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On strong summability of sequences

VIRGE SOOMER AND ANNE TALI

ABSTRACT. We extend the notion of strong summability of sequences
by matrix methods. Combining the notions of strong summability given
by D. Borwein and I.J. Maddox we come to a more general notion.
The properties of the extended strong summability are characterized
and relations between strong and ordinary summabilities are described.
The defined notion of strong summability is applied to certain families
of summability methods, including some families of generalized Nérlund
methods. Partial cases are the families of Cesaro and Euler-Knopp
methods.

1. Introduction and preliminaries

1.1. We start with some basics of the summability theory (see [1]). Let us
consider sequences = = (§,) with &, € C forevery n e N’ ={0,1,2,...}.
Let A be a transformation which transforms a sequence z into the sequence
y = Az = (n,). If the limit lim, 7, = ¢ exists, then we say that = = (£,)
is summable to ¢ by the summability method A and write &, — £(A).
For the set of all x summable by A we use the notation c¢4. The most
common summability method is a matrix method A defined with the help
of the matrix A = (ank), where an; € C for any n,k € N°, and which
transforms x into y = (n,) with

o
ﬁn = z ankfk (’I’L € NO)
k=0

If
fn = & => & — ¢(4)
for any x = (&,) € ¢, then the method A is called regular.
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Proposition A. i) A matriz method A = (ank) is regular if and only
if the following conditions are satisfied:

1) limpan, =0 (k € NO),

2) Ylolankl = O(1),

ii) A matriz method A = (anx) is of type co — co if and only if the
conditions 1) and 2) are satisfied.

Let A and B be two summability methods. If

bn — E(A) = & — £(B)
for all z € ca, then it is said that B is not weaker than A and it is
denoted A C B.

1.2. Next we will introduce the families of generalized Norlund methods
(see [10]). Let be given two nonnegative sequences (pn) and (g,) with
Po, @o > 0. Then we define for o € R the sequences

where ¢, is either

case A) @ =A"1:= (n+°‘_1) , neNO,
or

case B) =
and

n
rd=> paxqk = (0 *qn-
k=0

Fix some ag € R such that 5 > 0 for all n € N° and a > og (the choice
ap = 0 is always possible).
Now we consider the family of generalized Norlund summability methods
Na = (Nap'/o*z7 Qn) (Oé > aO)'

We say that a sequence z = (£,) is summable to £ by the method N, (o > ap)
and write &, — £(Ny) if

1 n
nii=— Y Pkl — &(n—00).
™ =0
The methods N, and Nj are connected for any 3 > a > ap through the
relation

n
S ey, neN. (1)
k=0

gul =

nl =



ON STRONG SUMMABILITY OF SEQUENCES 59

Particular cases of A) are the Cesaro methods (C, ) where p, = &, and
qn = 1, generalized Cesaro methods (C, o, y) where p, = 8, and g, = (™)
and more generally the methods (N, A2!, g,). An example for the case B)
is given by the Euler-Knopp family (B J/(a+1)) With pp = 8on,qn = 1/n!
and o > 0. That is why it is told that the family (N,) is of Cesaro-type
in case A) and of Euler-Knopp-type in case B) (see [10] for more detailed
references).

1.3. In our paper we consider more general families (4,) (see [10]) of
summability methods than (N,) are. In order to study the relations be-
tween methods from the family of generalized Norlund methods N,, the
specific form of these matrix transforms is less important than the form of
the connection matrices from (1). Therefore the family of methods N, is

generalized to a family of more general summability methods A, (o > o)
(see [10]).

Definition A. Let (A,) (o« > a1) be a family of summability methods.
The family (A,) is said to be a Cesaro- or an Euler-Knopp-type family if for

every 3> o > ay the transformed sequences A,z = (n?) and Agz = (1)
of z=(&,) are related by the connection formula

1~ 5 ,
=52 cak b, (nEN’ f>a>a), (2)
™ k=0

where (b;) (a > 1) are some positive sequences being related by
n
bh=> chibp meN, B>a>a) (3)
k=0

and (cp) are defined as in Section 1.2 in case \A) or in case B), respectively.

From relations (2) and (3) we obtain the connection formula
Ag =Da750Aa (ﬁ> o> 051)
where D, 5= (dﬁﬁ ) with

gl { Aabr/bh #0<k<n,
nok 0 ifk>n.

