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Invariance of the BLUE under the linear fixed
and mixed effects models

JARKKO ISOTALO, MART MOLS, AND SIMO PUNTANEN

ABSTRACT. We consider the estimation of the parametric function X, 3,
under the partitioned linear fixed effects model y = X183, + X283, + ¢
and the linear mixed effects model y = X3, + X»7y, + &, where ~, is
considered to be a random vector. Particularly, we consider when the
best linear unbiased estimator, BLUE, of X3, under the linear fixed
effects model equals the corresponding BLUE under the linear mixed
effects model.

1. Introduction

We begin by introducing the notation. We will denote R™"™ the set of
m X n real matrices and R™ = R™!. The symbols A/, A=, At %(A),
F(A)*, A4 (A), and r(A) will stand for the transpose, a generalized inverse,
the Moore-Penrose inverse, the column space, the orthogonal complement of
the column space, the null space, and the rank, respectively, of A € R™". By
Al we denote any matrix satisfying €(A+) = A (A’) = €(A)*. Further
we will write Po = AAT = A(A’A)~ A’ to denote the orthogonal projector
(with respect to the standard inner product) onto ¥ (A), and Ma =1 — Py
to denote the orthogonal projector onto € (A)*, where I denotes the identity
matrix. Particularly,

P,=Px, M;=1-P; i=12

Moreover, by (A : B) we denote the partitioned matrix with A € R™" and
B € R™F as submatrices.
In this paper we consider the partitioned linear fixed effects model

y = X1y + Xy + €, (1.1)
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or in another notation,
F= {Y7 Xﬁ: R} = {y» Xllal + X2ﬁ27 R}a (12)
with
E(y) =XB, E(e) =0, cov(y)=cov(e)=R,

where E(-) denotes expectation (or expected value) and cov(-) the covariance
(or dispersion) matrix. The vector y is an n x 1 observable random vector,
€ is an n X 1 unobservable random error vector, and B = (81,85,)" is a
p x 1 vector of unknown fixed effects with p = p; + py, and 3 (p1 % 1)
and B, (p2 x 1). The model (or design) matrix X is n x p and partitioned
columnwise as X = (X; : X)) with p = p; + ps, and X; (n X p;) and
Xg (n % p2). Both the model matrix X and the covariance matrix R are
known but can be of arbitrary rank.

However, in many practical situations it can be difficult to determine whe-
ther some of the fixed parameters in the model equation (1.1) should actually
be treated as random variables; see, e.g., Searle et al. (1992, Section 1.4).
For example, if the fixed parameters 3, in (1.1) are alternatively considered
to be random (and denoted as 7, with expected value E(v,) = 0), then we
have the linear mixed effects model

y = X1B + Xoyy + €,
or in another notation,
M= {ya XIIBI: V} = {Y7 Xlﬂl: XQGX{‘Z + R} (13)
with
E(y) =XiB1, E(yy) =0, E(e)=0, cov(yy) =G,
cov(e) =R, cov(yq,€) =0, cov(y) =V =X3GX, +R,
where the covariance matrix G is also assumed to be known but again can
be of arbitrary rank.
Let us now consider the estimation of the linear parametric function K, 3,,
K; € R¥*P1 of the fixed effects B; under both models F and M. The
parametric function K;3; is said to be estimable under the fixed effects

model F if there exists a linear unbiased estimator for K3, i.e., if there

exists a matrix A such that A(X; : X5) = (K; : 0), or in other words,
’ X!

“(%)ce(x)

Equivalently, the parametric function K;/3; is estimable under the mixed
effects model M if ¥(K}) C ¥(X/). Hence if K;/3; is estimable under the
model F, then it is also estimable under the model M but not necessarily
other way round. Moreover, if we consider the estimation of all estimable
linear parametric functions of the fixed effects 3; under the model F, then
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it is equivalent just to consider the estimation of the parametric function
M, X 3;; see GroBf and Puntanen (2000, Lemma 1).

