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Linear sufficiency and completeness in the
partitioned linear model

JARKKO ISOTALO AND SIMO PUNTANEN

ABSTRACT. In this paper we consider the estimation of X, under
the partitioned linear model {y, X138, + X283,, o V} In particular, we
consider linear sufficiency and linear completeness of X B.. We give
new characterizations for linear sufficiency of X;3,, and define and cha-
racterize linear completeness in a case of estimation of X;3,. We also
introduce a predictive approach for obtaining the best linear unbiased
estimator of X;3,, and subsequently, we give the linear analogues of
the Rao-Blackwell and Lehmann-Scheffé Theorems in the context of
estimating X;/3,.

1. Introduction

In this paper we consider the partitioned linear model
, y = X168 +XoB, + ¢,
or shortly,
Miz ={y, XB, >V} = {y, X18, + X8, 0>V},

where E(y) = X8, E(e) = 0, cov(y) = cov(e) = 0?V. We denote the
expectation vector and covariance matrix, respectively, by E(-) and cov(-).

In the model My the vector y is an n x 1 observable random vector,
€ is an n X 1 random error vector, X is a known n X p matrix, partitioned
columnwise as X = (X : Xy) with X; (nxp;) and X (nxps), 8 = (84, 35)’
is a p X 1 vector of unknown parameters, correspondingly with 8y (p; x 1)
and B, (p2 x 1), 0 > 0 is an unknown scalar, and V is a known n x n
nonnegative definite matrix.

Furthermore, let R, , denote the set of m x n real matrices and R, =
R, The symbols A, A=, At €(A), €(A)L, #(A), and r(A) will
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stand for the transpose, a generalized inverse, the Moore-Penrose inverse,
the column space, the orthogonal complement of the column space, the null
space, and the rank, respectively, of A € Ry, ,. By A we denote any matrix
satisfying (A1) = 4 (A’) = €(A)L. Further we will write Pa = AAT =
A(A'A)~A’ to denote the orthogonal projector (with respect to the standard
inner product) onto ¥(A), and Ma =I— Pa to denote the orthogonal
projector onto % (A)", where I denotes the identity matrix. In particular,

P,=Px, M;=I-P;, =12

Moreover, by (A : B) we denote the partitioned matrix with A € R, ,, and
B € R,, 1 as submatrices.

Let us consider the estimation of the linear parametric function X;3,
under the partitioned model Mj,. The parametric function X; /3, is said to
be estimable under the model M, if it has a linear unbiased estimator, i.e.,
there exists a matrix G such that

E(Gy) = GX8 = GX,8; + GXu8, = X18, for all B € R,
or equivalently, if G(X; : X3) = (X : 0). Therefore, we can conclude the

following:

/ !
X103, is estimable <= ¥ X C?¥ X,l ,

which is equivalent to € (X;) N % (X3) = {0}. :

Moreover, a linear statistic Gy is the Best Linear Unbiased Estimator,
BLUE, for the estimable parametric function X;/3; if, for any other unbia-
sed linear estimator Fy, the difference cov(Fy) — cov(Gy) is a nonnegatlve
definite matrix, i.e.,

cov(Fy) — cov(Gy) >0 for all Fy such that E(Fy) = X,3,.
It is well known that Gy is the BLUE of X;/3; if and only if G satisfies the
fundamental equation of the BLUE:
G(X;:X,: VX =(X;:0:0). (1.1)

Proof of (1.1) is given by, e.g., Drygas (1970, p. 50), Rao (1973, p. 282), and
recently Baksalary (2004). From the equation (1.1), explicit representations
for the BLUE of X;/3; are obtainable. For example, the BLUE of X3, can
be written as

BLUE(X;8; | M13) = (X5 : 0)(X’W~X)_X’W_y,

where W = V + XX'. Note also that we assume the model My being
consistent in a sense that

