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On the joint distribution of a linear and
a quadratic form in skew normal variables

ArJUN K. GuprTA, TONU KOLLO, AND ANNE SELART

ABSTRACT. Let z be distributed as multivariate skew normal vector. We
derive the joint moment generating function (m.g.f.) of a linear form and
a quadratic form in z, and the conditions for their independence. First
two multivariate cumulants of the two forms are derived and applied in
special cases. Finally a simulation example is presented.

1. Introduction

The multivariate skew normal distribution has been introduced in Azza-
lini and Dalla Valle (1996) with the first applications given in Azzalini and
Capitanio (1999). This class of distributions includes the normal family and
has some properties like the normal, and yet is skew. It is useful in robust-
ness studies and appears in the theory of linear models related to hidden
truncation and selective reporting (Arnold and Beaver, 2002; Arellano-Valle
et al., 2006). Following Gupta and Kollo (2003) the random p-vector z has a
multivariate skew normal distribution if it is continuous and its probability
density function (p.d.f.) is given by

f2(z) = 2¢p(z;2)®(a'z), z€RP, (1.1)

where X : p x p is positive definite (p.d.), & € RP, ¢p(2z;X) is the density of
Np(0,%) and ®(-) is the cumulative distribution function (c.d.f.) of N(0,1).
We will denote by z ~ SN,(X, ), to mean that the random vector z has
p-variate skew normal density (1.1). The m.g.f. of z ~ SN, (X, c) is

, 5
M) =230 [ X2 ) e, (1.2)
1+ a'Ya)?
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The mean vector and the covariance matrix of z are given by

1z = E(z) = \/%5,

cov(z) = X — piafty,

where § = (1 + o' Ea)‘%E]a. Note that the mean value given in Azzalini
and Capitanio (1999) is in error.

Many problems in statistics require the knowledge of the joint distribution
of a linear form and a quadratic form of a given random vector, e.g. in
simultaneous confidence interval construction or a simultaneous control chart
studies (e.g. see Schone, 1997; Schéne and Schmid, 2000; Knoth et al., 2001).

In this paper, we derive the joint m.g.f. of a linear and a quadratic form for
a skew normal vector z in Section 2. In Section 3 conditions for independence
of the two forms are derived. Section 4 deals with finding the first two
cumulants of a linear form and a quadratic form in z. The paper is concluded
by an example based on simulations.

2. Joint m.g.f. of a linear and a quadratic form

In this section we derive the joint m.g.f. of a linear form and a quadratic
form of a skew normal random vector. Let z ~ SN,(X,a). Consider the
linear form Bz where B is ¢ x p and the quadratic form 7z’ Az where A’ = A.
First we state a lemma (see Zacks, 1981, pp. 53-54) which is needed in the
sequel.

Lemma 1. Lety ~ N,(0,%). Then, for any scalar v and vector v € RP,
we have

In the next theorem we give the joint m.g.f. of Bz and 7z’ Az.

Theorem 1. Let B be a q X p-matriz and A : p X p symmetric matriz. If
z ~ SNp(%, o) then the joint m.g.f. of Bz and 2’ Az is

2e%t'3(2_1~2t0A)_lB’t o OLI(Z_]' _ 2t0A)_1B/t (2 1)
|I, — 2to AS|2 1+a/ (51— 2A) 1)z )
Proof. For ty € R and t € R? we have

M(t()’t) =

M(tg,t) = 2/ exp(toz' Az + t'Bz)dp(z; X))@ (a'z)dz
RP

= 2/ exp (—%(z'(Z'l — 2tgA)z — 2t'Bz)> (a'z)dz.
RP

(@2m)5|52
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Let us apply change of variable

y = (31— 2tA)2z — (5! - 2t0A) "3 B't.
Then
z= (91 —20A) 2y + (X1 - 2tgA) 1B/t

and

vy =2(3"1 - 2tA)z +t'B(X7 — 2t9A) "' B't — 2t'Baz.
dz

The Jacobian equals
b
a s< dy

and we have the representation

) =|o1—2t5A| 2

1/ -1 —1pr
26§t B(X™*—-2tpA)"'B't
M (t07t)

