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Some tests criteria for the covariance matrix with
fewer observations than the dimension

MUNI S. SRIVASTAVA

ABSTRACT. In this article, we consider testing certain hypotheses concer-
ning the covariance matrix ¥ when the number of observations N =
7 + 1 on the p-dimensional random vector z, distributed as normal,
is less than p, n < p, and n/p goes to zero. Specifically, we consi-
der testing ¥ = o?I,, © = I,, ¥ = A, a diagonal matrix, and ¥ =
o? [(1 - p)I, + plp1,], an intraclass correlation structure, where 1, =
(1,1,...,1), is a p-row vector of ones, and I, is the p x p identity matrix.
The first two tests are the adapted versions of the likelihood ratio tests
when n > p, p-fixed, and p/n goes to zero, to the case when n < p, n-
fixed, and n/p goes to zero. The third test is the normalized version of
Fisher’s z-transformation which is shown to be asymptotically normally
distributed as n and p go to infinity (irrespective of the manner). A test
for the fourth hypothesis is constructed using the spherecity test for a
(p — 1) dimensional vector but this test can only reject the hypothesis,
that is, if the hypothesis is not rejected, it may not imply that the hy-
pothesis is true. The first three tests are compared with some recently
proposed tests.

1. Introduction

Recent advances in techonology to obtain DNA mciroarrays have made
it possible to measure quantitatively the expressions of thousands of genes.
These observations are, however, correlated to each other as the genes are
from the same subject. Since the number of subjects available for taking
the observations are so few as compared to the number of genes expressions,
multivariate theory needs to be developed. Alternatively, if it can be verified
that the covariance matrix for the p gene expressions is either an identity
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matrix or a constant times the identity matrix, then the usual univariate
theories can be applied.

Indeed, univariate thearies have recently been used to analyze microar-
ray datasets without verifying the sphericity assumption, see, for example,
Efron, Tibshirani, Storey, and Tusher (2001). On the other hand, Dudoit,
Fridlyand, and Speed (2002) assumed that the covariance matrix is a dia-
gonal matrix and applied Fisher’s linear discriminant rule with estimated
diagonal elements and the mean vectors. But the assumption of the diago-
nality of the covariance matrix was not verified and tested for the data. In
fact, we applied our tests presented in this paper to check for the spheri-
city and the diagonality of the covariance matrix of the Colon datasets of
Alon et al. (1999) and of Leukemia datasets of Golub et al. (1999) and
found that the covariance matrices of these two datasets are neither sphe-
rical nor diagonal with a p-value of zero. This also implies that when the
global hypothesis H : (\/_, H; is rejected, it may not be justified to use
the false discovery rate (FDR) method of Benjamini and Hockberg (1995)
to determine the components (out of p components) that may have caused
the rejection of the hypothesis H. Because for the validity of the FDR, it
is required that either the statistics used to test the hypothesis H; are inde-
pendently distributed or positively dependent, see Benjamini and Yekutieli
(2001). For testing the independence of the test statistics under the assump-
tion of normality, we need to ascertain that the covariances matrix ¥ is a
diagonal matrix. Similarly for positive dependence under the assumption of
normality, we need to check that the covariance matrix ¥ is of the intraclass
form with positive correlation. That is

S=0"[(1-pL+plp1l], p>0,

where I, is the p x p identity matrix and 1; is a 1 X p row vector with entries
all equal to one, 1;, = (1,...,1). A test for this hypothesis will be obtained
from the sphericity test proposed in this article.

In this article, we consider the problem of testing the following four hy-
potheses:

L Hi :Y=0"l, 0*>0, vs A # Hy , (1.1)
2. HQ Y= Ip, VS AQ ?é HQ, (12)
3. Hy :%=A= diag(\,...,)\,) vs A3 # Hs, (1.3)

4. H4 2220'2 [(l—p)fp+p1p1;] VSA47£H4.

For the first two hypothesis H, and H,, we propose adapted versions of
the likelihood ratio tests available for n > p, p-fixed and p/n tending to
zero. The advantage of such tests is that the same tests can be used for
both situations when n < p or n > p by simply switching n and p. These
tests are not only simple but the existing programs such as SAS can be
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used by interchanging n and p and writing the test statistics in the form
described in this paper. For the diagonality hypothesis H3, however, such
an adapted version is not available, and we propose a test based on the
normalized version of Fisher’s z-transformations of the pairwise correlation
coeflicients.

