ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA
Volume 11, 2007

Core theorems concerning Riesz method and
Abel type method of summability

LEiki LOONE

ABSTRACT. Relations between cores that are defined by Abel type sum-
mability method J, and by Riesz method R, are investigated. Two
Tauberian theorems are proved for these cores.

1. Introduction and background

Let w be the set of all sequences z = (&) where & € C, k € N? and
NO:={0,1,2,...} . Each linear subspace of w is called a sequence space. The
following sequence spaces are well known:

1) the space of all bounded sequences I,

2) the space of all convergent sequences c,

3) the space of all null sequences cj.

Let A be the matrix method that is determined by an infinite matrix
A = (anx) and let wy denote the application domain of A and let ¢4 denote
the space of A-convergent sequences, i.e.,

o0
cp = {w €Ewyl|3 lim Zankﬁk =: A-limm} .
n—oo
k=0
The sequence space

cao :={z € ca | A-limz = 0}

is called the space of A-null sequences. A method A is called regular, if
¢ C ca and A-limz = lim z for every z € c.

Let X be a sequence space and let w be an arbitrarily fixed functional on
X with range [—oo, 00] such that

1) 7 (0) =0,
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2) 7 (az) = ar () VYa>0,
Nr(xz+y) <7 +7(y) Ve:|r(r)| <oco.

With the usual conventions for the manipulation of co and —oo, these con-
ditions are always meaningful. This functional  is called Bonsall functional
and the set

K, (z) :={teC|Re(at) <7 (azx) VYaeC}

is called Bonsall core of the z € X (defined by 7). If 7 () = —oo holds for
a certain «, then K, (x) is empty. It is easy to check that

K;(z)={teC| —n(—ar) <Re(at) <7 (az) VaeC}.

Let 71 and 7 be two Bonsall functionals. An immediate consequence of the
definition of core is that if

71 (ax) < 7o (ay) VYaeC, (1)
then
K, () C Ky (y) -

Due to the possibility of empty cores the converse implication is not always
true. Denote the set of all 7-convergent elements by

¢y :={r € X | K, (z) is a singleton and |7 (ax)| < oo Va € C}
and the set of all T-null elements by
cro:={z €cy|m(z)=0}.

The sets ¢, and ¢, are sequence spaces (see [1]).

The concept of the core of a sequence z = (&) of complex numbers has
been defined by Knopp in 1930 (see [3], Chapter VI). The Bonsall functional
that defines the Knopp core K° (z) is

7° (z) := limsup Re &

k—o0

(cf. [1], [3]). It is obvious that the set crog of 7°-null elements is ¢y and
the set c,o of 7m°-convergent elements is c. The following is the well-known
Knopp core theorem (cf. [4], Theorem 9):

Theorem 1. If a matriz method A is positive and regular, then
7° (Az) < 7°(z) Vz€was

and
K°(Az) Cc K°(z) Vz€wa.
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2. Auxiliary results

In this section we give some definitions and propositions which are needed
in the proofs of main results.
We assume throughout that (pg) is a sequence of reals satisfying

n
Po>0, pp>0(keN), P,:=> p, —ocoasn— oo
k=0

and (2)

P (t) :== Y pe Pt® has the radius of convergence R = 1.

/

Definition 1. A sequence z = (&) € w is said to be summable by the
Riesz method Ry, to a number a (or Ry-summable to a) if

Jim - Zpkfk =a.

Riesz method R, is regular under (2) (see [2], p. 113).
Let for z = (&) € w

Pz (1) : Zpkfktk

and let
wp := {z € w|radius of convergence of p, (t) is equal or greater than 1}.

It is obvious that I, C Wp.

Definition 2. A sequence = € wj, is said to be summable by power series
method Jp, to a number a (or J,-summable to a) if

234 )

= p(e)

The set of all sequences z, that are summable by a power series method J,
is denoted by cj,. The set w, is called the application domain of Jp.

a =: Jp-limz.

Remark 1. The well-known Abel summability method J; is the power
series method Jj, defined by p = (pg) where pj, = 1 (k € N°) . Then R = 1 and

p(t) = ; for t € (—1,1). For that reason the power series summability
method J, defined above is called Abel type method.

Abel type method J,, is regular under (2), that is, ¢ C ¢ Jp and Jp-limz =
limz (see [2], p. 160). Moreover ¢r, C cj, and J,, hmw = Rp limz for every
T € cg, (see [3]).
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Let

W:={w=(tk) |0 <ty —1-}.
The matrix method corresponding to the infinite matrix A, = (anx), where

Ank = ——7 -\

" p (tn)
is called a discrete J,-method (with respect to p = (px) and w = (t,) € W).
An immediate consequence of the sequential criterion for the existence of a

limit is
crp = ) CAuw
weWw
where c4,, is the set of A,-convergent sequences.

Proposition 1. The following statements are equivalent:

(a) Jp is regular,

(b) for each w € W the discrete Jp-method A,, is regular.