The connection methods D, s can be seen as generalizations of Cesaro
methods in case A) and Euler-Knopp methods in case B), that is why (A4,)
is named a Cesaro-type family in case A) and an Fuler-Knopp-type family
in case B) (see [10]). In particular, the methods A, =N, (> ag) form
a Cesaro-type family in case A) and an Euler-Knopp-type family in case B),
satisfying (2) and (3) with (b;;) = (r7) . More examples can be found in [9].

Formula (3) implies that the connection methods in (2) are regular, even
if the methods A,, are not (see [10], Lemma 1).
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Proposition B. Consider a Cesaro- or an Euler—Knopp-type family (Ax)
o> a1). The methods Dy 5 = (d*?) are regular for all > o > o.
B n,k

The following inclusion theorem holds for methods in a family (A,) (see
[10], Proposition 1 and Corollary 1).

Proposition C. Let (A,) (o > a1) be a Cesaro- or an Euler—Knopp-type
family. Then we have for a sequence (&) and > o > oy that

n — ¢ (Aa) =& — ¢ (A,B)

In particular, if A, = N, (a > «ap), the statements of Propositions B and
C are true with a1 = agp.

1.4. The idea of the present paper is to develop the notion of strong
summability of sequences by matrix methods. Combining the definitions of
strong summability given in [2] and [5] we come to a more general definition
of strong summability which will be formulated and characterized in Section
2. In Section 3 this definition will be applied to the methods in families (A,)
described above.

2. A general definition of strong summability

Let be given a summability method A which transforms a sequence z =
(&n) into the sequence Az = (n)). Moreover, let be given also a matrix
method P = (pn). We denote

o
on =Y pkmk (n€N°), (4)
k=0

and say that z is PA-summable to ¢ if o, is finite for every n € NO and
lim,, o, = £. Next we define the main notion of our paper.

Definition 1. Let » = (r,) be a sequence of positive numbers. We say
that a sequence z = (&) is strongly summable by the method PA with index
r = (rp) (in short, [P, A],-summable) to £ and write &, — {[P, A, if

o0
= Ipasl I — € =0 (n— c0). (5)
k=0

Some comments should be added to the formulated definition.

Remark 1. i) In particular, if 7, = r, matrix P = (pn) is positive and
A is a matrix method, this definition was formulated by D. Borwein in 1960
(see [2]). If, in addition, A = I, the definition was known already in 1938
(see [4]).

ii) In particular, if A = I and matrix P = (pnx) is positive Definition
1 reduces to the definition given for strong P-summability by I.J. Mad-
dox in 1967 (see [5]). This definition of Maddox was generalized for strong
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sequential summability (a-summability) by the sequence of methods P; =
(Pnix) (n,i,k € N°) in [8].
iii) In particular, if r, = r, Definition 1 was given in [12].

Theorem 1. Suppose that P = (pnx) satisfies the condition
[o,]
> lparl = O(1), (6)
k=1

and r = (ry,) and v’ = (r]) are sequences satisfying the condition
o<r, <r, <Krl, (neN°

where K is some positive constant. If a sequence x = (&,) is [P, A],-summable
to &, then x is also [P, A],r-summable to &, i. e., the relation [P, A], C [P, Aly
holds.

Proof. In particular, if A = I, this theorem was proved in [5], i.e., in [5]

it was proved that

fnéf[P,I]r:fn—)é[P,I]r/ (7)
for any x = (&,). We have also that

én — [P Aly <= nn — E[P T,
and

&n — §[P7A]'r' < T — g[P,I],,./
for any z = (&,). Thus [P, 4], C [P, A] holds by (7), if we apply it to
(1hn)- O

In particular, if the r, = r, matrix P = (pyx) is positive and A is a matrix
method, Theorem 1 turns into Theorem 1 from [2].

Remark 2. If ™ — oo, then the inclusion relation [P, A], C [P, A],
does not hold in general. For example, suppose that P = (p,;) is regular
and A is a normal matrix method. Then there exists a sequence b = (by,)
of numbers 0 and 1 such that b ¢ cp. Thus also d = (d,) = bfTe & cp
(where e = (e,), e, = 1). Let =z = (&) be the sequence such that

Az = () = (d},/ 7‘4‘). Thus we have the sequence z that is [P, A],-summable
but not [P, A],,-summable.