(27)%|I, — 2t AT
x / YYD (a/ (B~ 2gA) 1Bt + o/ (571 - 2t9A) 2y)dy
RP

9¢3t'B(S™1~2t0A)"1B't

I, — 2to AS|z
x Ey®(a/ (X7 — 2t9A) ' Bt + o/ (51 — 29 4) 2y)
ze%t’B(E‘l—%oA)‘lB’t a'(Z}_l _ 2toA)‘lB’t
= 0] ,
I, — 2t AY|2 (14 /(571 - 2t4)1a)3

where y ~ Np(0,I). The last equality is obtained by using Lemma, 1. O

From Theorem 1 we get the following three corollaries as special cases.
First, substitute t = 0 and we get the m.g.f. of the quadratic form z’ Az.

Corollary 1.1. Let A:p x p be a symmetric matriz and z ~ SNy(Z, o).
Then m.g.f. of 2’ Az is

M(to) = |I, — 2tpAS)| 2. (2.2)

If we consider Zi,...,Z, as random variables forming a sample of size
p of dependent random variables, Corollary 1.1 will be useful to obtain the
distribution of the sample variance of the sample Z1, ..., Z, in the case when
Z; follow a skew normal distribution. We can write

p
SZ = '1')%1- Z(ZZ - 2)2 = Z,AZ
=1
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P
where Z = %Z Z; and
1

A= 27%_1 (Ip - %npﬂ;) , (2.3)

with I, being the p x p identity matrix and 1, = (1,...,1) the p-vector of
ones.

When substituting tp = 0 in Theorem 1 we get the m.g.f. of the linear
form Bz.

Corollary 1.2. Let B be a g x p-matriz and z ~ SNp(%, «). Then m.g.f.
of Bz is of the form

/ !
M(b) = 263¥BEBg [ @EBE )
1+ oY)

It follows from (1.2) that Bz ~ SNg(BLB',a*) where o = B'a”. In
particular, if B: p x p is non-singular, then Bz ~ SN,(BXB', Bla). Fur-
thermore, for ¢ = 1, B = h’/, where h is a p-vector,

h'z ~ SN; (WXh,a*), where a=h'a’,

since

2, /
My, (t) = 2eTHThg —i—z-h——l— t], teR. (2.4)
(1+ a'Ya)2

1
From (2.4) on can obtain the density of Z = 5 E Z;, where Z; are not in-
1

dependent and (Z1,. .., Zp)" follows a multivariate skew normal distribution.
Here we can write Z = %]Ii)z, and Z ~ SN (I, a*), where o = W™,
When B =h’ and A is p.d. we get the next result.

Corollary 1.3. Let h be a p-vector and A be a symmetric p X p-matriz.
Ifz ~ SN(X, &) then the joint m.g.f. of h'z and ' Az is
3 /-1 -1
2 An/(5"1-2tpA)"'h -1 _9¢,4)"1h
- 1 t1 Oi( 2 ) i) (2'5)
|I, — 2to AX|2 1+ o/ (71— 2tpA)ta)2
where  tg,t;1 € R.

M (to,t1) =

From Theorem 1 we can conclude that the joint distribution of a linear
and a quadratic forms in skew normal vector is uniquely determined by the
m.gf. (2.1). Namely, the probability measure is determined by the moment
generating function if it exists in a neighborhood of 0 (Billingsley, 1986, p.
408). The last requirement is satisfied for the m.g.f. (2.1) as well as in special
case (2.5). Another argument is used in Gupta, Nguyen, and Sanqui (2004)



ON THE JOINT DISTRIBUTION 37

to show that skew normal distribution is uniquely determined by its sequence
of moments. It follows from here that the joint distribution of the sample

. . 1 & .
mean 7 = %]I;,z and the sample variance DZ = 271 2;(Zz —Z )2 is also
1=
uniquely determined, i.e. when h = %]Ip and A is given in (2.3).

3. Independence

Now we derive the conditions for the independence of a linear form and a
quadratic form in a multivariate skew normal vector.

