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The analysis of data from sample surveys under
informative sampling

ABDULHAKEEM A.H. EIDEH AND GAD NATHAN

ABSTRACT. Sampling designs for surveys are often complex and infor-
mative, in the sense that the selection probabilities are correlated with
the variables of interest, even when conditioned on explanatory variables.
In this case conventional analysis that disregards the informativeness can
be seriously biased, since the sample distribution differs from that of the
population. In this paper we consider the relationships between the
distribution of the sampled values and that of the population. Using
different models for the conditional expectations of the inclusion proba-
bilities, given the values of the variable of interest, we obtain the sample
distributions and propose methods for estimation of their parameters.
The results are applied to the analysis of longitudinal surveys, using an
autoregressive model, and to surveys with two-stage cluster designs, with
informative selection at each of the two stages.

1. Introduction

Some recent work, e.g., Pfeffermann, Krieger, and Rinott (1998), has consi-
dered the definition of a sample distribution under informative sampling.
Survey data may be viewed as the outcome of two processes: the process
that generates the values of a random variable for units in a finite popu-
lation, often referred to as the superpopulation model, and the process of
selecting the sample units from the finite population values, known as the
sample selection mechanism. Analytic inference from survey data refers to
the superpopulation model. When the sample selection probabilities depend
on the values of the model response variable, even after conditioning on
auxiliary variables, the sampling mechanism becomes informative and the
selection effects need to be accounted for in the inference process.
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2. General methods of estimation for complex survey designs

Classical methods of estimation and inference for data from complex sample
designs do not, in general, take informativeness into account. Thus, the usual
Horvitz-Thompson estimator of a total, T = Z,N:1 yi ,isT = Zfil Yi/ i,
which weights the sample values by the reciprocals of the inclusion proba-
bilities, ;. The estimator is design-unbiased, i.e., Ep[T] = T, where Epl[]
denotes expectation under repeated sampling. However, if the sample design
is informative, the estimator is model-biased.

An alternative, the pseudo-likelihood method (Binder, 1983), is based on
solving the sample estimates of the population likelihood equations. Let
Y1,---,yn be the values of y in the finite population. These are considered
as random variables with the pdf f,(y;|6), where  is the unknown super-
population parameter. If all population units were observed, the MLE of

“is defined as the solution to the equations

U(0) = Z d(log .gz)e(yiw)) —0 (1)
=1

The pseudo maximum likelihood estimator of @ is defined as the solution
of the estimating equations, that is as the solution of equation (1), with a
sample estimate of U(6), i.e., U() = 0.

We consider, instead, the relationships between the population distribution
and the sample distribution. Let y; be a random variable with a population
pdf fp(y:]0), where 6 is an unknown parameter. Let m; = Pr(ies|y, x) be the
(conditional) inclusion probability of unit 7, given y, the variables of interest,
and x, the auxiliary variables. The sample distribution is given, under very
general conditions, by

A _E (mily:)
fs(yi) = Ep( )

(Pfeffermann, Krieger, and Rinott, 1998).

Equation (2) defines the relationship between the population and sample
distributions, so that if m; depends on y;, then E p(milyi) # Ep(m;) and
foyi) # fs(yl) In this case the population dlstrlbutlon differs from the
sample distribution and the sample design is informative.

In order to evaluate the sample distribution, we consider the following four
different models for the relationships between the conditional expectations
of the inclusion probabilities, 7;, and the values of Yi:

(%) (2)

The exponential model E,(m;|y;) = exp(ag + ayy;).

The linear model Ep(milyi) = by + bry;.
The logit model Ep(mily:) = %
The Probit model Ey(milys) = ®(dy + dyy;).
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Applying equation (2) to these models gives the following results:
For the ezponential model:

exp(a1y:) fp(yilx:)
s\Yi|Xi) = ) 3
Folubes) = TR 3)
where M) (a1) is the moment generating function (mgf) of the population pdf

of y; and x; is a vector of auxiliary variables.
For the linear model:

Yilp(yilxi)
Jse) — pE e [Fppeata At kA 4
| fs(yzlxz) bo fp(yilxi) + b By (yilx:) (4)
where b = m—%@m and b} =1 — by. Similar results are obtained for the

logit and for the probit models. :
To illustrate these results we consider, as an example, the situation under
a linear regression model. Let the population distribution be given by

Yilzi ~ N(Bo + Brzi, 0°)

and assume that the conditional expectations of the inclusion probabilities
follow the exponential model

Bp(milyi) = exp(ao + a1y;).
Then the sample distribution is given by
| yilzi ~ N(Bo + ar10” + Bz, 0?).

