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Timelike parallel p;-equidistant ruled surfaces by a
timelike base curve in the Minkowski 3-space R3

Nuri KURUOGLU AND MELEK MASAL

ABSTRACT. In this paper the timelike parallel pi-equidistant ruled sur-
faces are introduced and relations about polar planes, natural curvatures
and natural torsions have been given. In addition, relations between
distribution parameters, shape operators, Gaussian and mean curvatures
of these ruled surfaces have been obtained. After all, an example related
to the parallel timelike pz-equidistant ruled surfaces is given.

1. Introduction

A kinematically generated surface is a surface that is defined by the en-
velope of a moving object. This object can be a point, a plane, a line or any
arbitrary shape primitive. For the case of a line, the kinematically generated
surface is a ruled surface. In a spatial motion, the trajectories of the oriented
lines embedded in a moving rigid body are generally ruled surfaces. Thus,
the spatial geometry of ruled surfaces is important in the study of rational
design problems in spatial mechanisms. As an example, A.T. Yang et al.
[15] applied some characteristic invariants of ruled surfaces to the mechanism
theory. Also, using the geometry of curves and developable surfaces, some
spatial design problems were studied by H. Pottmann et al. [11].

In the literature (see, e. g., [3, 4, 6]) there are many studies related to ruled
surfaces and their invariants (distribution parameter, apex angle, pithes,
etc.) in 3-dimensional Euclidean space F3.

Some results related to the parallel p-equidistant ruled surfaces and stric-
tion curves of these ruled surfaces have been given first by I. E. Valeontis [14]

in E3. Later on, some characteristic properties of integral invariants, shape
" operators, and Gaussian curvatures of parallel p-equidistant ruled surfaces
have been defined by M. Masal and N. Kuruoglu in [7, 8, 9].
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In the theory of relativity, the geometry of indefinite metric is crucial.
Hence, the theory of surfaces in the Minkowski space R3 which has the
metric ds? = dx? + dy? — dz? attracted much attention. The situation is
much more complicated than the Euclidean case, since the surfaces may have
a definite metric (spacelike surfaces), Lorentz metric (timelike surfaces) or
mixed metric. Recently, the timelike and spacelike ruled surfaces have been
studied systematically in [1, 12, 13].

This paper concerns timelike parallel p;-equidistant ruled surfaces by a
timelike base curve in the Minkowski 3-space R$. Firstly, timelike parallel
pi-equidistant ruled surfaces by a timelike base curve are defined. Then,
curvatures, dralls, matrices of shape operators, Gaussian curvatures, mean
curvatures of these surfaces and some relations between these curvatures are
found. Finally, an example for the timelike parallel p2-equidistant ruled sur-
faces is given. It is hoped that these results will contribute to the study of
line geometry and rational design of space mechanisms and physics applica-
tions.

2. Preliminaries

Let R3 denote the three-dimensional Minkowski space, i.e. a three-
dimensional vector space R3 equipped with the flat metric g = —dx? +
dz3 + dx? where (11,72, 73) is rectangular coordinate system of R?. Since
¢ is indefinite metric, recall that a vector v in R$ can have one of three
casual characters: it can be spacelike if g (v,v) > 0 or v = 0, timelike if
g(v,v) < 0 and null if g (v,v) = 0 and v # 0. The norm of a vector v is
given by |[v]| = /]g (v,v)|. Therefore, v is a unit vector if g (v,v) = F1.
Furthermore, vectors v and w are said to be orthogonal if g (v, w) = 0.

For any vectors v = (v1,v2,v3), w = (w1, wa,w3) € R3, the Lorentzian
product v A w of v and w is defined (see [2]) as

v Aw = (vowg — V3Wwsa , VIW3 — V3W1, VW1 — mMwa) .

A regular curve a: I — R3, I C Rin R} is said to be spacelike, timelike or
null curve if the velocity vector o (t) is a spacelike, timelike or null vector,
respectively (see [5]).

Let M be a semi-Riemannian hypersurface in R$ and let D and N repre-
sent Levi-Civita connection and unit normal vector field of M, respectively.
For all X € x(M) the transformation

S(X)=—-DxN (2.1)
is called a shape operator of M, where x (M) is the space of vector fields of
M (see [10]).

Let S(P) be a shape operator of M at a point P, then K : M — R,

K(P) = det S(P), is called the Gaussian curvature function of M. In this
case the value of K (P) is defined to be the Gaussian curvature of M at the
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point P. Similarly, the function H : M — R, H(P) = %, is called the
mean curvature of M at the point P.
Let us suppose that « is a curve in M. If

S(T) = AT (2.2)

then the curve « is called the curvature line in M, where T is the tangential
vector field of o and ) is a scalar being not equal to zero.
If the following equation holds

9(S(T),T) =0 (2.3)

then « is called an asymptotic curve. If the induced metric on M is the
Lorentz metric, then M is called the timelike surface.