YyEFC(X:V)=¢(X: VX)) =F(W)
almost surely [see Grof (2004, Section 2)].
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In this paper, we consider properties of those linear statistics Ty, which
are linearly sufficient for X3, under the partitioned model M15. A linear
statistic Ty is said to be linearly sufficient for X;3; if there exists a matrix
A such that ATy is the BLUE of X3, under the model M, see, e.g., Bak-
salary and Kala (1986, Definition 1). The concept of linear sufficiency was
introduced by Baksalary and Kala (1981) and Drygas (1983) while conside-
ring those linear statistics, which are “sufficient” for the expected value X3
under the model M. Baksalary and Kala (1981) and Drygas (1983) sho-
wed that a linear statistic Ty is linearly sufficient for X3 under the model
M3 if and only if the column space inclusion

#(X) C ¢(WT) (1.2)

holds. Miiller (1987) later proved that the condition (1.2) is equivalent to
the inclusion

N (T)NE (W) C F(VXH).

Linear sufficiency of the given estimable parametric function K'3 was
considered by Baksalary and Kala (1986). They proved that Ty is linearly
sufficient for K’'@3 if and only if the null space inclusion

H(TX: TVXH) c /(K :0) (1.3)

holds. In particular, when considering linear sufficiency of X;3;, Baksalary-
and Kala’s condition (1.3) becomes

A (TX;: TX,: TVXH) c #(X,:0:0). (1.4)

In this paper, we give further characterizations of linear sufficiency of the
parametric function X;3;. We also consider linear completeness in a case of
estimation of X;/3;, and prove that a statistic Ty is simultaneously linearly
sufficient and linearly complete for X; 3, if and only if it is a linearly minimal
sufficient statistic for X,3;.

In Section 4, we consider a predictive approach for obtaining the best
linear unbiased estimator of X;3;. Sengupta and Jammalamadaka (2003,
Chapter 11) gave an interesting study on the linear version of the general
estimation theory, including the linear analogues to the Rao-Blackwell and
Lehmann—Scheffé Theorems when considering the estimation of the expected
value X3 under the model M;i,. In this paper, we give the corresponding
linear analogues of the Rao-Blackwell and Lehmann-Scheffé Theorems in
the context of estimating X;3;.

This paper is closely connected to the paper Isotalo and Puntanen (2006)
concerning linear sufficiency and completeness of the given estimable pa-
rametric function K’B. However, the results given in this paper are not
Just applied results from more general results given in Isotalo and Puntanen
(2006). In fact, the results given in Isotalo and Puntanen (2006) have been
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obtained by first reparametrizing of the original linear model M, into par-
ticularly partitioned linear model and then by using the results given in this
paper. Hence we feel that considering linear sufficiency and completeness in
the context of estimating X;/3; has its own merits apart from the results
concerning linear sufficiency and completeness of K'f3.

2. Linear sufficiency

Let us consider the estimation of the parametric function X;3; under the
model M. Then the part X33, can be seen as a nuisance factor in the
partitioned model

y=X10; + X988y +e€. (2.1)

Now by premultiplying the full model equation (2.1) by the orthogonal pro-
Jector My, the vector of nuisance parameters 3, can explicitly be removed
from the partitioned model Mj,. This premultiplication yields the so-called
reduced model:

Migo = {Myy, MyX,8;, 0*MyVMs,}.

Moreover, a generalized version of the so-called Frisch-~Waugh-Lovell Theo-
rem now states that the BLUE of X;3, under the reduced model Ms.o
equals almost surely the BLUE of X;3; under the partitioned model M5,
see, e.g., Grof and Puntanen (2000, Theorem 4) and Bhimasankaram and
Sengupta (1996, Theorem 6.1). Thus the linear statistic May is linearly
sufficient for X8, under the model Ms.

In addition to the orthogonal projector My, the matrix

My = My(MyW;M;) ™ Mo, (2.2)

where W1 = V 4+ XX, plays also an important role in subsequent consi-
derations. Note that for matrices A and B such that ¥(A’) ¢ (W) and
%(B) C €(W1), the product AM,B is invariant with respect to the choice
of (MW M;)~, and hence in such cases the generalized inverse can be
chosen to be symmetric without loss of generality.

The followmg lemma now gives a useful column space equality related to
the matrix My. A corresponding equality in a case of estimation of K/ is
given by Isotalo and Puntanen (2006, Lemma 2).