Under the fixed effects model F, a linear statistic Ly is the best linear
unbiased estimator, BLUE, for the parametric function MyX, 3, if the cova-
riance matrix cov(Ly) is minimal, in the Lowner sense, among all covariance
matrices cov(Fy) such that Fy is unbiased for MoX;3;. It is well known
that Ly is the BLUE of MyX 3, under the model F if and only if L satisfies
the fundamental equation of the BLUE:

L(X;: Xy :RX1) = (MyX;:0:0). (1.4a)

Similarly, a linear statistic Ly is the BLUE of MyX;3; under the mixed
effects model M if and only if L satisfies the equation:

L(X; : VX{) = (M2X; : 0). (1.4b)

For a proof of (1.4a) and (1.4b), see, e.g., Drygas (1970, p. 50), Rao (1973,
p. 282), and recently, Baksalary (2004). Also, explicit representations for
the BLUEs of M3X 3, are obtainable from the equations (1.4a) and (1.4b).
For example, the BLUEs of MyX;3; under the models F and M can, res-
pectively, be written as

BLUE(M2X 18, | F) = MX [X'(R + XX')"X]|" X' (R + XX') 7y,
BLUE(M,X 3 [ M) = MpX;[X](V + X, X)) "X, " X (V + X, X)) Ty

In this paper, roughly speaking, we consider when the BLUE of M2X;3,
under the fixed effects model F equals the BLUE of M3X;3; under the mixed
effects model M. The parameters associated to the model matrix Xy are
considered to be nuisance parameters, and we are interested in characterizing
the invariance of the BLUE of MsX;3, with respect to the choice of F
~or M. However, since the covariance matrices R and G can be singular,
the fundamental equations (1.4a) and (1.4b) do not necessarily have unique
solutions. Thus, if Lyy and Loy are two different representations of the
BLUE(M32X;3;) under the model F, then it is possible that even if Ly is
also the BLUE(M2X3;) under the model M, Loy is not. Hence, in view of
Mitra and Moore (1973), we can further specify the problem of the invariance
of the BLUE to the following three problems:

(1) When does there exist at least one linear transformation L such that
Ly is the BLUE of M3X 3, simultaneously under the models F and
M?

(2) When is every representation of the BLUE of M>X3; under the
model F also the BLUE of MyX,3; under the model M?

(3) When is every representation of the BLUE of MyX;3; under the
model M also the BLUE of MyX;3; under the model 7
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2. Main results

Before proceeding any further, let us define the following matrices:

W =R + XUX/, U arbitrary with (W) = ¢(X : R),
W;=R+X,U;X|, Uy arbitrary with €(W;) = €(X; : R),
W, =V +X,U,X], U, arbitrary with €(W,,) = €(X; : V),

and
M, = My(MoW fMs) " Ma.
We can now state the following lemma.
Lemma. Consider the models F and M defined in (1.2) and (1.3), res-
pectively. Then
(a) F(Xz: RXL)L = €(MoX; : My — MyW ;M)
=% (M2X; : Mwy),
(b) €(VXi)t =€ (W, X : Mw,,).
Proof. By using Lemma 1 in Isotalo and Puntanen (2006), it is easy to
establish the following identity:

% (Xy : RXT): = @(MoX; : My — My W ;Ms).
But since also
Mw =1-Px,w, =1-(Px, + Pm,w,Mm,)
= My — MW ;M (MyW M) "
= M — My W Mo,
part (a) of lemma is proved.
Proof of part (b) is given by, e.g., Rao (1973, Section 2). O

Consider Problem 1. There exists a matrix L such that Ly is the BLUE
of MyX183; under the both models 7 and M if and only if L satisfies
the fundamental equations (1.4a) and (1.4b) simultaneously. The following
theorem gives characterization for this to hold.