To describe the four proposed tests, let x1,...,zy be independently and
identically distributed (iid) as multivariate normal with mean vector p and
covariance matrix 3 denoted as N,(p,X). We shall assume that the p x P
covariance matrix 3 is positive definite and often denoted as ¥ > 0. The
sample mean vector T and the sample covariance matrix S are respectively

given by
1 N
T = N lel:z 5
1=

and
N

nS=V:Z(a}i—E)(wi—E)'= (nsij), n=N—1.
i=1
When n < p, the sample covariance matrix S is singular, and there are

only n non-zero eigenvalues of S and V. Let [y, ... ,In denote the non-zero
eigenvalues of V, and let [;,...,l, denote the corresponding eigenvalues of
S. That is

I; = nl; . (1.4)

Then, the proposed test for the testing problem (1.1) is given by
Ll — H?:l l‘ H'?:l ll

no n n [, ne
(szlﬁ) (2}:15>
Similarly, an adapted version of the likelihood ratio test for the testing pro-
blem in (1.2) is given by

1

e 2Pn n ~ %p 1 n 7
Ly = (") Hli e22i=bi
p i=1

For testing the diagonality, we consider the statistic
(n—2) Zi<j Zi2j - %‘P(P ~1)

Q3 = P
p(p—1)
where
147 S;i
Zij = log (1 — 7’2) y Tij = S;J.Sjj 3 and § = (Sij) .

For testing the hypothesis Hy, we propose a test in Section 9, which can only
reject this hypothesis and is based on a known orthogonal transformation
and testing the sphericity of a (p — 1) x (p — 1) matrix. It may be noted
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that the testing problems given in (1.1) and (1.2) remain invariant under
the transformation by an element of the group of p x p orthogonal matrices.
In addition, the testing problem in (1.1) is also invariant under a scalar
transformation. Thus, without any loss of generality, we may assume for
testing the hypotheses H; and H,, that the covariance matrix ¥ is a diagonal
matrix given by

2 = diag(Ar,..., ) = A.

Thus, the testing problem stated in (1.1) becomes

Hy: Ai=...=X, =), against A; : \; # A (1.5)
for at least one i = 1,...,p, where )\ is unknown. Similarly, the testing
problem stated in (1.2) becomes

HQZ )\1:...:/\p=1, against AQ#HQ.

The testing problem (1.3) remains invariant under the transformation Cz,
where C' = diag(ci,...,¢p), ¢; #0, i=1,...,p. Hence, if

Oij .,
¥ = (0y5) and py; = ”—a:ajj ,1F ],
then for testing the independence of the p coordinates of the p-random vector
z, we may test the hypothesis that o;; = 0 or equivalently pij =0, 1 # 7,
against the alternative Az : o;; # 0 for at least one pair (4,7), 1 # j. The
organization of the paper is as follows.

The test for testing the sphericity of the covariance matrix is described
in Section 2 and that for testing the hypothesis that the covariance matrix
1s an identity matrix is described in Section 3. The test for the diagonality
hypothesis is described in Section 4 and that for the intraclass correlation
structure in Section 5. In Section 6, we test for the sphericity and the
diagonality of two microarray datasets, analyzed by Dudoit et al. (2002)
under the assumption that the covariance matrices are diagonal matrices.
We compare, by simulation, the attained significance level (ASL) with those
obtained from the asymptotic distributions in Section 7. A comparison of
the powers with some recently proposed tests by simulation is presented in
Section 8. The paper concludes in Section 9.

2. Testing the sphericity hypothesis

For testing the sphericity hypothesis that ¥ = 2] against the alternative
that ¥ 5 021, the modified likelihood ratio test when n > p, is equivalent to
a test based on the sufficient statistic S, ignoring the information available
on the mean vector p. We shall therefore also consider a test based on the
sufficient statistic S, which is distributed as Wp(A,n), A = diag(Aq, ..., Ap)-
The modified likelihood ratio test has been shown by Carter and Srivastava
(1977) to have a monotone power function. But when n < p, the likelihood
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ratio test does not exist. To construct a test that mimics the above property,
we first consider the case when p = kn, k is an integer. We shall now assume
that the p X p diagonal matrix A is given by