Theorem 2. Let B be a q x p-matriz and A be a symmetric p X p-matriz.
If z ~ SNp(3, o) then the linear form Bz and the quadratic form z' Az are
independent if and only if AYB' =0 and BYXa =0 or AXa = 0.

Proof. For independent forms Bz and z’Az the joint m.g.f. is factorized
into product of two terms

M (to,t) = g1(to) g2(t),

with g1, g2 being some functions of ¢y and t respectively, due to the definition
of m.g.f. As the m.g.f. of the skew normal vector z determines uniquely the
density function, also the opposite statement holds and independence of the
forms under consideration follows from the factorization of m.g.f.

Let us examine the product (X! — 2tgA)~!B’t appearing in the m.g.f
(2.1). We shall present the inverse (X~ —2¢yA)~! using the binomial inverse
theorem (see, for example, Kollo and von Rosen, 2005, p. 75):

(A+BCD)'=4"1 - A'B(DA'B+C 1Y) 1DA, (3.1)
where all the included inverses exist. When we take in (3.1) A = %71;
B =1I,; C = —2tyl,; D = A we get
(571260 4) ! = S-N(AY—(2tp) 1) LAY = (I,—(A—(2t) 1E T LA)T.

(3.2)
When AY.B’ =0, the m.g.f. (2.1) obtains the form

26t’BZB’t o' Bt
M(to,t) = I 1 33
L, — 2t0AS)z \ (1 — /(51— 2tgA)-la)?

The right hand side of (3.3) can be factorized if and only if the argument of
the distribution function does not depend on both variates ty and t. When
BY a = 0, the argument equals zero and we have the m.g.f. of the form

t'BEB't

e
Mt t) = —5 .
I, — 2tp AS)|2
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Another condition we get from the requirement that the argument does not
depend on ty. Equality (3.2) gives us the following expression in the numer-
ator of argument of &:

1—a/ (I,— (A—(2t) ') A)Ya = 1-a'Sa+ta/ (A—(2t) 'S ) 'AZa.
The obtained expression does not depend on % if
AYa = 0.
In this case the m.g.f. is of the form
et'BEB't . ( o' Bt ) .

M(tht) =
L, — 2t0A%|2  \ (1 - o/Sa)2

|

Remark 1. In the special case B = h’ the dependence of a linear and
a quadratic form in a skew normal vector is examined in Gupta and Huang
(2002). We point out an erroneous statement in the paper. From the two
conditions described above in Theorem 2, the requirement h’'>a = 0 is
missing in Gupta and Huang (2002).

Corollary 2.1. Letz ~ SN,(X, ). The linear form h'z and the quadratic
form ' Az are independent if and only if AXh =0 and h’Sa =0 or A¥Xa =
0.

4. Moments and cumulants

Moments and cumulants are found by differentiating the moment gener-
ating function (2.1) and cumulant generating function (c.g.f.) K(to,t) of Bz
and z’ Az, respectively . The c.g.f. is defined as

K(tg,t) = In M(tp,t).
Let us denote
E = (t())t)l;
W=3x"1-2tA4
and
i o/'W~1B't
Vit aW-la
As the moments can be presented through cumulants and vice versa (Kollo
and von Rosen, 2005, p. 187), we shall differentiate the c.g.f. because of its
simpler form. The joint c.g.f of Bz and z' Az is obtained from (2.1):

K(t) = K(to,t) = 1n2+% In |W—12*11+-;-tr(Bw—1B'tt')+1n(<1>(u)). (4.1)

The two first cumulants are given in the next theorem.
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Theorem 3. Letz ~ SNp(X, ), B be a g x p-matriz and A: px p a p.d.
matriz. Then the first two cumulants of the (q + 1)-vector y = (z' Az, Bz)'

are:
tr(XA)
a()=Ey=| /3 Bsa (4.2)
T /itasa
and
e =Dy=( 70 72 (43)
where

o11 = 2tr(TA)?%

2 1a'YAY e/ B’ 1
= o/ =2v[j 'SAYB' — = ;
712= o2 T (a 2 1+d3a ) V1i+a'Ya

2 BYao'YB’
Yoo =BYB - " |
2 T 1+ oY
Proof. The derivatives of K (t) are needed to find the cumulants. The two
first derivatives of interest are organized as partitioned matrices

dK
dK®) | dto
at | 4k
dt
and
d?K &K
- 112 T+ I+
m _ dto dtditg (4'4)
dtdt’ 2K &K

dtpdt’ dtdt’
We will find the derivatives by arguments t; and t separately. For nec-
essary properties of different matrix operations and derivatives the reader is

referred to Kollo and von Rosen (2005) or Magnus and Neudecker (1999), for
instance.