Theorem 1 implies the following corollary.

Corollary 1. Suppose that 0 < inf,r, =m < r, < M = sup, r, < 00
and condition (6) is satisfied. Then we have:

[P, Alm C [P, A], C [P, Alm,
where M = (M,,) and m = (my,) with M, = M and m,, = m.
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Proposition 1. Suppose that

o0
lim) " pok # 0 ®)
k=0
and 0 < r, < H < co. Then a sequence (£,) can have at most one [P, A,
limit.
Proof. a) In particular, if A = I, the statement is true by Theorem 2 from
[5]-
b) In general, ¢ is a [P, A], limit for (&,) if and only if £ is a [P, I], limit

for (n,). As (1) can have at most one [P, I], limit by part a) then also (&)
can have at most one [P, A, limit. O

Remark 3. Let us note that if
[o¢]
lim ) pok = 0,
k=0

then [P, A, limit can be not unique (see [5], the proof of Theorem 2).
Theorem 2. Suppose that P = (pnx) satisfies conditions (6) and

o0
lim kzopnk =1, 9)

and r = (ry) satisfies the conditions 1 < 1, < H < 0o for everyn € N°. If a
sequence x = (&,) is [P, A].-summable to &, then x is also PA-summable to
&, 1. e., the relation [P, A], C PA holds.

Proof. Suppose that r, =1 and assume that lim, > 72 o [pni| [7e—&| = 0.
Using (4) we get

o0 o0 [o 0]
lon =Y Pak &l = 1D ok (e — 1 < D Pkl i — &I.
k=0 k=0 k=0
Thus the relation
o0
lim (o — ) pu§) =0
k=0
holds, i.e., &, — £(PA).
Ifr, > 1, then [P, A], C [P, A]1 by Theorem 1, and &, — {(PA) again. [

Remark 4. If 0 < 7, < 1 (n € N?), then the assertion of Theorem
2 is not true. For example, if P = (C,1), A is a normal matrix method
(i.e.,apk =0 for n > k and an, #0) and 0 < 7, = 7 < 1, then [P, A], ¢ PA
(see [6], p. 202).

The next result is proved in [5] by Theorem 3.
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Lemma 1. i) If P = (pux) s of type co — cy, i. €., P satisfies conditions
(6) and

limpyr =0 (n € NO), (10)
and if inf,r, =m >0 (n € NO), then
bn = § =& — P, (11)

for every z = (&,) € c.
ii) If sup,rn, =M < oo and (11) holds for every x € c, then P = (pnk)
is of type cog — cg.

Proposition 2. i) If P = (p,x) is of type co — cg, and inf,r, = m > 0,
then

fn"}g(A)ﬁgn —>§[P,A]7-‘ (12)

for any = € cq, i. e., the relation A C [A, P), holds .
ii) Suppose that sup,,m, = M < oo and A = (ant) is a normal matriz
method. If (12) holds for any = € ca, then P = (pux) 1s of type co — co.

Proof. i). We have the equivalence
&n — g[P:A]r < n — g[P,I]r-

Thus our statement is true by (11) in Lemma 1 i) if we apply it to ().
ii). The relation &, — £(A) for every z € c4 is the same as 1, — £ for
any (n,) € c and our statement is true by Lemma 1 ii). O

In particular, if r, = r, the matrix P = (px) is positive and A is any
matrix, then Proposition 2 i) and Theorem 2 give us Theorem 3 from [2] in
weaker restrictions on method P (in Theorem 3 from [2] P is assumed to be
regular).

Theorem 3. Suppose that P = (pnx) is reqular and 1 <r, < sup,r, =
M < oco. Then a sequence = = (&,) 1is [P, Al,-summable to & if and only
if the following two conditions are satisfied:

1) The sequence z = (&,) 1is PA-summable to &;

2) hmn EI?;O Ipnkl ng - 77k|7"’“ =0.

Proof. Necessity. Assume that z is [P, A],-summable to £ and prove that
conditions 1) and 2) are satisfied. Notice that 1) is satisfied by Theorem 2.