The family of lines with one parameter in R? is called the ruled surface
and each of these lines of this family is named as the rulings of the ruled
surface. Thus the parametrization of the ruled surface is given by

o(t,v) = at) + vX(1),

where o and X are the base curve and unit vector in the direction of the
rulings of the ruled surface, respectively. If there exists a common perpen-
dicular to two constructive rulings in the skew surface, then the foot of the
common perpendicular on the main ruling is called a striction point. The
set of striction points on a ruled surface defines the striction curve [1]. For
the striction curve of the ruled surface ((t,v) we can write

— g(a/, X")
a=0— F——=~
g(X', X")

For the drall (distribution parameter) of the ruled surface ¢(t,v) we can
write

X. (2.4)

det(a/, X, X')

Px = —
XU T xy

g(X', X") £ 0. (2.5)

3. Timelike Parallel p;-Equidistant Ruled Surfaces by a
Timelike Base Curve in the Minkowski 3-Space R3

Let o = «f(t) be a differentiable timelike curve with arc-length in the
3-dimensional Minkowski space R3. Suppose that Dy, V1 is a spacelike vector
while the tangent vector of « is Vi = o/. Therefore, if V; moves along
the curve «, then a 2-dimensional timelike ruled surface is generated in
the 3-dimensional Minkowski space R$. This 2-dimensional ruled surface is
parametrically glven by

o(t,v) = a(t) +vVi(t) (3.1)

and denoted by M, where timelike curve « and Vi(t) are called base curve
and direction vector, respectively. Let us consider a Frenet frame {4, Vo, 13}
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attached to the timelike curve a. The structural equations of this frame (or
Frenet Formulae) are given as

Vi=kiVa, Vi=kVi-kVs, VI=kolh, (3.2)

where “’” means the derivative with respect to time ¢. Considering equation

(3.1) yields
pr =Vi+vkiVa, ¢, =MW.

From the last equations we find
vt N\ py = vk V3.

It is obvious that ¢ A ¢, € XJ-(M ). This means that M is really a
timelike ruled surface. The planes corresponding to subspaces Sp{Vi, V2},
Sp{Va, V3} and Sp{Vs, V1 } along striction curve of the timelike ruled surface
M are called asymptotic plane, polar plane and central plane, respectively.

Let us suppose that o = o*(¢*) is another differentiable timelike curve
with arc-length and {V;*, V5", V5'} is a Frenet frame of this curve in the three-
dimensional Minkowski space R‘i’. Hence, we define the timelike ruled surface
M* parametrically as follows:

¢ (7 0") = o7 () £ A(), (,0") €Ix R

Definition 3.1. Let M and M* be two timelike ruled surfaces and let
p1, p2 and p3 be the distances between the polar planes, central planes and
asymptotic planes, respectively. If the directions of M and M* are parallel
and the distances p;, 1 < i < 3, of M and M* are constant, then the pair
of ruled surfaces M and M* is called timelike parallel p;-equidistant ruled
surfaces with a timelike base curve. If specifically p; = 0, then this pair of
ruled surfaces is named as timelike parallel p;-equivalent ruled surfaces with

a timelike base curve, where the base curves of ruled surfaces M and M* are
of class C2.

Therefore the pair of timelike parallel p;-equidistant ruled surfaces is
defined parametrically as

M :o(t,v) = a(t) +oVi(t), (t,v) €I xR,

M*: g (t,0%) = 0" (1) + v (), ("0") eIx R, &)

where ¢ and * are the arc parameters of curves o and o*, respectively. Let
the striction curve of M be the base curve of M and let o* be a base curve
of M*. In this case we can write

o =7+ p1Vi + paVa + p3Vs, (34)
where p1(t), p2(t) and p3(t) are of class C2.
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Considering equations [striction curve equation], (3.2) and (3.4) we can
easily see that the striction curve v* of M* is

. ka2 + p;
v =7+ (@ﬁ) Vi +paVa + p3Vi. (3.5)
If we take o as the striction line of M*, from equations (3.4) and (3.5) we
can deduce the following theorem.

Theorem 3.1. Let M and M* be timelike parallel p;-equidistant (parallel
pi-equivalent) ruled surfaces in R3. Then the distance between the polar
planes of M and M* is

oy = pska + ph paka +py
—k1 —k1
Now we consider the Frenet frames {V1, V2, V3} and {V;", V5", V5°} of ruled
surfaces M and M*. From Definition 2.1 it is obvious that Vi*(t*) = V4 (¢).
Furthermore, from % = %icg—;, 1 <4 <3, and equations (3.2) we find that
V3 (1) = Va(t) and V5 (t*) = Va(t), for % > 0. This yields the following
theorem.

= constant (or p; = 0).