Lemma 1. Let X3, be an estimable parametric function under the model

Mag, and let My be the matriz given in (2.2). Then the column space
equality

G (X2 : VX)L = @(MyX; : My — My W, M,)
holds.
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Proof. First, we use the fact that
C(Xy: VX)L = €(Xy : WMx)' = €(M,) N ¢F(WMx)*
= €[M,(MoW, Mx )],

see Rao and Mitra (1971, Complement 7, p. 118).
Consider a vector u such that u'M; (MW Mx)! = 0. Then there exists
a vector a such that u'My = a’Mx WM, and hence

u'M2X1 = aIMXW1M2(M2W]M2)ﬁM2X1
= a'MxMyW; M,y(M,;W; M,) M,X,
= aIMxM2X1 = 0,

where we have used the identity MoW Mo (MW Ms) " MoX; = MyX;.
Since also
u' (M, — MaWiM,) = a'Mx W, M, (M, — MyW; M)
) = a’MXW1M2 — a’MXW1M2 = O,
the inclusion %(Xg : VXJ‘)‘L D) (K(MZXI : M2 — MngMg) holds.
To prove the reverse inclusion, let u be such that
WMoX; =0 and u'(My — MyW;M,) = 0. (2.3)
Then the former condition in (2.3) implies that there exists a vector b such
that
ulMg = UIMQMQ = b,Ml\/IzX1 = b,MM2X1M2 = b/Mx,
since My, x, Mo = Mx. Therefore, based on the latter condition in (2.3),
u'M; = b’'Mx WMo, and thus
u' My (Mo W Mx )+ = b'Mx W, M, (M, W; Mx )+ = 0,
which shows that the reverse inclusion € (X : VXhHt c ‘K(MQXl My —
MW M,) also holds. , O
Using Lemma 1 we can obtain the following representation of the BLUE
BLUE(Xl,Bl ] M12) = X1 (X&MgXl)MX,lng. (2.4)
See Isotalo and Puntanen (2006, Corollary 4) for a more general proof of
(2.4).
Next, in the following theorem, we give our further characterizations of

linear sufficiency of the estimable parametric function X18;.

Theorem 1. Let X8, be an estimable parametric function under the
model M, and let My be the matriz gwen in (2.2). Then a linear statistic
Ty is linearly sufficient for X1 8, if and only if any of the following equivalent
statements holds:
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(a) A (TX;:TXy: TVXL) C A (X;:0:0),

(b) €(WM,X;) C €(WT'),

(©) H(T) NE(W) €. (X, Na) N E(W),

(d) there exists a matriz L such that LTy = X'lng almost surely.

Proof. Part (a) is Baksalary and Kala’s (1986, Theorem 1) condition (1.4).
Part (a), together with Lemma 1, implies that there exists a matrix A
such that

F(T'A) C €(Xy: VX)L = ¥(MaX, : My — My W M),
and hence
E(WT'A') C €(WMX,). (2.5)

Since also

I'(WMQXl) = r(MQWM2X1) = I‘(MQXl)
=1(X;) =r(ATX;) < r(ATW), (2.6)

conditions (2.5) and (2.6) together imply part (b).

Part (b), on the other hand, implies that €(WT'): C ¥(WM,X;)+,
and furthermore, €[W(WT')!] C €[W(WM,X;)*], which, based on Rao
and Mitra (1971, Complement 7, p. 118), is equivalent to part (c).

From part (c), it follows that 4 (TW) C .4 (X, MyW) holds. Thus there
exists a matrix B such that

BTW = X, M,W, (2.7)

and since y € € (W) almost surely, the equation (2.7) is equivalent to part

(d).
Lastly, if part (d) holds, then, based on the equation (2.4), the equality

X (X4 M2 X)) LTy = X (X, MyX,)~ X, Moy
= BLUE(Xl,@l | Mis)

holds almost surely, showing that Ty is linearly sufficient for X;/3;. O

The statistic May is not only linearly sufficient for X3, but also has an
interesting invariance property in a sense that for every linear transformation
T such that Ty is linearly sufficient for X;/3;, the statistic TMyy is also
linearly sufficient for X;3,. The following corollary proves this invariance
property of Myy.

