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On shift permutation invariance, covariance
structures, and Toeplitz matrices

TATJANA NAHTMAN AND DIETRICH VON ROSEN

ABSTRACT. The objective of this paper is to present a comprehensive
study of shift permutation invariant covariance structures in linear mo-
dels. It follows that the corresponding covariance matrices belong to the
class of symmetric circular Toeplitz matrices. Results for the spectrum
of shift permutation invariant covariance matrices of random factors in
linear models are given. Among others the results are of use when re-
parametrization conditions are imposed in order to perform inference
based on a unique set of parameters.

1. Introduction

In this paper the spectrum of covariance matrices in linear models with
random factors which are shift permutation invariant are studied. It is a
follow up paper of Nahtman (2006) where, among others, the spectrum of
covariance matrices of permutation invariant linear models was considered.
The class of shift permutations provide more structure on the covariance
matrices than the class of permutations. The main idea is to deepen the
knowledge about designs which are invariant under some kind of permuta-
tions. In particular, we want to have parametrizations which give unique set
of parameters. Usually this is achieved by putting constraints on the para-
meters in the model and our main result is of help to find these constraints so
that the model is still shift permutation invariant. In this work we are only
interested in model formulations and not how to obtain explicit expressions
for the estimators. However, results concerning estimation of maximum like-
lihood estimators (MLEs) are long time available (e.g. see Andersson, 1975;
Marin and Dhorne, 2002, 2003).
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The best way to describe invariance properties of random factors, inclu-
ding interactions, is via their covariance matrices. Because of invariance it
appears that the natural quantities to study are the eigenvalues and eigen-
vectors of covariance matrices. It is easy to imagine that restrictions on
the factor levels will lead to singular covariance matrices with eigenvalues
equal to 0. The corresponding eigenvectors then tell us what kind of res-
trictions can be put on the factors. For example, the restriction which puts
the sum of factor levels to 0 and which does not violate the assumption of
exchangeability.

In the present paper we are going to study shift invariance in K —way
tables. This leads to covariance matrices with Toeplitz-structures. It is in-
teresting to note that in practice shift invariance is natural but that this
property is not always taken into account when modelling data. Since eigen-
values and eigenvectors of Toeplitz matrices are known, we start with this
observation and shall extend the results to the study of higher order inter-
actions of factors. The approach implies that covariance matrices are build
up with the help of Kronecker products. In Section 2 spectral properties of
symmetric Toeplitz matrices are given, Section 3 connects shift invariance
with Toeplitz covariance matrices and Section 4 considers the spectrum of
shift permutation invariant covariance matrices.

2. Preliminaries and definitions

An n x n matrix T of the form

to &1 to -+ 1
tv to ti -ty
T = to 01 to :Toep(to,tl,tg,...,tl) (21)
: . . .
t1 to - 11 1o

is called a symmetric circular Toeplitz matriz. The matrix T depends on
[n/2] + 1 parameters, where [o] stands for the integer part, and t;; = tj;_j|,
,7=1,...,n.

A symmetric circular matrix SC(n, k) is defined in the following way:

n
A

SC(n,k) = Toep(D,...,0,1,0,...,0,1,0,...,0), (2.2)
—— N——
k k-1
where k € {1,...,[n/2]}. Note that SC(n,k) can be written as
SC(n, k) = Z ei€l, (2.3)
b
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where ey, is the h-th column of the identity matrix I,, h =1,...,n. For
notational convenience denote SC(n,0) = I,. It is easy to see that
[n/2] [n/2]
Toep(to,tl,tg, e ,tl) = tQIn + Z tiSC(’l’L,i) = Z tzSC(n,z)
i=1 i=0
Since
[n/2]
aoly, + Z a;SC(n,i) =0,
=1
it follows that ag = ... = a; = 0, i.e. I,,, SC(n,1),...,5C(n,l) are linearly
independent.

The spectral properties of symmetric Toeplitz matrices can be found
in Davis (1979) or Basilevsky (1983). We present some additional results
concerning multiplicities of the eigenvalues of such matrices.

Let A\, k=1,...,n, be eigenvalues of the matrix T : n x n. The following
lemma gives the spectral property of the matrix T.

Lemma 2.1. Let T : n x n be a symmetric Toeplitz matriz with elements
as in (2.1). If n is odd
[n/2]
Ak =to+2 Z tjcos(2mkj/n).
Jj=1

There 1s only one eigenvalue A, which has multiplicity 1 and all other eigen-
values are of multiplicity 2.