AN=Dg® I,

where Dy = diag(ds,...,d,) isan n xn diagonal matrix, and A ® B is the
Kronecker product of two matrices 4 = (aij) : m xn and B : p x ¢ given
by (a;;B) : mp x nq. Then, the sphericity hypothesis is equivalent to testing

that d; = d, d unknown for all 5,1 =1, . .. ,n. It is known, see, for example,
Srivastava and Khatri (1979) that
nS =YY",

where Y = (yy,...,y,): pxn and y,’s are iid Np(0,A), and A = Dy ® I.
Writing
!
Y’:<wa~=wm)7
we find that y;)’s are iid N,,(0,D,), s = 1,...,p. Hence, Y'Y ~ Wy (Dy, p),
a Wishart distribution with mean pD, and degrees of freedom p. Hence, the

likelihood ratio test based on the observations Y1)+ Y(p) for testing the
hypothesis that d; = d foralli =1,...,n against the alternative that d; # d

for at least one i = 1,...,n is given by
noL
.L1=-———5371W, (2.1)
n i
(zn k)
where 1, . . . ,l~n, are the non-zero eigenvalues of Y'Y, and thus equivalently

of V.= YY' The test L; is the ratio of the geometric mean and the
arithmetic mean of the n non-zero eigenvalues of V' or equivalently of S.
Thus, from Carter and Srivastava (1977), it has a monotone power function.

Although the above test has been derived assuming that p = kn, k an
integer and A = Dy ® I, we shall propose the test L; for all the cases.
The test given in (2.1) may thus be considered as an adapted version of
the likelihood ratio test when n > p to the case n < p, obtained by simply
interchanging n and p. The asympotic distribution of Ly for fixed n and
P —+ 00, can also be obtained in the same manner. To write it explicitly, let

(n+1)(n—1)(n+2)(2n® + 60> + 3n + 2)

“ 288n2 ’
2n% 4+ n+2
m= p-
6n
1
g1 = §n(n+1)—1,
Ql = ——mlogL1 . (22)

Then, we have the following theorem.
21
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Theorem 2.1. Under the hypothesis that A = o%I, the asymptotic distri-
bution of the test statistic Q1 when n/p — 0 and n fized, is given by

Po(Q1 2 2) = P(xj, > 2) + comy” [P(x3, 44 > 2) — P(X2, > 2)] + O(m;?).

This is obtained by interchanging n and p in the asymptotic expression of
the cdf of the corresponding likelihood ratio test when n > p, see Srivastava
(2002, p. 482). Here Py denotes that the distribution is under the hypothesis
(null).

In Section 4, we compare the power of the Q; test with a recently proposed
test by Srivastava (2005), given by

n=(3) -1, (2.3)
where
. ao
"= 5? )
R . n2 1 1 2
as = m (Z_)) |:t1’52 - ‘]_’L- (tI'S) ] 3 (24)
i = T (2.5)
p

Asymptotically, as (n,p) — oo,

(3) G =m) ~ N, P),

with
o 2n(asal —2aia0a3 +a3)
T = 3 + =7,
pay ay
tryt
a; = p ci=1,...,4, v = as/ad?. (2.6)
It is assumed that
0<ai0:1imai<oo,i:1,...,4. (2.7)
pP—00

Since, under the hypothesis v, = 1, it follows that as (n,p) — oo, asympto-
tically
Ty ~ N(0,1).

The asymptotic power of T} is given by

im P{Z(6 -1 =(n-1] > z-gn—1)]n>1}

(n,p)—o0
n —1) —
- & [2(’)’1 7_1) za:l : (28)
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where z, is the upper 1000% point of the standard normal distribution, and
® denotes the cdf of a standard normal random variable. Here and elsewhere
(n,p) — oo means that the results hold irrespective of how n and p go to
infinity.

The simulation result (not included) shows that the power given in (2.8)
provides a very good approximation for large p. In the above results given
in (2.8), there is no restriction as to how n and p go to infinity.

3. Testing that the covariance matrix is an identity matrix

Again, as in Section 2, because of the invariance under the orthogonal
transformation, we shall assume that 3 is a diagonal matrix given in (1.5).
It has been shown by Nagao (1967) that the modified likelihood ratio test
has a monotone power function. Thus, motivated by this fact, we propose a
test for testing that \; = 1 for all { = 1,2...,p, against the alternative that
Ai # 1 for at least one 1 = 1,2, ... ,», which mimics the likelihood ratio test
except that here n < p and we have only n non-zero eigenvalues I, ..., 1, of
V =nS. Thus, we propose a test statistic

e %pn n _ %P 1 -
Ly = (-) (H li) e 2 izt ki (3.1)
p =1

Let
1
go = En(n—f—l),
o 2n® +3n+ 1
R TP
n 4 3 2
= — (9 —12n — 13
¢ 288(n+1)(n +6n° +n” —12n ),
2
Qy = —(Jl’)ﬂ> log Lo . (3.2)

Then, we have the following theorem.