Corollary 1. Let X108, be an estimable parametric function under the
model M. If a linear statistic Ty is linearly sufficient for X183, then
TMoay is linearly sufficient for X,3,.
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Proof. A statistic Ty is linearly sufficient for X;3; if and only if there
exists a matrix A such that AT(X; : Xy : VX+) = (X; : 0 : 0). Thus
there exists a matrix B such that AT = BMy = ATM,, which proves our
claim. O

We may also consider linear minimal sufficiency of the parametric function
X18;. In view of Baksalary and Kala (1986), a linearly sufficient statistic
Ty is called linearly minimal sufficient for X;3, under the model M, if for
any other linearly sufficient statistic Sy, there exists a matrix A such that
Ty = ASy almost surely. Applying Baksalary and Kala’s (1986, Theorem
2) condition for the estimation of X;3;, a linear statistic Ty is linearly
minimal sufficient for X3, if and only if the null space equality

N(TX; : TXy: TVXH) = #(X,:0:0) (2.8)

holds. The following theorem gives our characterizations for linearly minimal
sufficiency of X,0,.

Theorem 2. Let X 3, be an estimable parametric function under the
model Mz, and let My be the matriz given in (2.2). Then a linear statistic
Ty is linearly minimal sufficient for X3, if and only if any of the following
equivalent statements holds:

(a) A(TX; : TX, : TVXH) = A (X, :0:0),

(b) F(WMX,) = ¢(WT'),

(¢) H(T) NE(W) = A (X, M) N E(W),

(d) Ty is linearly sufficient for X18;, and there exists a matriz L such
that Ty = LX,Mayy almost surely.

Proof. Part (a) is Baksalary and Kala’s (1986, Theorem 2) condition (2.8),
and part (b) can be proved by using the same reasoning as Drygas (1983,
Theorem 3.4).

Let Ty be linearly minimal sufficient for X;8;. Since X'lng is li-
nearly sufficient for X3, there exists a matrix A such that the equa-
lity Ty = AX|Moy holds almost surely, i.e., TW = AX,M,W. Thus
C(WM,yX,)+ Cc €(WT')L, implying the inclusion

N (X[ My) N (W) C A (T)NE(W).

Hence, together with part (c) at Theorem 1, part (c) follows.

If part (c) holds, then TW = BX/M,W for some matrix B, and fur-
thermore, based on part (d) at Theorem 1, for any other linearly sufficient
statistic Sy it holds that

Ty = BLSy (2.9)
almost surely, for some matrix L. Since part (c) clearly implies linear suffi-
ciency of Ty, the equality (2.9) proves linear minimal sufficiency of Ty.
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The equivalence between linear minimal sufficiency and part (d) is clear,
and thus our claim is proved.
O

In view of part (a) at Theorem 2, it is easy to see that a statistic Ty is
linearly minimal sufficient for X;3; if and only if

(TX,: TVXH) = (0:0) and F(X|T') =€ (X)) (2.10)

hold. Also, it is clear from Theorem 2 that the statistic X’1M2y is linearly
minimal sufficient for X;3,. Note that the statistic X’'W ™y is linearly
minimal sufficient for the expected value X3, and hence XIIM‘ZY can be
considered as a corresponding representation for linearly minimal sufficient
statistic in a case of estimation of the parametric function X;03;.

3. Linear completeness

Besides sufficiency, another important concept of mathematical statistics
is the concept of completeness. Under the linear model M5, we may consi-
der the concept of linear completeness. While considering the estimation
of the expected value X3, Drygas (1983) introduced the notion of linear
completeness, and called a linear statistic Ty linearly complete if for every
LTy, such that E(LTy) = 0, it follows that LTy = 0 almost surely.

Drygas (1983) showed that a statistic Ty is linearly complete if and only
if the column space inclusion

€(TV) C €(TX)

holds. Also, Drygas (1983) proved that a linear statistic Ty is linearly
minimal sufficient for X3 if and only if it is simultaneously linearly sufficient
and linearly complete for X 3.