If n is even
n/2—1
A =19+ 2 Z tjcos(2mkj/n) + tp, /o cos(mk).
Jj=1

There are only two eigenvalues Any A2 which have multiplicity 1 and all
other eigenvalues are of multiplicity 2.
The eigenvectors corresponding to the eigenvalues M1, ..., \, are

v =n"2 (g1, ..., vk)' (2.4)
with
vk; = cos(2mik/n) + sin(27ik/n), i =1,...,n.

Proof. For derivation of the eigenvalues and eigenvectors we refer the rea-
der to Basilevsky (1983).
If n is odd, we can see that A\, = \,_x, k = 1,...,n—1, and )\, =
to+20 2y
25
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If n is even, then for k # n,n/2 : \y = \,_;. However, the eigenvalues
n/2—1
An =to+2 Z tj cos(2mj) + tp /o cos(mn),
j=1
n/2—1
Anj2 =to +2 Z tj cos(mj) + 5 cos(mn/2)
j=1
are distinct. O

It is worth observing that from (2.2) it follows that Lemma 2.1 immedia-
tely gives eigenvalues and eigenvalues for SC(n, k). Moreover, eigenvectors
given in (2.4) do not depend on the elements in (2.1). One important conse-
quence of this result is that any two symmetric circular Toeplitz matrices
always commute.

3. Shift permutation invariance and Toeplitz covariance
matrices

An orthogonal matrix P:n x n is a shift permutation matriz if

1, lf] = ’l + ]. — ’I’LI(i>n~1)
Pij =

. )
0, otherwise

where

7 1, ifa>0b
(a>b) = 0, otherwise

Suppose that we have observations Yi, i»,...i, for which we assume a model
consisting of k& random factors, i.e., the observations Yi1is,...i, form a so-
called K-way table. A crucial assumption will be that if we permute the
levels of one factor, the others will not be affected. This leads to the concept
of marginal permutations (see Nahtman, 2006). For & = 2 we have Yi iz,
Le., a matrix Y = (Y;;). Invariance implies that we can post-multiply Y by a
shift matrix P’ and Y P’ will have the same distribution as Y. Observe
that P(1)" affects the index J in Y and if E(Y) = 0, invariance means
D(YPW')y = D(Y). If we want to permute the i-index, we look at P2V
Furthermore, if we intend to permute the indices i and j independently of
each other, we study P(Q)YPU)', or, equivalently, (P® @ P(l))y, where y is
the vector of lexicographically ordered observations. In the case of several
factors we can repeat the arguments and obtain the next theorem.

Theorem 3.1. In a K-way table the structure of the shift permutation
matriz Py equals

P,=P® g...g PO (3.1)
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where P gre shift permutation matrices, h =1,...,k.

The matrix Py defined in Theorem 3.1 is called a marginal shift permuta-
tion matriz of order k.

Definition 3.1. Let Q be an arbitrary element of a group G of one-to-one
transformations. The covariance matrix D(¢) of a factor ¢ is called invariant

with respect to G if D(&) = D(Q) or, equivalently, D(£) = QD(£)Q'.

In this paper we are not going to discuss the covariance structure of the
vector of observations y. Instead we solely focus on the underlying random
factors. Based on our results for these factors we can immediately consider
observations but this is a straightforward exercise. For example, for

2
Yije = & + & +7i(j)

+ Eijks

where ¢1=(¢}) ~ N(0,2¢1), £2=(&7) ~ N(0, ), ¥0=(45)) ~ N (0,3, ),
€= (gik) ~ N(0,%;) are 1ndependent, results are obtained when we have
knowledge about the factors ¢!, €2, v(2) and e. Here 7®) is a second order
interaction factor.

In the subsequent we are going to study an s-order interaction factor (%)
with D(y(*)) = ;. The next theorems show that the invariance has strong
implications on the structure of the covariance matrix. We first present two
special cases which are of interest in applications but then also serve as a
basis in a proof by induction which will be used for proving the general
statement.

Theorem 3.2. The covariance matriz X: ny x ny of the factor £ is shaft
permutation invariant if and only if it is a symmetric circular Toeplitz ma-
trix:

[n1/2]

¥ =Toep(r9,T1,72,...,71) = Z 7;,5C (n1,1),
i=0

where the matrices SC(n1,7), i = 1,...,[n1/2], are given by (2.2).