It remains to prove that also 2) is satisfied. Here we use the inequality (see
[5], p. 346)

la+b]°" < K (Jal*" + o) (neN), (13)

where 0 < ¢, < sup, ¢, =L < 00, K = max{l,ZL_l}, and a and b are any
numbers from C.
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Now we get using inequality (13) (taking ¢, = %2 in it and realizing that
K =1) and Minkowski’s inequality that

[~ Ipal lox = mel™ 130 = {3 [Ipnkl ¥ [(o — €) — (m — )| 3 [M} 37
k=0 k=0

U 1okl (Jox — €15 + ng — €)| )M }ar

k=0

< O Iparllon — )3 + (3 Ipmellme — £17%) .
k=0 k=0

IA

It follows now from the proved inequality that condition 2) is satisfied because
the last two sums in this inequality both tend to zero as n — oco. First of the
mentioned sums tends to zero by Lemma 1 because the method P is of type
co — ¢ and o, — & — 0 by condition 1). The second of the sums mentioned
above tends to zero by the assumption.

Sufficiency. Assume that conditions 1) and 2) are satisfied and prove
that &, — &[P, A],. Using the same technique as in the proof of necessity
of condition 2), we get by (13) and by Minkowski’s inequality the following
estimation:

[ Pl I — &1 132 < (3 Ipmallow — ™) 4> [pakllow — €17%) 3. (14)
k=0 k=0 k=0

We realize that the both sums in the right side of inequality (14) tend to
zero as n — oo. First of these sums tends to zero by 2) and second by Lemma
1 because the method P is of type ¢y — ¢ and 1) is satisfied. O

In particular, if r, = r, Theorem 3 can be seen as Theorem 1 from [12].
If, in addition, the matrix P = (p,t) is positive and A is a matrix method,
Theorem 3 turns into Theorem 7 from [2].

Conditions 1) and 2) are sufficient for [P, A],-summability of = for wider
class of indices r = (r,).

Proposition 3. Suppose that the method P = (pnx) is of type cg — co
and 0 < inf,r, =m <r, <1. If a sequence x satisfies conditions 1) and 2)
of Theorem 3, then x is [P, A].-summable to &.

Proof. We use inequality (13) with ¢, = r, and notice that in our case
K =1 in it. Thus we have the inequality

o0 oo oo
D Apakl Ik = €7 < O Ipal Ik — o™ + O Ipar ok — &]7).
k=0 k=0 k=0

The [P, A],-summability of z to ¢ can be concluded from the last inequality
in the same way as it was concluded from (14) in the proof of Theorem 3. [J
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3. Strong summability in certain families of summability
methods

Let (Aa) (@ > a1) be a Cesaro- or an Euler-Knopp-type family (see
Definition A). Noticing that Ay41 = Dy o410 A, Where the matrix methods
D, o1 are regular by Proposition B we can transfer the results of Section
2 on the strong [P, A],-summability to the methods A1, applying them to
the methods P = D, 41 and A = A,. Thus, applying Definition 1 we
will define the notion of strong summability for the methods Ay, i.€., we
will define the methods of strong summability [Aq41]y-

Definition 2. Let (A,) (o > a1) be a Cesaro- or an Euler-Knopp-type
family and r = (ry,) be a positive sequence. We say that a sequence z = (&)
is strongly summable by the method A,4; with index r = (r,) (in short,
[Aa+1]r-summable) to ¢ and write &, — £[Aqa1]r if

1 - |,
i = g D b wEIE — € =0 (n - o0) (15)
" k=0

Notice that we have ¢}, =1 in case A) and ¢} = 1/n! in case B) in
(15).

In particular, if r, = r, this definition was formulated in [11]. For methods
Ay = N, of case A) this definition was given in [7] with oy = 0. The following
theorem can be proved with the help of results from Section 2.

Theorem 4. Let (A,) (o > a1) be a Cesaro- or an Buler-Knopp-type
family. Then the following statements are true for every o > av:

i) If & — &[Anyalr, then & — E[Agi1)y for every B > «, provided that
T = (ry) is nonincreasing and rn, > 1 (n € NO);

ii) If &n — &(Aa), then & — £[An+1]r, provided that inf, r, = m > 0;

iii) If & — &[Aatalr, then &y — E[Anyi)y, provided that (r,) and (r))
satisfy the conditions 0 < 7, < r, < K7l (n € N°) where K is some positive
constant;

iv) If & — E[Aatilr, then &, — E(Apy1), provided that 1 <71, < M <
oo (n € N).