In this paper, we consider a generalization of the concept of linear comple-
teness that would be more applicable for the case of estimating the parame-
tric function X;3,. We want to generalize the concept of linear completeness
in such way that a statistic Ty can be linearly minimal sufficient for the pa-
rametric function X;3, if and only if it is linearly sufficient and linearly
complete for X;3;.

Note also that the property E(LTy) = 0 in Drygas’ (1983) definition
can equivalently be characterized as the expected value E(LTy) being inde-
pendent of 3.

Definition 1. Let X8, be an estimable parametric function under the
model Mya. Then a linear statistic Ty 1is called linearly complete for X183,
if for every linear transformation of it, LTy, such that the expected value
E(LTy) does not dependent on (3, under the model Mys, it follows that
LTy = 0 almost surely.
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The following theorem gives our characterization of linear completeness

Theorem 3. Let X8, be an estimable parametric function under the
model Miz. Then a linear statistic Ty is linearly complete for X1B, if and
only if

% (TXy: TV) C ¢(TX;)
holds.

Proof. In Definition 1, the expected value E(LTy) does not depend on
B under the model My if and only if LTX; = 0, and LTy = 0 almost
surely if and only if LT(X; : X; : V) = (0 : 0 : 0). Thus, according
to Definition 1, Ty is linearly complete for X3, if and only if for every
L such that LTX; = 0, it follows that LT(X5 : V) = (0 : 0), or in other
words, if and only if for every L such that € (L') C €(TX;)", it follows that
(L") C €(TX;y : TV)*. However, this holds if and only if €(TX;)+
% (TXy: TV)!, ie, if and only if #(TX, : TV) C €(TX;). O

Based on Theorem 3, it is easy to verify that if a statistic Ty is linearly
complete for X;3,, then also the statistic TMyy is linearly complete for
X1B1. Hence the statistic Moy has this sort of invariance property concer-
ning also linear completeness.

Next, we give our main theorem concerning sufficiency, completeness and
minimal sufficiency.

Theorem 4. Let X8, be an estimable parametric function under the
model Mys. Then a linear statistic Ty is linearly sufficient and linearly
complete for X184 if and only if it is linearly minimal sufficient for Xi18;.

Proof. Let Ty be linearly sufficient and linearly complete for X1 B;. Then,
based on sufficiency, there exists a matrix A such that

(ATX,; : ATX,: ATVX') = (X;:0:0). (3.1)
On the other hand, completeness implies that,
€(TXy: TVX') C €(TX, : TV) C Z(TX,),
1.e.,
(TX, : TVX!) = (TX,B; : TX,B,) (3.2)

for some B = (B : By). Combining (3.1) and (3.2) gives that ATX, (B,
B;) = X;(B1 : By) = (0: 0). Thus also the equality

(TX;B; : TXBy) = (TXy: TVX!) = (0: 0)

holds, which together with %(X' T') = ¢(X/) implies linear minimal suffi-
ciency of X;0;.
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If Ty is linearly minimal sufficient for X;/3;, then

€(TXy: TV) C F(TX, : TX; : TV) = €(TX; : TX; : TVX')
== %(TXl :0: 0) = %(TX]),

proving linear completeness. ]

4. Predictive approach

It was shown by Drygas (1983) and Miller (1987) that a linear statistic
Ty is linearly sufficient for the expected value X3 under the model My,
if and only if the Best Linear Predictor, BLP, of y based on Ty does not

depend on the vector of parameters 3. That is, Ty is linearly sufficient for
X if and only if

BLP(y | Ty) = X8 + FT(y — X3) = FTy, (4.1)

almost surely, where F' is any solution of the equation FTVT' = VT'.

Sengupta and Jammalamadaka (2003, Chapter 11) actually used the pro-
perty (4.1) as a definition for linear sufficiency, and then gave an interesting
study on the linear version of the general estimation theory, including the
linear analogues to the Rao—Blackwell and Lehmann—Scheffé Theorems.

However, if a statistic Ty is linearly sufficient for X;3,, then the BLP
of y based on Ty can depend on the vector of parameters 3. This can
happen, because linearly sufficient statistic Ty for X;/3; may contain only
information about subvector 3, and not about the whole parameter vector 3.
But if we only consider linear sufficiency of X;3; under the reduced model
Miza = {May, MyX;3;, 02MyVMs,}, i.e., linear sufficient statistics of
the form TMoyy, a similar kind of predictive approach for obtaining the best
linear unbiased estimator of X3, can be used as was used by Sengupta and
Jammalamadaka (2003, Chapter 11) in a case of estimation of the expected
value X[3.