Thus the sample distribution remains normal with a shift of the mean by
ajo? and the same variance as that of the population distribution. It can
be seen, therefore, that the sample design is not informative, i.e., the sample
distribution is the same as the population distribution, if and only if a; = 0.

3. Estimation of the parameters

Next we consider the possibilities for estimation of the unknown parame-
ters. In practice, the conditional expectations of the sample inclusion pro-
babilities, required to evaluate the sample distribution (2) are not known.
Assuming that the only available data to the analyst are the sample weights,
w;, and sample values of y;, which is the case in secondary analysis, the ques-
tion that arises is: how can we identify and estimate, E,(y;), based only on
the sample data? The answer is provided by the following relationships bet-
ween the sample expectations of the sample weights, w;, and the population

expectations of the inclusion probabilities, 7;:
1
Es(w;ly) = ———— 5
8( Zlyl) Ep('ﬂ'zIyz) ( )

. (Pfeffermann and Sverchkov, 1999).
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Under the exponential model Ep(m;|y;) = exp(ag + a1y;) for the relation-
ships between the conditional expectations of the inclusion probabilities and
Yi, the application of (5) implies that log(E;(w;|y;) = —(ag + a1y;). Thus
the first stage of the estimation procedure is the estimation, by ordinary
least squares, of ag and of a; from the simple regression relationship of
Wi = —log(w;) on y;. Alternatively, we could also estimate ay directly,
using non-linear regression techniques. In the second stage we substitute,
a1, the estimator of ay, in the sample distribution (3). Differentiation of the
resulting sample likelihood yields a system of non-linear equations, whose
numeric solution provides the required estimates.

Similarly, under the linear model Ep(mily;) = bo + b1y, in the first stage
we estimate by and by from the simple regression relationship of m; on ¥;. In
- the second stage, 130 and 131, the estimators of by and by, are substituted in
‘the sample distribution (4). Again, differentiation of the resulting sample
likelihood yields a system of non-linear equations, whose numeric solution
provides the required estimates. An alternative method of estimation is that
based on pseudo-likelihood. The census log-likelihood is given by

. N N
CeOlyr, - yn) = log [T fo(il6) = log[f,(v:16)], (6)
i=1 i=1
under the assumption of super-population independence between Yly- oo YUN-

The census maximum likelihood estimators of # are defined as the solutions
of the equations

UL(6) = (g elOlyn, . yn) = 30 PLBBWION o

i=1

The sample based pseudo maximum likelihood estimators are the solutions
to the weighted estimators of the census likelihood equations

0a(6) = (55)6(0) = 3w LSO _ ®

1€8

4. Tests of informativeness

A sample design is non-informative if and only if fs(yi) = fp(yi) for all
Y;.- In this section we examine possible tests of the hypothesis that the
- design is non-informative, based on the sample data, and a measure of the
degree of informativeness. An alternative formulation of the hypothesis of
non-informativeness is:

Eq (wzy;C )

Balwy) — Bowh), 9)
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for all k = 1,2,... and for all ses. Thus the test of the hypothesis that the
sample design is non-informative can be represented by the series of tests:

Hy, :corrs(yzl-c,wi) =0,k=1,2,..., (10)

which can be tested by standard methods (Pfeffermann and Sverchkov, 1999).
While in theory this requires an infinite number of tests, in practice only
a limited number is required. However, there still remains the problem of
multiple testing and an alternative based on the Kullback-Leibler information
measure of the distance between two distributions (Kullback and Leibler,
1951) is proposed. This measure of minimal discrimination between the
sample distribution, fs, and the population distribution, f,, is defined as:

o (£ fp) = Esllog fo(yi) — log fo(yi)). (11)
Using the relationships (2) and (5), it can be shown that this measure may
be written as:

I(fs; fp) = Es[log Ey(w;)] — Es[log E(wily;)]. (12)
Notice that the expected value is taken under the sample distribution, f;,
which means that we are assuming that y; has pdf fs and the hypothesis that
this is equal to the population distribution, fp, can be tested on the basis
of the sample values. For example, assume that the population distribution
is exponential with parameter 0, i.e., y; ~ exp(f) and that the conditional
expectations of the sample selection probabilities follow the exponential mo-
del Ey(mily;) = exp(ag + ayy;). In this case the Kullback-Leibler information
measure can be shown to be

I(fs§ fp) = Es[log

ay

Is(ys) N go“al
.fp(yi)]—ioo( 5 )t

Substituting the estimates of 6 and of a; in (13), the statistic for testing
non-informativeness can be written as:

i (13)

~

. 6 — a
1(fs; £,) = log( é“) +5 ‘“d : (14)
— ui

which has the asymptotic x? distribution under the null hypothesis (Kull-
back, 1978, Section 5.5).

5. Application to longitudinal surveys

Recently there is increasing interest in longitudinal surveys - those for
which variables or characteristics are measured for the same units at dif-
ferent points of time (occasions or waves). Each series of observations for a
unit can be viewed therefore as a time series, usually of short length. Lon-
gitudinal data can be collected prospectively, following subjects forward in
time, or retrospectively, by extracting multiple measurements on the same
individual from a panel survey or from historical records. Often the sample
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units selected at the first point in time are retained for observation at sub-
sequent points in time and the selection may be informative.
We consider the following typical situation for a longitudinal survey. Ob-

servations i, - . . , yi7 for T consecutive periods are obtained for each sampled
unit, 7. We assume the first-order autoregressive model - AR(1):
Yit = N‘+¢(yi,t—-l "/J’) +€it;i = 177N7t = 2) 7T7 (15)

where y;1 ~ N (g, 1—;’—%), €it ~ing N(0,0?) and |¢| < 1 to ensure stationarity.
We assume that units selected for the first period remain in the sample over
all T' periods.

We assume that the vectors y; = (vi1,...,yir) are independently distri-
buted with the population distribution f,(y;) = f,(y;]0), depending on the
unknown parameters 8, which is given by

T
Fovs) = folyi) ] Folyiel Hiv—n), (16)
t=2
where H;; ; are the observations on unit ¢ until and including time ¢ — 1.
Applying the autoregressive model (15), we obtain for the population distri-
bution
2 2

o) = (f—f{ﬁ)—% exp[—%wﬂ - p)(emo®) T

T
exp|[— E yir = 1) — $(yi—1 — 1)}, (17)
=2

Thus for the exponential model FEp(m;|y;1) = exp(ag + a1yi1), we obtain for
the sample distribution
2no? 1 1—¢2 o? 9 oy _T=1
fs(yi) = (m) 2 eXP[_TOQ‘"(yil i alm) J(2mo®) "2

T
expl=my (i — ) — Blyr — WY (19

It can easily be seen that this differs from the populatlon distribution (17)
only in the change of the mean of y;; from u to pu + a;- - ¢9

Similarly for the linear model E,(m;|yi1) = bg + b1y;1, the sample distribu-
tion is given by

bo + bryi1

fs(y:) = Do + bijt

————fp(yi) pr yitl Hi 1) (19)

Note that the sample design is non—mformatlve in this case if and only if
61=Oand bo;éo.
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6. Simulation study for longitudinal survey application

In order to demonstrate the above results, a small simulation study was
carried out by generating N = 5000 population values for the first period
2 . . .
by vi1 ~ N(u, T{W) For the remaining periods, population values of y;,
t=2,...,T, were generated by the autoregressive model (15), with T =
3 and T = 10. Five hundred samples of size n = 500 were selected by
systematic PPS (probability proportional to size) sampling, with inclusion
probabilities m; = —k¥—, where values of z; were determined by each of

. j=1 zj
three alternative mO(fels:

The exponéntial model  2z; = exp(0.5 + 0.2y; + u;); u; ~ U(0,1).
The linear model zi =4+ by + ug; u; ~ U(0,25).
Non-informative sampling z; = exp(u;); u; ~ U(0,4).