Theorem 3.1. Under the hypothesis that ¥} = I, the asymptotic distribu-
tion of the test statistics Qy when n/p — 0 and n fized, is given by

Py(Q2 > 2) = P(ng > z) + com, 2 [P(X§2+4 > z) — P(ng > 2)] + O(m33).

When n > p, we replace n by p and p by n in Ly as well as in all the
formulas given above.

The test given in (3.1) is the likelihood ratio test when AN = Dy I,
p = kn, and D, = diag(dy, . .. ,dn), and we wish to test the hypothesis that
di=1foralli=12 ... n, against the alternative that d; # 1 for at least
one: =12 ... n.
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The test proposed by Srivastava (2005) using a consistent estimator of the
parametric function that separates the null hypothesis from the alternative
hypothesis is given by

7= (3) (G +1), (3.3)

where ¥, = a2 — 2a1, a2 and a; have been defined in (2.4) and (2.5) respec-
tively. Asymptotically, as (n,p) — oo,

(5) Ge =) ~ NO,73).

with
Yo = as — 2a;,
and

2n
2= (?) (a2 — 203 + a2) + a2,

where a; has been defined in (2.6), and it is assumed that (2.7) holds.
Under the hypothesis that \; =1 (or d; = 1), 7 = —1 and 72 = 1. Hence,
the asymptotic null distribution as (n,p) — oo is given by

T ~ N(0,1).
Thus, the asymptotic power of the 75 test is given by
n —1) =
lim P{T2>Za172+1>0}:¢[MJ_
(n,p)—o0 T

4. Testing that the covariance matrix is a diagonal matrix

In this section, we consider the problem of testing the hypothesis described
in (1.3), namely, that the covariance matrix 3 is a diagonal matrix against
the alternative that it is not a diagonal matrix when the sample size N < p.
Unfortunately, the device used to obtain adapted versions of the likelihood
ratio tests for NV > p in Sections 2 and 3 cannot be applied here as A cannot
be assumed to be equal to Dy ® I. Thus, we shall consider tests based on
covariances or correlations since the problem remains invariant under the
transformation z — Cx, where C' = diag(cy,...,¢p). Thus, let

Tz‘jz——‘—sij y LF ],
where S = (s;;). Under the hypothesis of independence of the p characte-
ristics of the random vector that is z ~ Np(p, A) with A = diag(Aq,. .. s Ap)s
rijv/n, 1 # j, are asymptotically independently distributed with mean 0
and variance 1, see Srivastava and Khatri (1979, p. 103). However, as is
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well known, its convergence to normality is slow. Thus we consider Fisher’s
z-transformation defined by

1 147

glog =2 i #j,

Ziqi =
Y2 % -y

and propose the test statistic

(=) Y7 - belp - 1)

T Vp(p —1)

The following theorem gives its asymptotic distribution.

Theorem 4.1. Under the null hypothesis that the covariance matriz is a
diagonal matriz, Q3 is asymptotically distributed as N(0,1), when n and P
go to infinity.

Proof. Under the hypothesis Hz : pj; = 0, i # j, and \/nryj, i # j, are
asymptotically independently distributed as N(0,1), as n — co. Thus

rijzop(n—%),i7éj.

Hence

Zij = é- lOg + i

_3\ .,
1—ri ="yt Op (n 2)’ LA
We note that r;; are invariant under scalar transformations of each of the P
variables. Thus, under the hypothesis H : pi; = 0, we may assume without
loss of generality that the covariance matrix A = I. Hence,

nzfj = nrl-zj + Op(n™1)
= [140, (n71)] (nr}))
= [1 + Oy (n_%)j‘ ns?j,

since s;; = [1 +Op (n“%ﬂ.
Now under the normality assumption

1 .
nsty =+ (ufug), i # 5,

where u; ~ N, (0, 7). Now

!
1 U U; whu
’ - 779 1 . .
Euiu'j = , 1F£ 7.

n !, .
uju]




86 MUNTI S. SRIVASTAVA

Given u;, —ué\/% ~ N(0,1) and hence independently distributed of u;. We
Uy

also note that % — 1 with probability one as n — oo. Let

2
o
2 Uu; U

iy ”%
ujuj

Since, cov(wij, wix) = 0, j # k # 1, it follows that w;; are iid N(0,1). Hence

(n — 2)312]' = [1 + 0, (n_%)] w?j .