Since we now consider linear sufficiency under the reduced model Mjs.o,
we can immediately use Drygas’ (1983) condition (1.2) to characterize linear
sufficiency of X;3,. That is, a linear statistic TMyy is linearly sufficient
for X3, if and only if

%(M?Xl) C %(MzwleT/) (42)

holds. The following theorem gives now a predictive characterization for
linear sufficient statistics of the form TMoyy.

Theorem 5. Let X 3, be an estimable parametric function under the
model Myz. Then a linear statistic TMyy is linearly sufficient for X183 if
and only if the best linear predictor of Moy based on TMoy does not depend
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on B. That is, a linear statistic TMay is linearly sufficient for X183, if and
only if

BLP(Msy | TMay) = FTMyy

almost surely, where F is any solution of the equation
FTM; VM, T = Moy VM,T. (4.3)

Proof. Let TMay be linearly sufficient for X;3;. Then, based on the
inclusion (4.2), there exists a matrix A such that MyX; = Mo W, M,T'A.
Let us consider the matrix

F = M;W,M,T'(TM; W M,T') . (4.4)
Then clearly
FTMyW M,yT = MyW, M,T'. (4.5)
Since now
FTM;X;, = FTM,W;M,T'A
= MoyW;MyT'A = My X, (4.6)

the equation (4.5) becomes

FTMy;W MyT = FTM,VM,T' + M,X; X\ M, T
= MQVMQT, + M2X1X11M2T/, (47)
implying that FTMy;VM,T' = My VM, T/, i.e., F is a solution of the equa-
tion (4.3). Thus in view of equations (4.6) and (4.7), the BLP(Myy | TMyy)
has the following representation:
BLP(Moy | TMay) = MaX,8; + FT(May — MyX,3,)
=FTMyy,
i.e., the BLP(Myy | TMsy) does not depend on 8.

Conversely, assume that BLP(Myy | TMyy) does not depend on 3, (or
actually on B;), i.e., FTMyX; = MyX; for any matrix F such that the
equation (4.3) holds.

Since

%(szl) C %(MngMg) C %[MgwlMg : (T,)L]
= C[M;W MoT’ : (T')4],
there exists a matrix B = (By : By) such that

M-oX; = M2W1M2T'B1 + (TI)'LBQ,
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and then
FTM,X; = FT(M;W , M,T'B; + (T')1B>)
= FT(MyVM,T'B; + MyX; X, MyT'B))
= My,VM,T'B; + My X; X MoT'B;
= M;W;M,T'B;.
This shows that MoW{MsT'B; = MyX,, which is equivalent to the column
space inclusion (4.2), and hence proves linear sufficiency of TMoyy. ]

In the general setup, the uniformly minimum variance unbiased estimators
are based on the Rao-Blackwell and Lehmann—Scheffé Theorems. Corres-
pondingly, linear versions of above concepts can be defined and then used
as an alternative route to obtain the BLUEs. In the following theorems, we
give linear analogues to the Rao-Blackwell and Lehmann—-Scheffé Theorems
in a case of estimation of X;/3;.

Theorem 6. Let X183, be an estimable parametric function under the
model Mys. Furthermore, let TMoy be linearly sufficient for X108, and
Ly be an unbiased estimator for X,13,. Then the best linear predictor of Ly
based on TMsyy, BLP(Ly | TMoyy), is a linear unbiased estimator for X8,
with

cov(Ly) — cov[BLP(Ly | TMyy)] > 0.