The estimation methods tested were:

e Unweighted maximum likelihood, as if sampling was non-informative
(UML) .

e Weighted maximum (pseudo-)likelihood (WML)

e Sample maximum likelihood - exponential model (SMLE)

e Sample maximum likelihood - linear model (SMLL)

The relative mean square errors (RMSE - the empirical MSE divided by
0) of each of the three parameters, for each of the three models and for each
of the four methods of estimation are given in Table 1, for T = 3.

Estimation Method
The true model Parameter UML WML SMLE SMLL

Exponential 0.0600 0.0422 0.0184 0.0188
2 0.0422 0.0453 0.0423  0.0423

0.0157 0.0161 0.0165 0.0165

Linear 0.0562 0.0184 0.0185 0.0174

N

0.0407 0.0451 0.0406 0.0408
0.0185 0.0185 0.0175 0.0177
0.0174 0.0308 0.0237 0.0222
0.0404 0.0754 0.0405 0.0405
0.0165 0.0277 0.0163 0.0164

TABLE 1. Relative Mean Square Errors (T=3)

Non informative

‘S—th‘&QtS-Qt

The main results are as follows:

o If the true model is informative, the unweighted (UML) and the
weighted maximum pseudo-likelihood (WML) estimators of 1 have
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much larger mean square errors than the estimators based on me-
thods (SMLE, SMLL).

e If sampling is non-informative the errors of the model-based estima-
tors of p (SMLE and SMLL) do not differ much from those of the
unweighted estimator (UML) but are much smaller than those of the
weighted estimator (WML).

e The differences between the two sample maximum likelihood estima-
tors based on different methods (SMLE, SMLL) are small.

e The model-based estimators, SMLE and SMLL, are relatively robust
to departures from the assumed models.

e The differences between the errors of the estimators of the other
parameters, o2 and ¢, are small. Similar results (not shown) were
obtained for the case of T=10.

7. Application to two-stage cluster sampling

A very common sample design is the two-stage cluster sample design. This
is usually the suitable design chosen for sampling from a population which
has a hierarchical structure, e.g., households within localities or pupils within
schools, where the costs of investigating each higher level unit (e.g., locality)
are high compared to the marginal cost of investigating a second-level unit,
e.g., household. We assume the following hierarchical population model (with
random intercepts):

First level: pi = zyy + 15
Second level: yijiui = i + ngﬂ + €45,

where: ¢ = 1,...,N;5 = 1,..., Mn; ~ N(O,a%) and e;; ~ N(0,02) are
independent; 8 = (B1,...,8), v = (71,...,7,) are vectors of unknown fixed
regression parameters; and z;, x;; are vectors of known auxiliary variables,
at the first and second level, respectively.

The sample design is assumed to be a two-stage cluster sampling design
with (possibly) informative sampling for the first and second stages. Let
9i,9ij,1 = 1,...,N;7 = 1,..., M; be random design variables, used for the
sample selection, but not included in the working model under consideration.

(20)

e First stage sampling: A sample, s, of size n of primary sampling units
(PSU’s or clusters), is selected, with inclusion probabilities

m; = Pr(ies|u;, zi,gi) = ha (i, Zi, gi)-

e Second stage sampling: A sample, s;, of size m; of secondary sample
units, is selected from the i-th selected PSU, with conditional inclu-
sion probabilities

Tj = Pr(jesilies, yij, X5, 9i5) = ha(yij, Xij, 9i5)-
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The sample distributions of the first stage means, u;, depend on the model
assumed for the conditional expectations of the first stage selection probabi-
lities:

e Under the exponential model, Ey(m;|ps;,2;) = ge(2;) exp[(bo + b1us)]:
i~ N(Z;’Y + blaia 0-;21))

so that the sample distribution of 1;, is independent of by and of
ge(2;) and only its mean is shifted by blai from that of the population
distribution.

o Under the linear model, Ey(m;|ps,2:) = go(2i)(ao + a1p;):

1oy _ lao + avpi 4 ge(:)] f(pilzs)
fs(ﬂzlzz) = a0 +G1Zz‘”)’+ge(zi)

so that the sample distribution can be expressed as a mixture of the
normal and of the weighted normal population distribution of i
given z;, and is non-informative if and only if a; = 0.