Thus, from the central limit theorem for sums of iid random variables, it
follows that

-

lim P (n — 2) ZK]‘ 31'2]‘ - %P(p -1)
(np)=oo | p(p—1)

<z| =o(x).

From the above, it also follows that

i p | P2 g P <z| =o(z)
(oo | Vel —1) =

But Fisher’s z-transformation is known to converge to normality faster that
T‘ij. O

Another test based on the covariances has recently been proposed by
Srivastava (2005). It is given by

T - (ﬁ) (95 —1) ,

Tl

where
. as
T3 = =
a0
p
aZO —_ _._n_ Z 52‘
p(n+2) = *’

) 14,
asp = “E:Sm
P4

and Gg has been defined in (2.4). It has been shown by Srivastava (2005)
that under the hypothesis, as n and p go to infinity, T3 is asymptotically
N(0,1).

Under the alternative hypothesis of 0ij #0, 1 #74, 4, j=1,...,p, for at
least one pair of (4, 5), asymptotically as (n,p) — oo,
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T3 NN((S,T;;?),

1
n 1 a4Q T2
= _(p3—1)[1—-(=)=
’ 2(73 )[ <p>a%0} ’

2 -1 p 2 P4
2_ G5 —p "aq _ 24=195 i=1%;
T3 = 5 1 , @20 = , Q40 = )
a5y — P “a40 p p

and a;’s satisfying (2.7) have been defined in (2.6). Under the diagonality
hypothesis, v3 = 1.

where

5. Testing that the covariance matrix is of
intraclass correlation structure

In this section, we consider the problem of testing the hypothesis
Hy: =0 [(1-p)I, +p1l].

against the alternative A4 # Hy. When n > p, the likelihood ratio test
is available, see, for example, Srivastava and Carter (1983) and Srivastava
(2002). However, when n < p, no such test exists. In order to obtain a test
for testing the hypothesis Hy vs A4 when n < p, we proceed as follows. Let
G be a p x p known orthogonal matrix, GG' = I, such that the first row of
G is given by 1’/,/p. Then
u; = Gwi
are iid Np(Gu, GXG'), where we can write

Gs@ = ( Vv ) S(1/v/p, G5)

1'Y1/p 1'SGY/\/p
GoS1/p  GoYGlL

_ Ay Ay

N Arp Ao

= A,
where G2 : (p — 1) x p, G2GY = I, and G21 = 0. Thus

GVG’ ~ WP(A,H), and GQVGIQ ~ Wp_l(AQQ,TL) .
Under the hypothesis H,
Ay =4I 1, ¥ =0*(1-p).

Thus, we test for the sphericity of the covariance matrix of the (p — 1)
dimensional random vectors Gaz;, ¢ = 1,...,n. Clearly, the acceptance of

the hypothesis does not imply the acceptance of the hypothesis H4. However,
the rejection of this hypothesis implies the rejection of the hypothesis Hy.
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Assuming that n < (p — 1), let I¥,...,I*, be the n non-zero eignevalues
of GoVGY. Then the sphericity test based on the adapted version of the
likelihood ratio test is based on the statistic (1.4) with [; replaced by l~f .
Similarly, a test corresponding to (2.10) is obtained by using 41 in place of
41, where

:Yik = &E (&T)Q’
. tI'GQSG/Q

a; = ———=
1 p— 1

and

n2

iy = DD <pi 1) [tr(GgSGg)Q — %(u(azsag)ﬂ :

It may be noted that this is a sphericity test and thus no further discussion
of this test is pursued. It may also be noted that the ith row of the (p—1) xp
matrix G9 is given by

1St 2’nd (‘7 + 1)th (] 4 2)nd pth

7 1 1
,— feey e, 0, ..., 0 :
<\/¢(z'+1) V(i + 1) Vi(i+1) )

i=1,...,(p—1).

6. Two examples

In this section, we test the hypotheses of sphericity and diagonality of the
following two data sets.