At the first step we find the first order derivative by the argument o which
corresponds to the quadratic form z’ Az. Denoting

X=w1ly1 (4.5)
and using the chain rule twice we get

dK(t) dX dK(t)
dtp o dtg dX (4.6)
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and
fj.‘.)_(_ _ dX ' dx
dto - dto dX-1
where
dx—1 d(I, — 2tpXA) ,
dto dto vec'(24),
dX ,

Using the property of vec-operator and direct product
vec(ABC) = (C' @ A)vec(B),
we get

X _ 2vec' (XS AX).
dtp

The last derivative in (4.6) equals

dE®) _ 4 1ot Lingx) + Lee(BXSBE) + n(@(u)
dX ~ dXx 2 2 (4.7)
Cldm|X| 1, du $(u) |
=5 % + 2vec(B tt'BY) + X 3(a)
where

din|X| dX] 1
ax =~ dX |X|

— |X|Vec(X’)_1ﬁ — vee(X') L.

In the last term in (4.7) the derivative is
du d [ o' XY.B't }

dX ~dX | Vit o Xsa

/

1
_ YBtga 1 Ya®a _¢/BXa.
V1+a' X3 2(1+a’XEa)§

As a result the first order derivative of K (t) by argument ¢ equals

dK (t)

1
= 2vec (XTAX) | Zvec(X) ™ + 1vec(B’tt'BE)
dto 2 2

VitoaXsa 2 (1—!—a’XEa)% d(u)

The derivative by argument t corresponds to the linear form Bz. Using the

4 < YBt® 1 Za® a)ﬂBEX’g) gb(u)} | (4.8)



ON THE JOINT DISTRIBUTION 41

matrix derivative of a product of matrices we get:

ild_ff _ % ((t' ® 1) + (I, ® t')) vec(BW1B') +

@ 9(u)
dt ®(u
BWla ¢(u) v (4.9)

VIt aW-Ta ®(u)
The first cumulant is obtained by substituting t = 0 into (4.8) and (4.9):
tr(XA)
aly) = 2 Bsa .
T VIt Q'S

The blocks in the second order derivative (4.4) are found in Appendix and
presented by equalities (5.1), (5.3) and (5.5). To obtain the elements in the
matrix of the second cumulant (4.3) these derivatives are evaluated at t = 0:
equalities (5.2), (5.4) and (5.6). O

= BW 'B't +

From Theorem 3 we get the first two cumulants of the joint distribution
of sample mean and variance for the sample z = (Z,...,Zp)" that follows
the skew normal distribution SN, (%, ).

Corollary 3.1. Let z ~ SN,y(%, ). Then fory = (S?,Z) we have the
mean vector and the covariance matriz in the following form:

L (trZ - %sum(E))

52 p—1
Ey=F (7> = , Where sum(X)= Zoij
1 f2 Tpma i
pV 7 Vita'ta
and

or=o(5)- (28 “8557)

where D(S?) equals

D(5?%) = Zz—y—jz—m (tr(Ez) — %sum(22)> , (4.10)

the second diagonal element D(Z) equals

(4.11)

1 2 (I'Ya)?
D@) = (S“m<2> T riiaiva )

and the off-diagonal elements are:
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2 7y _ = Q2
cov(S*, Z) = cov(Z,5%)

2 2
Cplp-1)\ (1 4+ o/Sa)

1 1020 - YT xa)?
152 1/ - = p\'P
X (IIPZ a— Yo (psum(E) +3 T Fava .