Proof. Let ep, be the h-th column of the identity matrix In,,h=1,...,n.
Then we can express ¥ = (0;) in the following way:

ny ny [n1/2]
Y= g E ameze = g auele + Z E szez
=1 j=1 2,]
li=j|=

kni—k
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Since by invariance, i.e., P1y(!) and () have the same covariance matrix,
we study when P/XP] = ¥. Now,

ni : 71,1/2
/ 2 : ! § :
P12P1 = aii(PgeieiPl Z 045 Pleze Pl)
[i— ]|——
k:,nl—k
equals ¥ for all P, if and only if

011 = 022 = ... = Opjing;

0-12 = 0-23 = L= Unl—l,'nl = 0711,11

013 = 024 = ... = Un1—2,n1 = an1,2>

By using (2.3) and 73 instead of 0,5, where k = |i — j|, we obtain

n1/2 n1/2
Y = ZTgeze —l-ZTk Z eie; —-Tolm—l-ZTkSC (n1,k
i-3l=
k,ni1—k

[n1/2]
= Z T:5C (n1, k) = Toep(1o, 71, To, .. ., T1).

O

Before stating the general theorem we will also consider the second order
interactions.

Theorem 3.3. The covariance matriz ¥y : n x n of ¥ is shift permu-
tation invariant if and only if
[n2/2] [n1/2]

Yo = Z Z TkSC(’ng,kz) ® SC(nq, k1),

ko=0 ki1=0

where v?) represents the interaction between a factor with ny levels and a

factor with ny levels, n = nyny, the matrices SC(i, j) are given by (2.2), and

k= ([%—1] + 1)]62 + k1. (32)

Proof. Observe that we may write

!
Y = E :a”eTe - E : E : O (igir) (]211) 2ig 2]2) (e 111‘31j1)7

i2,J2=111,71=1

where e, e; are the r-th and the s-th columns of the identity matrix I,,,
respectively, ep;, is the ip-th column of the identity matrix In,, h = 1,2
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Oini1)(joji) = 000(71(21)1,7](23)1) is the element of s in the r-th row and the
s-th column,
r = (ig — 1)n1 + 11,
8= (j2 — )ny + J1,
and
ep=¢e,, Qe
eg=e Qc¢€

252 ;"

1ip?

Now, by applying the proof of Theorem 3.2, i.e., inquiring the condition
PyYo Py = 3y,

for all Py, where P, = P(1) @ P(?) is the marginally shift permutation matrix
of order 2 defined in (3.1). It follows that

n2/2 n1
Z Z k?ll)(kzjl)sc(n27k2) ®P( )(ell 61 ) (2)
k2=0 11,51=1
which implies that the theorem is true. O

We can formulate the result in the case of s-order interactions which is
one of the main results in this paper.

Theorem 3.4. The covariance matriz Y5 : n x n of v is shift permu-
tation invariant if and only if
[ns/2) [n1/2]
= > > SC(ng,ks) @ -+ @ SC(my, k), (3.3)
ke=0 k=0
where, if s =1, k = k; and otherwise
s h-—1
k=> T (%] +1) & + ki (3.4)
h=21=1

The factor ’y(s) represents interaction effects between s factors, the matrices
SC(ni, ki), 1 =1,...,s, are given by (2.2) and 71, are constants.

Proof. We only prove (3.4) since (3.3) is a straightforward consequence
of (3.4) and the proof of Theorem 3.3. From Theorem 3.2 and Theorem
3.3 it follows that (3.4) is true for s = 1,2. Suppose that (3.4) holds for
s —1, i.e., holds for ¥5_; : Ny_; x N,_ 1,whereN 1 =7N1 X - X Ng_q.
However the s — 1 factors can be viewed as one factor with an index defined
via, /{,‘1,‘.. k‘s 1:

s—1h-1
SOTT (%] +1) kp + ki
h=2 1=1
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Let the index of the s factor be given by k. Then, by using (3.2) in Theorem
3.3 for two factors

s—1 ’ s—1h-1
f=T10 e e (ST +1>kh+k1)
i=1 h=2i=1
s h-1
= > TT (%] +1) b+ By,
h=21=1
and thus (3.4) has been proved. O

4. Spectrum of ¥,

Suppose now that in our model, besides main effects, there are also second
order interactions

Y= (1n, ®1n, @ 1p)pt + (In, ® 1, @ 1)E"
+ (1n, ® I, ® 1n)§2 + (In, ® I, ® 1n)7(2)
+ (Inl ® In, ® In)57

where () represent second order interaction effects between factor £ with
n1 levels and factor ¢2 with ngy levels, and ¢ is a random error. We number
the levels of the factor (%) lexicographically.

