we get that || P?z** — Pz**|| < 2/n for all n > 1. It follows that P is a projec-
tion on X™** such that P is in the weak*-closure of F(X, X) in £L(X**, X**).
By the definition of G¢*, P is of norm one and X C P(X**). O

In fact we can do slightly better than in Theorem 2.1. The result below
tells us that we may assume that the net converging weak* to the projection
satisfies some boundedness property.

Proposition 2.2. Let X be a Banach space with the weak MAP. Then there
exists a norm one projection P on X** with X C P(X™**) such that for every
reflezive Banach space Y and for every T € W(X,Y), there ezists a net
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(Sa) C F(X,X) with limsup, ||TSs|| < ||T|| such that S, — P weak* in
E(X**,X**)'

Proof. Let € > 0, let Y be a reflexive Banach space, and let T € W(X,Y)
of norm one. Let u = Zzozlzc};m ® it € X*®,X** for k = 1,...,m.
Assume » 7° ) [lz3* || < co and 1 > llz} ol = 0 for each k& = 1,...,m. Put
K = m{ix,’;’n tk=1,..,mn =1,2,..} C Bx~. Let Z be the Banach
space constructed from K in the factorization lemma |7, Lemma 1.1], and let
J:Z — X* be the identity embedding of Z into X*. Now Z is separable,
reflexive and J € K(Z, X*) is of norm one. Defineamap V: X — Z*®, Y
by Vz = (J*z,Tz). Note that V € W(X,Z* ®4 Y). By Theorem 1.1 and
Theorem 2.1 there exists a norm one projection P on X** with X C P(X**)
such that P is in the weak*-closure of F(X, X) in £(X**, X**). Note that
V**P is in the weak*-closure of the convex set {V**S$** : S € F(X,X)} in
WX, Z" @ Y). Since Z* @, Y is reflexive we have, by [3, Theorem 1.5],
that V**P is in the weak*-closure of

{V=s™ 8 e F(X,X), ||[V*S™|| < [V*P|| + ¢}
in W(X™*, Z* @ Y'), which again is a subset of the weak*-closure of
(V8™ .S e F(X,X),|[VS|| <1+¢}

in W(X**, Z* @« Y). Now choose 2k € Bz such that Jzg, = xzn for all
k and n. Find S in the above set such that

o0 (o]
kK k% Xk k% *k
€> max [VS O (zkm, 0) @) ~ V P> (2kn, 0) @ 735,)
- - n=1 n=1 :
o o
=, 130 (T ) D (o TP
n=— n=

1<k<m

o o0
= max | Yz}, S7wph) = Y (2f 0 Poih) |
n=1 n=1
Since ||T'S|| < ||[VS|| <1 +¢, the result follows. O

When the space X is separable and does not contain a copy of [;, we know
even more about the projection.

Corollary 2.3. Let X be a separable Banach space not containing l;. Then
there exists a Hahn-Banach eztension operator ¢ € HB(X, X**) such that
©*|x=- is in the weak*-closure of F(X, X) in L(X**, X**) if and only if there
ezists a norm one projection P on X** with weak*-closed kernel and with
X C P(X™) such that P 1is in the weak®-closure of F(X, X) in LX) X)),

Proof. This follows directly from Theorem 2.1 and [1, Claim I11.2]. O
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Building on Theorem 2.1, we arrive at the result below. This improves
[5, Propositions 2.5 and 3.1] in the way that the Hahn-Banach extension
operator ¢ : X* — X™* in each of these results, is replaced by a Hahn-
Banach extension operator op : X* — X** such that P = Op|x++ is a
projection on X**.

Theorem 2.4. Let X be a Banach space. The following statements are
equivalent.

(a) X has the weak-MAP.

(b) There exists a norm one projection P on X** with X C P(X**) such
that P is in the weak*-closure of F(X,X) in L(X**, X**).

(c) There ezists a norm one projection P on X** with X C P(X**)
such that, for every reflexive Banach space Y and every operator
T e W(Y,X*), one has PT € F(Y, X)**.