Proof. For the proof see [2], p. 160. O

Corollary 1. Assume that (2) holds and w € W. Then for every discrete
Jp-method A,

7° (Aypz) < 7° () for each x € wp
and
K° (Ayz) C K°(x) for each x € wp.

Proof. As by Proposition 1 the method A,, is positive and regular, the
proof of this corollary follows directly from Theorem 1. O

The notion of a core for a power series method Jj, is as follows.

Definition 3. The core K, (x) of € wy, defined by Bonsall functional
) Rep; (t)
T, () = limsup ————+
D ( ) t—»R-p P (t)
on wy, is called a power series Knopp core induced by p = (pz) -
It is easy to see that 7, is a Bonsall functional and

7p () = sup 7° (Aypx) (3)
weWw

for every x € wp (see [9]).
Proposition 2. Assume that (2) holds. Then
(a) K° (Ayz) C Kp (x) for every x € wp, and w € W,
(b) Kp (z) C K°(z) for every x € wp,

(€) erp = ) ca, =cy,-
wew
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Proof. These properties are immediate consequences of the definition of
core K, (z) and of Corollary 1. O

3. Inclusion between the cores concerning weighted means
and power series

The main result of this section is as follows.

Theorem 2. Assume that p = (pg) satisfies (2) and pr >0 (k € N°) . Let
Ry, be the Riesz method and let Ay, = (ank) be the discrete J,-method that is
defined with respect to p = (pg) and w = (t,) € W. Then

7° (Apz) < 7° (Rpz) VI € wp 4)
and
mp (z) < 7° (Rpz)  Vz € wp. (5)

Proof. If pr, > 0 for each k£ € N°, then the inverse R = (rnk) of Ry is
given by

( & ifk=n
Dn
re=q _Pn1opp no1 vn, k € N°. (6)
Dn
0 otherwise

(see [2], p. 113). Let . = (&) € wp and y = (,) = Ry, i, = R,'y. Put

G = (gnk) := AwRIjl. It means that

Pith P pk+1t§+1Pk Py &

- te (1—t,).

p (tn) Pk P (tn) Prt1 P (tn)

We will prove that we can calculate associatively for each z € wp, that is
Az = Ay (Ry'y) = (AwRy) y = Gy. (7)

According to (6)

Ink =

1
= (Pemie — Pe—17k-1) )
(weput n_1 =0= P_1) Let Ayx =: (Cn), and Gy =: (9,,), then
Cn t hm t.
=5 ( tn) 2 Zpkfk Zpkék

By (8) we have

m m
> o préth = (Peng — Po-1mi—1) th.
k=0 k=0
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Using Abel’s partial summation formula we get that

m m k
> Pk — Peame-1)th, = (t'fz - tﬁ“) > (Bimj = Pioanj-1) +

k=0 k=0 7=0
m
+Pm77mt77?+1 = Z (1 - tn) tﬁpk"?k + Pmﬂmt?—'-l'
k=0

Now, if we can show that for every z € w, the last term converges to zero
when m — oo, then

(n =0, VYneN°
and (7) holds for every x € wp. To start, let us evaluate the following:

Zpkfk (Vta)™
k=0

<

IPmnmt?+1\ — (m)m-ﬁ

< (w_n>m+3ipk ] (VER)E <

k=0

< (Vi)™ pay (Vim)

(here |z] = (|€))-
Due to 0 < t, < 1 and |z| € wp, we get that

[Pt < (V)™ pjaf (VEn) — 0 85 m — o0,
i.e., (7) is proved and this gives
7° (Aypz) = 7° (Gy) Vz € wp.
According to the fact that
Jp-limz = Ry-limz  Vz € cg,,
method G is regular and therefore by Theorem 1
7 (Gz) < 7°(2) Vz€wg 9)

holds. Since y = Rpz € wg, for every € wp, equality (4) holds. The
sequence w € W was arbitrarily fixed, consequently (4) is true for every
w € W and by (3) inequality (5) follows. O

Due to the definition of Bonsall core the next corollary follows directly
from Theorem 2.

Corollary 2. Assume that p = (pg) satisfies (2) and py, > 0 (k € N%).
Then for every w € W

K° (Ayzr) C K° (Rpz) Vr €wp
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and
Ky (z) C K° (Rpz) Yz € wy. (10)

Remark 2. The inclusion (10) is proved in [8] for those z € wj, that have
the property Ry € loo.

4. Tauberian core theorems for J,

Let A and B be two different matrix methods with ¢g C ca. The problem
to determine the subset L of w, such that x € L N c4 implies € cp, has
been studied extensively. In summability theory the theorem which gives the
description of certain L is called a Tauberian theorem. The condition which
determines L is called a Tauberian condition.

Let m; and 7o be two different Bonsall functionals on a sequence space
X with ¢;, C c¢g,. Naturally, there arises a question of how to give the
description of certain subsets L of X having one of the following properties:

(a) z € L = K, () = K, (2),
(b) z € L= K., (z) = K°(x),
(c)zel = K, (z) C Ky (2).