Let ¥y denote the covariance matrix of 4(2). Due to marginal shift per-
mutation invariance ¥3 has a specific structure which can be described by a
block symmetric circular Toeplitz matrix:

22 :Toep(A07A17A27'"3A21A1)7 (41)

where every block A; is a symmetric circular Toeplitz matrix with [ny/2] 41
different parameters, k = 0,...,[n1/2]. Hence, the matrix $: njng X ning
is defined by ([%-] + 1)([%] + 1) different parameters. For example,

()ni=mny=4 (i) n1 =3, np =4
Ag A1 Ay A

s | A 4 A 4 Ao A1 A

2 — AQ Al AO Al ’ 22: A1 AO A1
A Ay A Ay A A A

In (4.1) all blocks Ay : ny x ng are symmetric circular Toeplitz matrices
defined in (2.1):

Ay = Toep(r$, 7 780 79 709) k=0, . [n1/2].
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For example, if ny = 4,
(k) T(k) (k) (k)

T(%k) ) TQ(k) T%k)
A, = T ) Ty Ty (4.2)
k= O (O R (B ()] : :
0 (CIAG )
T Ty T T

Next we shall show that the eigenvalues of ¥y can be directly obtained
using the eigenvalues of blocks Ay, k =0,...,[n1/2].

Theorem 4.1. Let )\Ek), i=1,...,[n2/2] +1, k =0,...,[n1/2], be the
distinct eigenvalues of block Ay in (4.2) of multiplicities m;, respectively.
Then the eigenvalues of 3o in (4.1) are the following:

If ny is odd,

(5]
M= A0 423 AP cos(amhb/my), h=1,... g i=1,...,[ns/2] + 1.
k=1
The multiplicity of )‘”M 18 m; and all other are of multiplicity 2m;.
If ny is even,

NG

-1
ny
Api = >\,(~0) +2 AR cos(2mhk/ny) + A 2 )COS(W]’Z),

1 )
k=1

h=1,...,n;4i=1,...,[na/2] + 1.
Only the eigenvalues Ani and Ay i are of multiplicity m; and all other
2
eigenvalues are of multiplicity 2m;.

Proof. According to Theorem 3.4, ¥y in (4.1) can be written as

(%2 154

o= Y > 7kSClna,ks) ® SC(n, k),
k2=0 k1 =0
where
k=ko([%]+1)+ k.
We can rewrite Xy in the following way:

(5]

2
So =Y SC(na,ks) ® Ap,,
k2=0
where
(%]
Ag, = Y mSC(n, ky),
k1=0

ko= k(%) +1) + k.
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Since SC(n;, k;) are symmetric circular matrices, k; = 0, .. ., [n:/2], we know
that they commute. Thus, there exists an orthogonal matrix V;, i = 1,2,
such that

V{SC(ni, k;)V; = Ay,

where Ay, is a diagonal matrix, where the diagonal elements are the eigen-
values of SC(n;, k;) given in Lemma 2.1. Let V = V5 ® V5. Then

(2]

VISV = 3 Ap, ® Aags,,
ko=0

where Ay, is a diagonal matrix with diagonal elements equal to the ei-
genvalues of Ay, given in Lemma 2.1. By straightforward calculations of
the Kronecker product Ay, ® A Ak, and using the eigenvalues of SC(ng, ky),
which follow from Lemma 2.1 as a special case, the statements of the theorem
are established. O

The similarity in structure between Lemma 2.1 and Theorem 4.1 is worth
observing. Basically it stems from the fact that SC(n,k) are commuting
symmetric Toeplitz matrices generated by one non-zero element.

Let us now illustrate the results obtained in Theorem 4.1 for (i)ny =ng =
4 and (ii) n; = 3, ny = 4.

Example 1. Let n; = ny = 4. Since n; = 4, from Theorem 4.1 we obtain

)\1,i = AZ(O) - /\Z(Z)ﬂ
Ng =

hag = AP )@
Mg o= AD 40 @)

- where ¢ = 1,2,3. Moreover, since each block Ap:4 x4,k =0,1,2, is a

symmetric Toeplitz matrix, its distinct eigenvalues are the following (see
Lemma 2.1):

(k) (k)
A = Ty T Ty,
k) (k) )
Ayl = 1t =21 +7y5,

k (k .
)\g ) = 5 2
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Example 2. Let n; = 3 and ny = 4. According to Theorem 4.1 the
eigenvalues of 35 are the following:

Mg o= A0 -0,
Ao = /\EO)"AEU>

)

Mg = AD 40

The eigenvalues A" and A", i = 1,2,3, of blocks Ag : 4 x 4 and 4; : 4 x 4.
respectively, could be easily obtained from Lemma 2.1. Thus, using Theorem
4.1 we can obtain all eigenvalues of £y : 12 x 12 directly using the eigenvalues
of smaller blocks A;.
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