Theorem 1. Consider the models F and M defined in (1.2) and (1.3),
respectively. There erists a linear transformation L such that Ly is the
BLUE of MyX18; under the models F and M if and only if

N (X1 : Xyt RX{) C A (MyXy:0:0). (2.1)

Proof. There exists a matrix L such that Ly is the BLUE of MyX,8,
under the both models F and M if and only if the following equation has a
solution with respect to L:

L(X;: X5 :RX': VX{) = (MyX,:0:0:0). (2.2)
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When LX, = 0, then LVX{ = LRX{, and because ¥(X1) c #(Xi),
equation (2.2) has a solution if and only if

L(X; : X2 : RX{) = (M2X;:0:0)
has a solution, which is clearly equivalent to (2.1). O

Let us now consider Problem 2. Note that one representation of the BLUE
of M3X;3; under the model F is

BLUE(M,X, 83, | F) = MpX; (X[ MyX;) X\ May + Mwy. (2.3)

To show that (2.3) holds, verify that the matrix
L = MyX; (X, MyX;)” X! M, + Mw (2.4)

satisfies the fundamental BLUE equation (1.4a).

Theorem 2. Consider the models F and M defined in (1.2) and (1.3),
respectively. Then every representation of the BLUE of MyX13, under the
model F is also the BLUE of MyX 8, under the model M if and only if

%(Xs : RX1) D €(VXY). (2.5)

Proof. Let every representation of the BLUE of MyX13; under the model
F be also the BLUE of M>X;3; under the model M. Then the representa-
tion given in (2.3) must also be the BLUE of MyX/3; under the model M.
That is, the matrix L given in (2.4) must satisfy the equation LVX{ = 0,
which is equivalent to the inclusion ¢ (L') C €(VX{)*. However, because

L'(M2X,; : Mw) = (MsX; : M),

and obviously €(L') C ¥(M,X; : Mw), we have that F(L') = €(MoX; :
Mw). Thus, in view of part (a) in Lemma, the inclusion (2.5) follows.
Converse is obvious, and thus the proof is completed. O

Problem 3 can be solved as Problem 2. Thus we only state the following
theorem.

Theorem 3. Consider the models F and M defined in (1.2) and (1.3),
respectively. Then every representation of the BLUE of MyX,1 8, under the
model M is also the BLUE of M2X;3; under the model F if and only if

%(X, : RX') C €(VXY).

If the column space property ¥ (X; : XoG : R) = R” holds, then ob-
viously € (X; : Xy : R) = R” holds too, and the BLUE of M5,X 3, has
unique representation under both models F and M. That is, if Ly and
Loy are two arbitrary BLUEs for MX 18, under either of the models F
or M, then L; = Lj; see Grof (2004, Section 2). Thus, under property
% (X1 : X9G : R) = R”, all three considered problems become the same,
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and it is obvious from Theorems 2 and 3 that the BLUEs of M3X; 3, under
the models F and M equal if and only if

€ (X5 : RX1Y) = €(VX7). (2.6)

In the following corollary we give equivalent characterization to (2.6), and
consider the equality of BLUEs under particular condition € (R) = R"™.

Corollary. Consider the models F and M defined in (1.2) and (1.3),
respectively.

(a) If €(X; : XoG : R) = R", then the BLUEs of MyX 3, under the
models F and M equal if and only if

% (X1) C €(W;X5). (2.7)

(b) If €(R) = R™, then the BLUEs of MyX13, under the models F and
M equal if and only if

% (X1) C €(RXy). (2.8)

Proof. If €(X, : X5G : R) = R", then the column space equality (2.6) is
equivalent to the equality

¢ (MpX; : Myy) = €(W,,'X,), (2.9)
since €(VX{)t = (W, X{)+ = €(W, 1X,). The equality (2.9) is fur-

ther equivalent to the equalities
C(WMoX;) = €(X,), (2.10)
%(MaX,) = € (W, ' X,). (2.11)

The equality (2.11) implies that X, W IX; = 0, ie., (X)) C € (W, X5) =
F(WXy5).

Conversely, if (2.7) holds, then WfM2X1 = Xy, i.e., the column space
equality (2.10) holds, and hence part (a) is proved.