Colon Datasets

In this dataset, expression level of 40 tumors and 22 normal colon tissues
for 6500 human genes are measured using the Affymetrix technology. A se-
lection of 2000 genes with highest minimal intensity across the samples has
been made by Alon, Barkai, Motterman, Gish, Mack, and Levine (1999).
Thus p = 2000, and the degrees of freedom available to estimate the cova-
riance matrix is only 60.

Leukemia Datasets .

This dataset contains gene expression level of 72 patients either suffering
from acute lymphoblastic leukemia (ALL, 47 cases) or acute myeloid leu-
kemia (AML, 25 cases) and are obtained from Affymetrix oligonucleotide
microarrays. More information can be found in Golub, Slonim, Huard, Gas-
senbeek, Mesirov, Coller, Loh, and Downing (1999); following the protocol
in Dudoit, Fridlyand, and Speed (2002), Dettling and Buhlman (2002) pre-
process them by thresholding, filtering, a logarithmic transformation and
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standardization, so that the data finally comprise the expression values of
p = 3571 genes, and the degrees of freedom available for estimating the
covariance is only 70.

These data are publicly available at “http: / /www.molbio.princeton.edu/
colondata”. A base 10 logarithmic transformation is applied.

The description of the above datasets and preprocessing are due to Det-
tling and Buhlman (2002), except that we do not process the datasets such
that each tissue sample has zero mean and unit variance across genes, which
is not explainable in our framework. We roughly check the normality by
QQ-plotting around 50 genes selected randomly. The results are nearly sa-
tisfactory.

For testing sphericity of the colon data, the value of the test statistic
Q1 = 82086.322 and that of T} = 2771.654, see (2.2) and (2.3). Thus the
hypothesis of sphericity is rejected by both tests with p-value = 0 in each
case. For testing the diagonality of the colon data, the value of the test
statistic Q2 = 0o, a very large number, and T; = 2005.894, see (3.2) and
(3.3). Thus, the hypothesis of diagonality is also rejected with p-value = 0
in each case.

For the Leukemia data, the value of the two statistics for testing sphericity
is given by @1 = 86210.830, and 7} = 2294.918 respectively. Hence, the
sphericity hypothesis is rejected by both tests with p-value zero in each case.
For testing diagonality, the value of the test statistics are Q2 = 2669.243,
and Ty = 1275.528. Thus both tests reject the diagonality hypothesis of the
Leukemia data at p-value = 0 in each case.

It would thus appear that the assumption of diagonality made by Dudoit
et al. (2002) is not supported by the data in both the examples.

7. Attained significant level

In order to check as to how good the normal approximations are for the
six statistics Qq,Q2, Q3 and Ty, T, T, we carry out simulation. A random
sample of size n+1 is drawn from N, (0, I) and replicated 1000 times. All the
six statistics are calculated for a sample and the percentage of times they
exceed z, is recorded, where z, is the upper 100a% point of the normal
cdf. Tables 1-6 present these percentages for o = 0.05. We call it “attained
significance level (ASL)”. For the test Qq, Q2,Q3, the attained significance
level is close to o when n and p are not close to each other.

For the tests Ty,T,,T3, no such restriction on n and p is needed and
attained significance is close to «, usually much better when n > 20 and
or p > 20. However, there were four cases where the program did not
work. Since this is a small number of cases and would not have changed our
conclusion, no further attempts were made to obtain them.

23
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Table 1 ASL* of T} test under H; Table 2 ASL* of Q1 test under H;
Sample from N(0,1), n=N-1 Sample from N(0,1), n=N-1
n=20 n=30 n=60 n=100 n=20 n=30 n=60 n=100

p=60 0.053 0.050 0.052 0.048 p=60 0.060 0.062 NA 0.147
p=100 | 0.050 0.045 0.049 0.041 p=100 | 0.053 0.045 0.056 NA
p=150 | 0.050 0.058 0.053 0.048 p=150 | 0.057 0.045 0.056 0.571
p=200 | 0.046 0.058 0.053 0.048 p=200 | 0.051 0.052 0.052 0.157
p=250 | 0.070 0.051 0.046 0.048 p=250 | 0.045 0.059 0.058 0.064
p=300 | 0.043 0.058 0.055 0.059 p=300 | 0.032 0.045 0.052 0.066
p=400 | 0.048 0.055 0.049 0.047 p=400 | 0.049 0.046 0.054 0.056