Theorem 3.2. The Frenet vectors of timelike parallel p;-equidistant ruled
surfaces M and M* at a(t) and o*(t*) points are equivalent for % > 0.

From the last theorem and equations (3.2) we obtain the following corol-
lary.

Corollary 3.1. Let M and M* be timelike parallel p;-equidistant ruled
surfaces.

i) There is a relation between natural curvatures ki(t) and ki (t*) of base
curves and torsions ka(t), k3(t*) of M and M* as follows:

di
k;k = i%v

ii) Base curve of M is an inclined curve iff base curve of M* is an inclined
curve.

iii) Base curves of M and M* are striction lines.

1<i<2. (3.6)

Keeping in mind equations (3.2) and (3.6) we examine the distribution
parameters of ruled surfaces formed by Frenet vectors Vi, V5, V3 of M and

find k 1
i ) Ve k‘%—k‘%7 V3 ks

The distribution parameters of ruled surfaces formed by Frenet vectors Vi,
V5, V3" of M* are obtained as follows:

(3.7)

Py =0, Py = (3.8
2

1
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From equations (3.7), (3.8) and Corollary 3.1 we obtain the following theo-
rem.

Theorem 3.3. Let M and M* be timelike parallel p;-equidistant ruled
surfaces in R3. There ezists a relation between the distribution parameters
of ruled surfaces formed by orthonormal frames of M and M* as follows:

dt*
PVi*zPVLE’ 1<4i<3.

We now calculate the matrices S and S* corresponding to the shape
operators of the ruled surfaces M and M*. From equations (3.3) we write
pr=Vi+vkiVa, oy ="V
It is clear that g(p¢, py) # 0. From the Gram-Schmidt method, we get
X=p,=Vi, Y =t—p,=0vk1V2, (3.9)

where X,V € x(M) form an orthogonal basis {X (a(t)),Y (a(t))} of a tan-
gent space at each point a(t) of M. So the normal vector field and the unit
normal vector field of M are

N=XAY =—vkV3

and . f
— | =V, forv >0,
Mo = V]l B { V3, for v < 0, (3.10)
respectively. Similarly, from equations (3.3), we find
X" = Vl* ) Y*= ’U*k){v?,*a (311)

where X*,YV* € y(M*) form an orthogonal basis {X*(a*(t*)), Y*(a*(t*))}
of a tangent space at each point o*(t*) of M*. We can write the unit normal
vector field of M™* as

« | —Vg, forov* >0,
No = { Vg, for v* <O0. (3.12)

The shape operator S of M can be written as
S(X)=aX+bY, S(Y)=cX +dY.
Therefore, the matrix corresponding to the shape operator is
[ 9(8(X),X)  g(8(X),Y) ]
S =

(X,X) YY)
(STLK)  dSELY) (3.13)
9(X,X) YY)
From equation (3.10), there are two special cases for the shape operator S
v > 0and v < 0. First, let as suppose that v > 0. In this case from equations

(3.9), (3.10), (3.13) and (2.1) we find

0 O
[0 2] o
vk1
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For v < 0, considering the same equations, we find that

s:{g Ek_z} (3.15)

vk1

In a similar way the shape operator matrices S* of the ruled surface M* are
found to be

0 0

S* = 0 k3 (v* > 0) (3.16)

vk

and
0 0

St = k3 (v* < 0). (3.17)

0 - v*k*

1

From equations (3.14), (3.17) and Corollary 3.1 we obtain the following
theorem.

Theorem 3.4. Let M and M* be timelike parallel p;-equidistant ruled
surfaces. There is a relation between the shape operators S and S* of M
and M* as follows:

where v = v*.

From equations (3.14), (3.15), (3.16), (3.17) and the last theorem we de-
duce the following corollary. :

Corollary 3.2. Let M and M* be timelike parallel p;-equidistant ruled
surfaces.

i) If the Gaussian curvatures of M and M* are K and K*, respectively,
then

K*=K =0.
ii) If the mean curvatures of M and M* are H and H*, respectively, then

k
H* = H = ﬁ,for'u>0,
ST ky 0
~ Duky 0 or v <\,

where v = v*.
ili) A curvature line of M is also a curvature line of M* and vice-versa.
iv) An asymptotic curve of M is also an asymptotic curve of M* and
vice-versa.

Example 3.1. M and M* are timelike parallel py-equidistant ruled sur-
faces in the three-dimensional Minkowski space R if defined by the following
parametric equations:

M : o(t,v) = (sinh¢+wvcosht, 1, coshi + vsinht)
and
M*: o*(t",v") = (2sinh t* +v* cosh ¢*, 1, 2 cosh¢* + v* sinh *),
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where the curves «(t) = (sinht, 1, cosht) and o*(t*) = (2sinht*,1,
2 cosh ¢*) are the timelike base curves of M and M?*, respectively (see
Figure).

-3.9<X<3.9
29<Y<49
0.37<Z<43
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