The sample distributions of the second stage observations yi; can be shown
to be as follows for the two models assumed for the conditional expectations
of the second stage selection probabilities:

e Under the ezponential model,
By (mj1i%i5, Yigs 114) = ke(xXaz, 1) exp(do + d1yi;):

Yij|xij, pi ~ N(pi + x40 + dio?, 02),

so that the conditional sample distribution of yi; is independent of
do and of k(x;j, 11;) and only its mean is shifted by djo? from that
of the population distribution.

e Under the linear model, Ep(ﬂj|i|xij, Yijs 5) = ke(x45, i)+ (co +c1yij):

co + ke(Xij, i) + c1yi; 7 1%ig, Wi
Fs(ijlxij, pi) = [ eigy ) + 19y vl - )
co + ke(Xij, pi) + cipi + clxijﬁ

7

so that the sample distribution can be expressed as a mixture of the
normal and of the weighted normal population distribution of Yij,
given x;; and p;, and is non-informative if and only if ¢; = 0.

To estimate the unknown parameters, we can use two-stage parametric es-
timation as before. However there is a problem, for the first stage, in estima-
ting by from the relationship E(w;|u;) = [ge(2:)] exp[—(bg + byp1;)], under
the exponential model, say, since the values of 1 are not observable. Possible
solutions are to replace u; by the sample cluster mean, §; = 'n% Z;"z’l Yij, OF
to use the “errors in variables methods” (Fuller, 1987).
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8. Simulation study for two-stage cluster sampling
application

In order to check the performance of the methods of estimation, a small
simulation study was carried out in which a hierarchical population was ge-
nerated. For the first level, N = 10,000 independent normal values of the
cluster-specific-effects were generated from u; ~ N(0,0.25). For the second
level, M; = 100 independent normal values of the final units were generated
from y;j|ps ~ N(pi,0.49). In the first stage of sampling, n = 100 clusters
were selected by systematic PPS sampling, with the size variable z; defined
by the exponential model z; = exp(0.8 + p;), so that the first stage inclusion
probabilities were defined as: m; = (100z;)\ .0, 2. For the second stage
all final units in sampled PSU’s were selected, so that m; = M; and m;); = 1,
for all j and ies.

The estimation methods used were:

e Unweighted maximum likelihood, as if sampling was non-informative
(UML)

e Weighted maximum (pseudo-)likelihood (WML)

e Sample maximum likelihood - exponential model (SMLE)

Relative biases (RB - the empirical bias divided by 6) and relative root
mean square errors (RRMSE) are given in Table 2 for each of the parameters
estimated, u, ch, and o*f, for each of the three estimation methods considered.

Estimation Method
Parameter Indicator UML WML SMLE

" RB 0.0008 0.0013  0.0004
RRMSE  0.0119 0.0126 0.0126
o RB -0.0412 -0.0126 -0.0412
RRMSE  0.1484 0.1728 0.1484
o? RB 0.0020  0.0027  0.0020

RRMSE 0.0157 0.0177 0.0157

TABLE 2. Relative Biases and Relative Root Mean Square
Errors of three estimation methods

The main results are as follows:

e The UML and WML estimators of p are slightly biased. For the
pseudo maximum likelihood estimator based on the sample distribu-
tion (SMLE) the bias is reduced substantially.

e The UML estimator of p has a somewhat smaller RRMSE, than the
WML and SMLE estimators which are the same.
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e The RB and RRMSE of the estimators of the variances are the same
under the UML and SMLE methods (since under exponential sam-
pling the variances and covariances of measurements within clusters
do not change).

e The WML estimators of the variances have higher RRMSE than the
UML and the SMLE estimators.

9. Conclusicns

Overall we have shown that the bias in estimating means, when the sam-
pling design is informative, can be reduced by use of sample distribution-
based estimators. The performance of the estimates based on the sample
distribution is fairly robust to the choice of model. Thus an important fin-
ding from the simulation results relates to the sensitivity analysis of the
estimators to departures from the assumed model. We find that the sample
distribution is not too sensitive to the modelling of the conditional expecta-
tion of the first order sample inclusion probabilities.

However mean square errors are not always reduced and in some cases,
at least, the unweighted estimator may be overall more efficient. For the
variances, unweighted or sample distribution based estimates seem to perform
better than the weighted estimators. There is no doubt that much further
work in this area is required, but the basic idea of basing estimation on
the sample distribution, in the case of informative designs, does work and
can reduce the biases inherent in ignoring the informativeness of the sample
design.
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