We call the theorem which states (a), (b) or (¢) a Tauberian core theorem.
The condition which determines L is called a Tauberian condition (see [9]).
Our main tool to prove Tauberian theorems is the following proposition (for
the proof see [9]).

Proposition 3. If z —y € cq, then 7w (z) = 7 (y) and K, (z) = K, (y).
We now state a general Tauberian theorem for a discrete Abel type method.

Theorem 3. Assume that p = (pg) satisfies (2) and pr, >0 (k € N%) and
let A\ € C. Let Ay and R, be a discrete Abel type method and Riesz method
respectively. Let G = Ay R, L and H = G—\I, where I is the identity matriz.
Then

K° (Ayzr) = K° (ARpz) Yz €L
where
L={xcw, |Rpz € con}.

Proof. As (7) holds for each = € wp, the proof follows directly from Propo-
sition 3. 0

Let J, be an Abel type power series method and let Ay := . <i§1<fR p(t)t7F.

For every regular method Jpthere exists a sequence w* = (t;) € W with the
property
p(t;) ()% = Ay for all k € NO. (11)
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Each sequence w* = (t;) (0 <t; <1, k€ NO%) with property (11) has the
following properties (see [2], p. 187):

1D 0<ty <ty —1(n— ),
A
2) ™" < A—r < (&)™ for all n,r € NO,
n
3) An > P, Vne N

In Tauberian theorems the Tauberian conditions are frequently connected
with the sequence (A) . These quantities Ay play an important roll in Taube-
rian core theorems also. The key to what follows is the next lemma due
to W. Kratz and U. Stadtmiiller (see [7], p. 148, the first part of proof of
Theorem 1).

Lemma 1. Let J, be an Abel type method where p = (py) satisfies (2) and
let w* = (t;) € W have property (11). Each z = ({) € wp which salisfies
the Tauberian condition

n—1
|§n_§m‘§5m<1+z—i—:> for 1<m<n—1 with lim 6, =0
k=m

m—0o0
(12)
has the following property

lim | 22 (’i’“) —& | =o.
B\ p(t)
Theorem 4. Let J, be a reqular Abel type method where p = (pg) satisfies
(2) and let w* = (t;) € W have property (11). Then
Kp (z) = K° (z) (13)

for each x = (&) € wy which satisfies Tauberian condition (12).

Proof. Let z = (&) € wp satisfy Tauberian condition (12) and let w* =
(t;) € W have property (11). By Proposition 3 and Lemma 1 we get that

7° (A~ () = 7° (z) and K° (Ay-z) = K°(z).
Due to Proposition 2 we get
K° (Ay-z) C Kp(z) C K° (x),
i.e., (13) holds. O
Remark 3. The condition

Py
p BAX [€mt1 — &n| =0 (E) (for some A > 1)
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implies (12). If the sequence of positive numbers (l,) is defined by
n+lp—1 n+ln,

Dk Dk
JAV <ts AV
k=n k=n
then the condition

ngﬁ?ﬁzn |€mt+1 — &n] =0(1)  (as n — o) (14)

is equivalent to the Tauberian condition (12) (see [7]).

Example. Now we specify the sequences (Ag) and (l;) that are needed in
Tauberian conditions (12) and (14) for some well-known J,-methods. The in-
formation about the sequence (Ay) that corresponds to the given J,-method
is available in [2], p. 191. For the suitable choice of (I;) see [6]. In what
follows ¢ > 0 stands for some constant and [-] denotes the greatest integer
function.

1. If pp = 1for each k € N°, then Ay ~ ek and Iy, = [ck].

2. If p= <ki—1> , then Ag ~ logk and I = [cklogk].

27
B(1-p)

3. If a € (0,1) and p = (eF"), then Ax ~ py k=% and

b= [okt 8]
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On strong summability of sequences

VIRGE SOOMER AND ANNE TALI

ABSTRACT. We extend the notion of strong summability of sequences
by matrix methods. Combining the notions of strong summability given
by D. Borwein and I J. Maddox we come to a more general notion.
The properties of the extended strong summability are characterized
and relations between strong and ordinary summabilities are described.
The defined notion of strong summability is applied to certain families
of summability methods, including some families of generalized Norlund
methods. Partial cases are the families of Cesaro and Euler-Knopp
methods.

1. Introduction and preliminaries

1.1. We start with some basics of the summability theory (see [1]). Let us
consider sequences z = (¢,) with &, € C forevery n e N0 = {0,1,2,...}.
Let A be a transformation which transforms a sequence z into the sequence
y = Az = (). If the limit lim, 7, = ¢ exists, then we say that z = (én)
is summable to ¢ by the summability method A and write én — £(A).
For the set of all  summable by A we use the notation ca. The most
common summability method is a matrix method A defined with the help
of the matrix A = (anx), where a,; € C for any n,k € N°, and which
transforms z into y = (n,) with

0
n = Z a'nkfk (TL € NO)
k=0

If
gn_’§=>£n—>£(A)
for any z = (&,) €c, then the method A is called regular.
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