Proof. Notice that ii) follows directly from Proposition 2, and conditions
iii) and iv) are immediate consequences from Theorems 1 and 2, respectively.
So, it remains to prove i). Take & = 0 and consider

1 n
Py = TEsy D cnw by g™
" k=0
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Using (2), (3) and Holder’s inequality we get:

Nfz = bﬁ+1 ch ka| 5ch abalnulrk
n

k v=0
< ﬂ+1 Zc A ﬁzck A UARL 52% S o)
bn k v=0 k v=0

1 _
= g Z Chk Z Co_ i O o™
n k=0 v=0
1 n k
= o 4 Z Crt Z A
n k=0 v=0
- S e

Let us denote

ar oy g, i ng] > 1,
“k(”)—{ 0, if o] <1,

and

ap oy Inglmee, i IRl < 1,
”k(”)“{ 0, if 2| > 1.

Now we have the relations
I |6+ = ug (v) +vg (v), ug(v) < Ingl™, vg(v) < |ngl.

Denoting

1 n
¢ = o D ch Vi il
" k=0

we can continue the evaluations for ,uﬁ in the following way:

WS > azcn A )+ e z ﬂzcn s W)
n v=0
1
bﬁ-l-l ZC ch v— ﬁ+1 Zcﬁ azcn v— kb |7I?|
n

1
- bﬁ+1 ZCB “RTL e ﬁ+1 Zcﬁ bt Pay
n

1 1 1
= bﬁHZcﬁ oot s+ [H_lch patt oo,

IN
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As a result, we proved the inequality

6+1 Zcﬁ AT ﬁ+1 Zcﬁ LA (16)
v=0

Suppose now that p& — 0. We know that the method D41 41 is regular.

Therefore the first sum in the right side of inequality (16) tends to zero as
n — 00. As the implication

liTlinug =O=>Ii£ncpf{=0

is true by Theorem 1 also the second sum in the right side of (16) tends to
zero. Thus it follows from (16) that also pf — 0 as n — . O

In particular, if 7, = r > 1, the statements of Theorem 4 are proved by
Theorem 1 from [11].

The following theorem can be seen as an immediate consequence from
Theorem 3, taking in this theorem P = D, 541 and A = A, again.

Theorem 5. Let (A,) (o > a1) be a Cesaro- or an Euler-Knopp-type
family and 1 < r, <sup, 7, = M < oo. Then we have for every o > oy that
én — E[Aat1]r if and only if &, — §(An+1) and |77a+1 nal™ — 0(Da,at1)-

In particular, if r, = r > 1, Theorem 5 reduces to Theorem 2 i) from [11].

Remark 5. It follows from Proposition 3 that if 0 < infr, =m <r, <1,
then the conditions &, — £(An+1) and N2t —n2|™ — 0(Dy,0e1) imply that
én — g[Aa+1]r'

We will finish our paper with two examples.

Example 1. Consider the family of Cesaro methods 4, = (C,a) (a >
—1). Cesaro methods are generalized Nérlund methods of case .A) (see Section
1.3), more precisely, A, = N, with r2 = A%. Therefore our family is
a Cesaro-type family with b2 = AY. Hence the results of this section are
applicable to the family (A4,). We note that a sequence z = (&,) is [Ag+1]r
summable to ¢ by Definition 2 if

i = et O ALIE — €% =0 (s o0) )
k=0

where (17,) = Aax (see (15)). It should be noticed that condition (17) is
equivalent to the condition

1 n
= a0 (o)

because the Riesz means (N, A%) are equivalent to the arithmetical means
(C,1) by Proposition 3 in [3].
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Example 2. Consider the family of Euler-Knopp methods A, = E; /(a+1)
(o > 0). Euler-Knopp methods are generalized Norlund methods of case B)
(see Section 1.3), more precisely, A, = N, with r = (a+1)"/n!l. There-
fore our family is a Cesaro-type family with b2 = (o + 1)"/n!. Hence the
results of this section are applicable to the family (A, ). Thus, by Definition
2 a sequence = (&) is [An+1]r-summable to £ if

o - (e D)E
”n—(a+2)";)(n—k)!k!|nk_£| —0 (n—>oo)
where (n%) = Ayx (see (15)), which is the same as

a _ 1 = (n k.o _ ¢|me —
Nn_(a+2)nk2=%<k>(a+1) lnk gl 0 ('I’L OO)
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