If (R) = R", then the matrix M can be chosen to have a representation

M; = My(M;RM,) " Mo.

Furthermore, if € (R) = R", the column space equality (2.6) is equivalent to
the equality
F(RMyX,) = €(X1). (2.12)

It is now straightforward to show the equivalence between (2.12) and (2.8).
O
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3. Example

A sensitive measuring device is calibrated to work properly at a specific
temperature, Tegiiprateq- HoOwever, it is useful to know how small devia-
tions from the specified temperature can affect the measurements. An expe-
riment can be conducted to investigate the relationship between the measure-
ment bias and temperature. The measurement error, y := Measurement —
T'rue Value, takes the role of the dependent variable and the error in working
temperature, z1 := Tyetyar — Tealibrated 1S used as explanatory variable.

The relationship between y and z; can be assumed to be linear for small
absolute values of z;. If the measuring devices are properly calibrated the
intercept term should be zero, but usually one might be willing to add an
additional factor (device) to the model to account for the calibration error.
Hence the final model matrix for an experiment done using two measurement
devices can be

-2 -1 012 -2 -1 01 2
X =(x1:Xy) = 1 1.1 11 0 O 0O0°O0
60 0 000 1 1 111
The model error terms are independent and one can assume constant va-
riance if the absolute value of z; remains small: R = ¢21L.

The factor corresponding to the measuring device can be fixed (no more
than two such measurement devices exist in the world, hence this can not
be considered as a sample from an population) or random (in future more
devices like these might be available). If the factor corresponding to the mea-
suring device is considered to be random, then one can assume the corres-
ponding random effects to have expectation equal to zero — the calibration
process should not be systematically biased.

The regression slope, 1, is estimable under both models — fixed or mixed.
Fortunately X,R"!x; = 0 and from part (b) in Corollary it follows that
BLUEs under the models 7 and M are equal. Hence the estimate of regres-
sion slope B; will remain the same regardless of which model, F or M, one
might favor.

References

Baksalary, J. K. (2004), An elementary development of the equation characterizing best
linear unbiased estimators, Linear Algebra Appl. 388, 3-6.

Drygas, H. (1970), The Coordinate-Free Approach to Gauss-Markov Estimation, Springer,
Berlin —-New York.

Grof}, J. (2004), The general Gauss—Markov model with possibly singular dispersion matriz,
Statist. Papers 45, 311-336.

Grof}, J., and Puntanen, S. (2000), Estimation under a general partitioned linear model,
Linear Algebra Appl. 321, 131-144.

Isotalo, J., and Puntanen, S. (2006), Linear sufficiency and completeness in the partitioned
linear model, Acta Comment. Univ. Tartuensis Math. 10, 53-67.



76 REFERENCES

*Mitra, S. K., and Moore, B.J. (1973), Gauss—Markov estimation with an incorrect disper-
sion matriz, Sankhya Ser. A 35, 139-152.

Rao, C. R. (1973), Representations of best linear unbiased estimators in the Gauss—Markoff
model with a singular dispersion matriz, J. Multivariate Anal. 3, 276-292.

Rao, C.R., and Mitra, S. K. (1971), Generalized Inverse of Matrices and Its Applications,
John Wiley & Sons, Inc., New York - London - Sydney.

Searle, S.R., Casella, G., and McCulloch, C.E. (1992), Variance Components, John Wi-
ley & Sons, Inc., New York.

DEPARTMENT OF MATHEMATICS, STATISTICS & PHILOSOPHY, FI-33014 UNIVERSITY
oF TAMPERE, FINLAND
E-mail address: jarkko.isotalo@uta.fi

INSTITUTE OF MATHEMATICAL STATISTICS, UNIVERSITY OF TarTU, J. L11vi 2, 50409
TARTU, ESTONIA
E-mail address: martm@kodu.ee

DEPARTMENT OF MATHEMATICS, STATISTICS & PHILOSOPHY, FI-33014 UNIVERSITY
OF TAMPERE, FINLAND
E-mail address: simo.puntanen@uta.fi