*ASL-Attained Significance Level *ASL-Attained Significance Level

Table 3 ASL* of T, test under H» Table 4 ASL* of Q2 test under Ho
Sample from N(0,1), n=N-1 Sample from N(0,1), n=N-1
n=20 n=30 n=60 n=100 n=20 n=30 n=60 n=100

p=60 0.057 0.051 0.042 0.064 p=60 0.057 0.065 NA 0.178
p=100 | 0.067 0.046 0.047 0.056 p=100 | 0.050 0.060 0.163 NA
p=150 | 0.043 0.060 0.056 0.049 p=150 | 0.052 0.056 0.066 0.536
p=200 | 0.049 0.055 0.050 0.046 p=200 | 0.049 0.040 0.056 0.169
p=250 | 0.048 0.054 0.045 0.047 p=250 | 0.066 0.044 0.060 0.088
p=300 | 0.063 0.061 0.049 0.065 p=300 | 0.048 0.049 0.053 0.066
p=400 | 0.058 0.055 0.053 0.047 p=400 | 0.054 0.051 0.055 0.057

*ASL-Attained Significance Level *ASL-Attained Significance Level

Table 5 ASL* of T3 test under Hs Table 6 ASL* of Qg test under Hs
Sample from N(0,1), n=N-1 Sample from N(0,1), n=N-1
n=20 n=30 n=60 n=100 n=20 n=30 n=60 n=100

p=60 0.054 0.050 0.044 0.037 p=60 0.061 0.067 0.055 0.052
p=100 | 0.050 0.051 0.049 0.049 p=100 | 0.051 0.056 0.044 0.061
p=150 | 0.061 - 0.037 0.050 0.055 p=150 | 0.055 0.053 0.057 0.044
p=200 | 0.048 0.056 0.059 0.054 p=200 | 0.043 0.059 0.055 0.052
p=250 | 0.055 0.055 0.060 0.049 p=250 | 0.060 0.054 0.044 0.050
p=300 | 0.057 0.049 0.045 0.048 p=300 | 0.038 0.046 0.052 0.060
p=400 | 0.044 0.054 0.051 0.051 p=400 | 0.042 0.049 0.067 0.045

* ASL-Attained Significance Level * ASL-Attained Significance Level

8. Power comparison

In this section, we compare the power of T7 with Q1, Tb with Q9, and T3
with Q3. The power comparison is based on simulation. We first carry out
the simulation to obtain the significance points for all six statistics as done
in Section 5. However, here we calculate T;, and Q;n, ¢ = 1,2, 3, such that
under the hypothesis

P{E>Ea}:a7 a’ndP{Ql>Q’La}:aa 7/:17213

We have chosen a = 0.05. We simulate again. A sample of size n + 1
is drawn from N,(0,A), where A = diag(\1,...,Ap). The values of )\; are
obtained by taking p iid observations from the uniform distribution over
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the range (0.5, 1.5). The sample is replicated 1000 times. The percentages
of times that the values of statistics T} and Q;, i = 1,2, exceed T}, and
Qiq respectively are recorded. These are the stimulated power of the four

statistics 17,75, @1, and @2, given in Tables 7-10.

Table 7 Power of T} test under A;
(1) 1000 sample from N(0,1) to simu-
late Thq, a=0.05, for each pair of (p,n).
(2) 1000 sample from N(0,D) to obtain
T, P(Tl > Tla)poWeI‘.

(3) D=diag(da, ..., dp), where

d; ~ U(0.5,1.5).

Table 8 Power of Q; test under A;
(1) 1000 sample from N(0,1) to simu-
late Q14, 2=0.05, for each pair of (p,n).
(2) 1000 sample from N(0,D) to obtain
@1, P(Q1 > Q1a)=power.

(3) D=diag(ds,-..,dp), where

di ~ (0.5,1.5).

n=20 n=30 n=60 n=100

n=20 n=30 n=60 n=100

p=60 0.284 0.350 0.495 0.979

p=60 0.162 0.352 0.169 0.786

p=100 | 0.207 0.436 0.887 0.940

p=100 | 0.208 0.258 0.605 0.285

p=150 | 0.165 0.400 0.725 0.986

p=150 | 0.194 0.344 0.693 0.923

p=200 | 0.194 0.362 0.730 0.993

p=200 | 0.234 0.290 0.755 0.953

p=250 | 0.177 0.334 0.839 0.992

p=250 | 0.188 0.336 0.818 0.963

p=300 0.221 0.352 0.771 0.984

p=300 | 0.218 0.337 0.735 0.985

p=400 0.182 0.329 0.721 0.989

p=400 | 0.199 0.340 0.752 0.988

Table 9 Power of T, test under Ao
(1) 1000 sample from N(0,1) to simulate
T2q, a=0.05, for each pair of (p,n).