(d) There exists a norm one projection P on X** with X C P(X**) such
that, for every separable reflexive Banach space Y and every operator
T € K(Y,X*), one has PT € F(Y, X)**.

Proof. (a)«(b) follows from Theorem 1.1 and Theorem 2.1.

(b)=>(c) is obtained by the same reasoning as in [5, Proposition 3.1 (a)=
(b)].

{c)=(d) is trivial.

(d)=(a) is obtained by the same reasoning as in [5, Proposition 3.1 (c)=
@) 0

3. The weak MCAP and the very weak MCAP

Recently Lima and Lima [6] introduced and investigated two approxima-
tion properties that are natural compact companions of the weak MAP.
Following [6], a Banach space X has the weak metric compact approzima-
tion property (weak MCAP) if, for every Banach space Y and every operator
T € W(X,Y), there exists a net (So) C K(X,X) with sup, |TS.| < |||
such that S, — Ix uniformly on compact sets in X. Moreover, X is said
to have the very weak metric compact approrimation property (very weak
MCAP) if for every Banach space Y and every operator T € W(X,Y)
there exists a net (S,) C K(X, X**) with sup, ||7**S,|| < ||T|| such that
limg tr(Squ) = tr(Ixu) for every u € X*®,X. By comparing the defini-
tions, it is immediate that the following implications hold:

weak MAP = weak MCAP = very weak MCAP.

As pointed out in [6, Remark 5.2], there is a space with the very weak MCAP,
but without the weak MCAP. Moreover, the space of Willis [11, Proposition
4] has the weak MCAP, but not the weak MAP.

It should be noted that results similar to Theorem 2.1 also hold for the
weak MCAP and the very weak MCAP. The results differ from Theorem 2.1
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only in the way that (X, X) is replaced by K(X,X) in the weak MCAP
case, and K(X,X**) in the very weak MCAP case. The proofs of these
results are verbatim to that of Theorem 2.1, using K(X, X) and K(X, X**)
instead of F(X, X) respectively. The reason why the arguments work is that
the image of the second adjoint of a compact operator is a subspace of the
range space of the operator itself. Hence the calculation in (1) holds.

Proposition 3.1. Let X be a Banach space.

(a) If P is a norm one projection on X** with X C P(X**) such that
P is in the weak®-closure of K(X,X) [K(X,X*)] in L(X**, X**),
then there exists a Hahn-Banach estension operator ¢ € HB(X,X**)
such that ©*|x~ is in the weak*-closure of K(X,X) [K(X, X**)] in

(b) If there exists a Hahn-Banach extension operator ¢ € HB(X,X**)
such that ¢*|x-+ is in the weak*-closure of K(X,X) [K(X,X**)]
in L(X**, X**), then there exists a norm one projection P on X**
with X- C P(X*) such that P is in the weak*-closure of K (X, X)
(X, X*)] in L(X**, X**).

By applying these results in companion with the proof of [5, Proposition
3.1] and the proofs of [6, Theorem 4.3] and [6, Theorem 5.3], we obtain
the following strengthenings of [6, Theorem 4.3] for the weak MCAP case,
and [6, Theorem 5.3] for the very weak MCAP case. The results improve
[6, Theorem 4.3] and [6, Theorem 5.3] in the way that the Hahn-Banach
extension operator ¢ : X* — X** in each of these theorems is replaced by
a Hahn-Banach extension operator pp : X* — X*** such that P = Oplxe

is a projection on X**.

Theorem 3.2. Let X be a Banach space. The following statements are
equivalent.

(a) X has the weak MCAP.

(b) There ezists a norm one projection P on X** with X C P(X**) such
that P 1s in the weak*-closure of (X, X) in L(X**, X**).

(c) There ezists a norm one projection P on X** with X C P(X**) such
that, for every reflexive Banach space Y and every T € W(Y, X**),
one has PT € € where € = {S**T: S € K(X, X)} C K(Y, X).