(4.12)

Remark 2. In a special case when B = 0 the m.g.f. of z'Az is given by
(2.2). As the formula does not involve «, we have the same distribution as
in the multivariate normal case. The cumulants ci (2’ Az) are thus known for
any order kK =1,2,... (see, for example, Mathai and Provost, 1992, p. 52):

cx(z'Az) = 2871 (k — 1)! tr(AD)F.
This is in agreement with Genton et al. (2001), who derived
E(z'Az) = tr(AY) and D(z'Az) = 2tr(AX)2.

Example. Let us consider a theoretical sample z ~ SN, (%, ), where
(X)s; = (619, 4,5 = 1,...,n. This way components of z form a fi-
nite autoregressive time series with parameter . We are interested in the
joint density of the variance and the mean of that autoregressive time series

y= (Szai)l'

Take the parameters 0 = 0.6 and a = (7,...,7), and the sample size
n = 10.

Denote the correlation matrix

Ry = (Dy);"*(Dy)(Dy); ",

where (Dy), is the diagonalized covariance matrix Dy. Using Corollary 3.1,
the mean, covariance and correlation matrices of y are:

0.749 0.210 0.003 1 0.019
By = (0.455) » Dy= (0.003 0.118>’ Ry = <0.019 1 )
In a simulation study we generate k = 500 000 vectors of given size n =
10 from SN19(X, ). Each generated vector plays a role of a sample with
dependent elements. We shall calculate from each sample z; the sample mean

z and sample variance s2. The obtained bivariate empirical distribution is
given in the following Figure 1 by contour plots.
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1.5

Density
0.5 1.0
] | ]

1.0 1.5 20 0.0

0.5

Sﬁ Density

Figure 1. Empirical distribution of y, with mean Ey and marginal
distributions.

As one can see, the empirical distribution is heavily skewed with marginal
distributions of different type. For approximation of this distribution Edge-
worth type approximations do not give a satisfactory solution as they are
based on a multivariate distribution with marginals from the same class of
distributions. From existing methods the copula theory can give an applica-
ble model in this case (Nelsen, 1999).

5. Appendix:
Second order derivatives of the joint c.g.f. of Bz and z'Az

First we find second order derivative by the argument o from c.g.f. K (t)
defined by (4.1). Matrix X, appearing in the further derivation, is given in
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(4.5). The second order derivative by the argument ¢ is:

dK®) dX d [dK(t)
dt% B dto dX| dig
— _Cg_i / ! I Dlgg!
= Gty dX [tr(X'AY) + tr(X'AXX'B'tt' BY)

+2vec’ (XL AX) —;—; g—(é%}
d(X' A X')

lya!
B
Fhe vec(XB'tt'B)

= 2vec (XL AX) [Kp,pvec(EA) +

d , du U
+ ZEE [vec (XZAX)ZZY] g% (5.1)

du ¢/ (W)@ (u) — *(v) (du’
d(X'AEX")
ax_

dvec' (XX AX) du d*u , o(u)

= 2vec/ (XTAX) {vec(AZ) + ec(SB'tt'B)

+2

/ 42 !
—j;‘( AQ) ‘iggu) ¢"(w) <—j;‘(> vec(XEAX)} .
At the point t = 0 we have

d?K (t)
dt2

= 2tr(TA)2. (5.2)

t=0

The second order derivative by t equals:

2K®) BW-lB' + BWla <¢’(u)‘gb2(u)> o/W-1B’

dtdt’ VitaW-la \ @) @2(u)/) V1i+oWla
(5.3)
From here we get
2K , 2BXaa/SB’
dtdt' |;_g BEB T aisa (5.4)
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Finally we find the mixed derivative

2Kt dX d , BXYa  ¢(u)

——— = ——|BXYB't

dtdty dtog dX |: +\/1+a’X2a @(u)}
= 2vec (XL AX) {ZB’t ® B’

(5.5)

N < Sa@B 1 (Zaga) a’EX'B'> ¢(u)
VitadXSa 2 (1+a/XSa)i | P(u)
. <d_u ¢ (WP (u) - ¢2(u>> o/ XS B’ }
dX D2 (u) ViFodXSal’

from where

2 / s B’
LS 2\/2 <a’2A2B’ _la EAZOja ) L 6
=0 T 2 1+aYa V1+oa'Ya

dtdty
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