Proof. Since Ly is an unbiased estimator, L = AMj for some matrix A.
Therefore, because of linear sufficiency of TMyy,
BLP(Ly | TMyy) = BLP(AMyy | TMyy)
= A -BLP(Myy | TMyy) = AFTM,y,

where F is any solution of the equation (4.3). This shows that BLP(Ly |
TMoayy) is a linear estimator. Clearly, BLP(Ly | TMyy) is unbiased for
X18,, and Ly — BLP(Ly | TMyy) is uncorrelated with TMyy, see Chris-
tensen (2001, Section 3.1). Thus

cov(Ly) = cov[Ly — BLP(Ly | TMyy) + BLP(Ly | TMay)]
= cov[Ly — BLP(Ly | TMay)] + cov[BLP(Ly | TMzy)]
> cov[BLP(Ly | TMyy)].
O

Theorem 7. Let X108, be an estimable parametric function under the
model Mis. Furthermore, let TMoyy be linearly sufficient and linearly com-
plete for X108, and Ly be an unbiased estimator for X13,. Then

BLUE(X,8; | Mi2) = BLP(Ly | TMay)

almost surely.
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Proof. Denote ATMyy = BLP(Ly | TMay), and let Sy be an unbia-
sed estimator for X;8; with cov(ATM,y) — cov(Sy) > 0. Let BTM,y =
BLP(Sy | TMyy), and therefore BTM,y is also an unbiased estimator
for X8, with cov(ATM,y) — cov(BTMyy) > 0. However, since E[(A —
B)TMsyy] = 0, linear completeness of TMyy implies that ATMyy =
BTM;y almost surely, and thus also cov(ATM,y) = cov(BTMay). a

5. Example

Let us consider the following seemingly unrelated regression model My =
{y, XB, 0V}, where

_ (¥ _ ) _ (X1 O
Y“<y2)a X_(XIXZ)_<O X22>7

B Vii Vi
- , V= :
A (,32 Vo1 Vg
Then Xy;/3, is estimable under the model Mjs. Note that the orthogonal
projection, i.e., the ordinary least squares estimator

Px,y1=Puyr = X (X}, X11) X} y1

under the small model {y;, X1, 0?V11} is also an unbiased estimator of
X118 under the full model M;s.

Let us now start considering linear minimal sufficiency of X;;3;. Denote
My = Mx,;, Moz = Mg (M2 VasMyy) My, and Wiy = Vy, + X1 X9,
and let a linear statistic TMyy have the following form:

I 0
TMay = (T : To) <0 M22> (i;) =Tiy;1 + ToMaoyo

= X711 (W11 — ViaMay Vo) " [yr — V12 Mooy,
where
T1y1 = X}, (W11 — ViaMagy Vo) Ty,
ToMaoys = =X/, (W11 — V12M22V21)_V12M22}’2-

Then TMyy is linearly minimal sufficient for X118, (and also for X;0,)
under the seemingly unrelated regression model Mis. To see this, note that
%(Xll) C ((oﬂ(Wll — V12M22V21) since

€ [(I t = V12Mp) (XOH X022>}

; W, V .
- [(I 1 =Vi19Myy) <V2111 V;z> (I: ~\/'121\/[22)'J ,
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and hence

ViiMi; VioMy —(0:0)

VoM VouMyy o
(5.1)

¢ |0 (3o o)] =0 (52)

where My; = Mx,,. The equations (5.1) and (5.2) together show, in view
of (2.10), linear minimal sufficiency of TM,y.

We can now use a predictive approach, i.e., Theorem 7, to convert an
unbiased estimator Py into the BLUE of Xy13;. That is,

BLUE(XM,Bl f Mlg) = BLP(Pllyl I Tng) = FTng,
where F is any solution of the equation
FTMQVMzT’ == P].I(Vll . V]_Q)MQT/. (53)

X5 (W — V12M22V21).—(I : —V13My) (

Correspondingly to the representation (4.4), one solution for the equation
(5.3) with respect to F is

F=P11(W11:V12)M2T/ TM2 WH V12 MQT,
Va1 Vg

= X11[X} (W1 — VisMgu Vo) "Xy~ = X1 (X1 8709 X101) 7

where 2j17.99 = Wy — V12M22V21. Thus the BLUE of X;;/3; under the
seemingly unrelated regression model M, has the following representation:

BLUE(X118; | Mi2) = X11(X 1 271,00 X11) " X1 2710071
— X101 (X1 3775, X11) "X 5150 Via Mooy,
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