(d) There exists a norm one projection P on X** with X C P(X™)
such that, for every separable reflexive Banach space Y and every
T € K(Y, X™), one has PT € €** where € is as in (c).

(e) There exists a norm one projection P on X** with X C P(X*)
such that, for all sequences (z},) C X* and (x2*) C X** with
S Nl s < oo and S50 w3 (S%a) = 0 for all S € K(X, X),
one has )27 | ¥ (P*z}) = 0.
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Proof. (a)<(b) follows from [6, Theorem 4.3 (a)<(b)] and Proposition
3.1.

(b)=>(c) is similar to the proof of [5, Proposition 3.1 (a)=(b)].

(c)=(d) is trivial.

(d)=>(e) is similar to the proof of [6, Theorem 4.3 (f)=(g)].

(e)=(b) is trivial. O

Theorem 3.3. Let X be a Banach space. The following statements are
equivalent.

(a) X has the very weak MCAP.

(b) There ezists a norm one projection P on X** with X C P(X™**) such
that P is in the weak*-closure of K(X, X**) in L(X**, X**).

(¢) There exists a norm one projection P on X** with X C P(X**) such
that, for every reflexive Banach space Y and every T € W(X,Y),
one has T**P € &** where € = {T™S5:5 € K(X,X*)} C K(X,Y).

(d) There ezists a norm one projection P on X** with X C P(X**) such
that, for every reflexive Banach space Y and every T € K(X,Y),
there exists a net (Sq) C K(X, X**) with sup, ||T**Sal| < ||T|| such
that w*-lim, SET*y = P*T™*y* in X*** for all y* € Y.

(e) There exists a norm one projection P on X** with X C P(X**) such
that, for every reflexive Banach space Y and every T € K(X,Y),
there exists a net (Sg) C K(X, X**) with sup,, ||T**Sal| < ||T]| such
that T**S%* — T** P in the strong operator topology.

(f) There ezists a norm one projection P on X** with X C P(X™*)
such that, for all sequences (z}) C X* and (z}) C X™ with
oo lzalllzi |l < oo and Yoo, zp(S*zi) = 0 for all S €
(X, X*), one has Y o2, z*(P*z}) = 0.

3

Proof. (a)<(b) follows from [6, Theorem 5.3 (a)<>(b)] and Proposition 3.1.
(b)=(c)=>(d)=(e) are similar to the proofs of (b)=(c)=(d)=(e) in

[6, Theorem 5.3| respectively.

" (e)=>(f). Let € > 0, let u = Y00 zh @zi* € X*®,X**, and assume
Yoozl < oo and 1> ||z5]| — 0. Put K = conv{+z;, :n=1,2,...} C
Bx«. Let Z be the Banach space constructed from K in the factorization
lemma [7, Lemma 1.1], and let J : Z — X* be the identity embedding of
Z into X*. Now Z is separable, reflexive and J € K(Z, X*) is of norm
one. Choose z, € Bz such that Jz, = z;, for every n € N. From the as-
sumption it follows that there exists a norm one projection P on X** with
X C P(X*) and a net (S,) C K(X,X™*) with sup, [[(J*|x)™*Sa] <1
such that (J*|x)**S* — (J*|x)** P in the strong operator topology. Since
((J*|x)**Sq) is bounded, we may assume that the net converges to (J*|x)** P
in the topology 7 of uniform convergence on compact sets in X**. By the des-
cription of (L(X™**, Z*),7)*, due to Grothendieck [4] (see e.g. [9, Proposition
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1.e.3]), it now follows that there exists an S € K(X, X**) such that

€> Y (T [x)"S™amn zn) = O (T |x)* Pat, ) |
= n=1

=D (S Tzn) = > (P, ) |

n=1 n=1
o o0
=1 (S™a,zn) — > (Poy,zh) ],
n=1 n=1
and we are done.
(f)=(b) is clear by using the Hahn-Banach theorem. O
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