(2) 1000 sample from N(0,D) to obtain
Ty, P(T> > Ta,)=power.

(3) D=diag(ds, .. .,dp),where

d; ~ U(0.5,1.5).

Table 10 Power of Q2 test under As
(1) 1000 sample from N(0,1) to simulate
Q24, a=0.05, for each pair of (p,n).

(2) 1000 sample from N(0,D) to obtain
Q2, P(Q2 > Q2qa)=power.

(3) D=diag(ds, ..., dp),where

d; ~ U(0.5,1.5).

n=20 n=30 n=60 n=100

n=20 n=30 n=60 n=100

p=60 0.159 0.389 0.748 0.909

p=60 0.189 0.237 0.148 0.896

p=100 0.275 0.360 0.682 0.992

p=100 0.168 0.300 0.618 0.215

p=150 | 0.261 0.300 0.727 0.985

p=150 0.209 0.283 0.689  0.899

p=200 | 0.244 0.339 0.675 0.984

p=200 0.186 0.354 0.626  0.981

p=250 | 0.165 0.287 0.714 0.994

p=250 0.256 0.348 0.671  0.946

p=300 | 0.193 0.361 0.724 0.992

p=300 0.276 0.386 0.780 0.977

p=400 | 0.196 0.376 0.735 0.991

p=400 0.179 0.307 0.760  0.987

For the statistics T3 and Q3, n+ 1 samples are cdrawn from N,(0,DRD),

where R = (’f‘ij) with

1\ zli=dl
Tij = (g) )

and D = diag(d,...,dp), di ~ U(0.5,1.5). The sample is replicated 1000
times and the powers of the tests T3 and ()3 are obtained. The percentages
of the values of the statistics T3 and Q3 exceeding T3, and Qs,, respectively,
are the powers of these tests shown in Tables 11-12.
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Table 11 Power of T3 test under A3
(1) 1000 sample from N(0,1) to simulate
T34, a=0.05, for each pair of (p,n).

(2) 1000 sample from N(0,D) to.obtain
T3, P(T3 > T34)=power.

(3) ¥ = D1 * Ry * D; is the variance
matrix for sample generating.

(4) D=diag(da,...,dp),where

d; ~ U(0.5,1.5).

Ry is correlation matrix with

e;; = (k/6 x (|t — j|/2), where k=1.

Table 12 Power of Q3 test under A3
(1) 1000 sample from N(0,1) to simulate
Q3q, a=0.05, for each pair of (p,n).

(2) 1000 sample from N(0,D) to obtain
Q3, P(Q3 > Qss)=power.

(3) £ = D1 * Ry * D; is the variance
matrix for sample generating.

(4) D=diag(da,...,dp),where

d; ~ U(0.5,1.5).

R; is correlation matrix with

e;j = (k/6 « x(|i — j]/2), where k=1.

n=20 n=30 n=60 n=100 n=20 n=30 n=60 n=100
p=60 0.861 0.987 1.000 1.000 p=60 0.933 1.000 1.000 1.000
p=100 0.807 0.988 1.000 1.000 p=100 0.960 1.000 1.000 1.000
p=150 0.849 0.992 1.000 1.000 p=150 0.963 1.000 1.000 1.000
p=200 0.849 0.989 1.000 1.000 p=200 0.966 1.000 1.000 1.000
p=250 0.842 0.989 1.000 1.000 p=250 0.952 1.000 1.000 1.000
p=300 0.833 0.993 1.000 1.000 p=300 0.962 1.000 1.000 1.000
p=400 0.867 0.988 1.000 1.000 p=400 0.953 1.000 1.000 1.000

9. Conclusion

In this paper, we have proposed adapted versions of the likelihood ratio
tests available when n > p to the case when n < p for testing sphericity and
testing that the covariance matrix is an identity matrix. The advantage of
such tests is that the program and the formula for the distribution can be
obtained by just interchanging n and p in the available formula for the case
n > p, except that all the test statistics must be expressed in terms of the
eigenvalues of n.S. The performance of these two tests is comparable to the
proposed tests of Srivastava (2005). For testing the independency of the p
variables or equivalently the diagonality of the covariance matrix, both tests
perform well.
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