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Inference in normal models with commutative
orthogonal block structure

MiGUEL FoNsEcA, JOAO TIAGO MEXIA, AND ROMAN ZMYSLONY

ABSTRACT. Linear mixed normal models are studied in this paper.
Using commutative Jordan algebras, the algebraic properties of these
models are studied, as well as optimal estimators, hypothesis tests and
confidence regions for fixed and random effects. Model crossing and
nesting is then presented and analyzed.

1. Introduction

Linear mixed models with Orthogonal Block Structure (OBS) play an
important role in the design and analysis of experiments (see [1] and [2]).
OBS was introduced by J.A. Nelder in 1965 (see [7] and [8]) in the framework
of the design of experiments in agricultural trials. Now these designs are also
applied in biology, medicine, engineering and social sciences. A model with
OBS can be characterized by having a covariance matrix of the form

w
V=> \Q,
i=1
where the Q;, i = 1,...,w, are known orthogonal projection matrices that
are mutually orthogonal, i.e.,
QiQ; =0, i #.

These models allow optimal estimation for variance components of blocks
and contrasts of treatments, as we shall see.

We intend to consider a special class of such models. Let the mean vector
of the model be u = X3, belonging to the subspace 2. If the orthogo-
nal projection matrix T on €2, the range space of X, commutes with Q;,
i =1,...,w, the model will have commutative orthogonal block structure,
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COBS. Then T and V will commute and the least squares estimators, LSE,
will give the best linear unbiased estimators, BLUE, for estimable vectors
(see [5]).

We start by studying the algebraic structure of models with COBS using
commutative Jordan algebras, CJA. Next we show how, crossing and nest-
ing models with COBS, we obtain models with COBS. Finally, assuming
normality we use our results to examine inference problems.

2. Algebraic structure

2.1. Commutative Jordan algebras. Commutative Jordan Algebras
(CJA) are linear spaces constituted by symmetric matrices that commute
and contain the squares of their elements. It was shown in [10] that any
CJA has one and only one basis constituted by orthogonal projection ma-
trices that are pairwise orthogonal. This basis is called the principal basis:
pb(#) =Q ={Q1,...,Qu}. These algebras have been widely used in the
study of classes of models, for instance see [4], [12] and [11].

Let «7(K) be the family of all symmetric matrices diagonalized by an or-
thogonal matrix K. It is easy to see that o/ (K) is a CJA. Moreover, the
symmetric matrices Gu,..., Gy, commute if and only if (see [9], p. 157)
they are diagonalized by the same matrix K, thus belonging to 27 (K). The
intersection of CJA is still a CJA, so, if the G, ..., G,, commute, the inter-
section of all CJA containing G = {Gy,...,G,,} will be a CJA containing
G. This minimal CJA &/ (@) that contains G is called the CJA generated by
G

When G is contained in &/ (K), the column vectors ay, ..., a, of K are
the eigenvectors of the matrices Gy, ..., G;,. We now define the equivalence
relation in {a, ..., a,} writing aj7oy when

a;Groy = a)Gray; k=1,...,m.

The equivalence classes may be of two types. A 7 equivalence class is of
first type if for at least one of the matrices in G its vectors do not have null
eigenvalue. Otherwise we have a second type 7 equivalence class. Whilst
there are always first type 7 equivalence classes, there exists at most one
second type T equivalence class. Let Cq,...C, be the sets of indexes of the
vectors in the first type equivalence classes and C,+1 the set of indexes of
the second type equivalence class. If there is no second type 7 equivalence
class we will have Cpy1 = 0. Let

Qj:Za,-a;; 7=1...,w+ 1.
i€C;
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Put Q = {Q17 ce ?QU)} and, if Cw—l—l 75 (Dv Q-I— = {le . 'aQUMQUH-l}' Q) and

Q- will be the families of orthogonal projection matrices, pairwise orthog-
onal. Thus @ and, if Cy,11 # (), Q4 will be the principal basis of the CJA
7 (Q) and o/ (Q4 ), respectively. We now establish

Proposition 1. &/ (G) = & (Q).

Proof. Let ~; be the eigenvalues of Gy, with £ = 1,...,m. For the eigen-
vectors corresponding to the sets C;, j = 1,...,w, we have G, = Z;’JZI M Qj
in G C &(Q) and so & (G) C #(Q).

Let now pb (#7(G)) = L = {Ly,...,Ls}. Since &/(G) C &/ (Q), we have
L C #(Q), and so

w
L, = Zcquv; u=1,...,s.
v=1
Since Ly, u =1,...,s, and Q,, v = 1,...,w, are idempotent and pairwise
orthogonal, ¢, = 0 or ¢y, = 1. The sets

Dy={v:icw=1} u=1,...,s,

are singletons since, if v{ # v9 belong to D, the eigenvalues of the matrices
Gi,..., G, with indexes in C,, UC,, have to be equal, which is impossible
since C,, and C,, belong to distinct 7 equivalence classes. Thus s = w since
for every v = 1,...,w there must be a u such that ¢, = 1, otherwise the
corresponding 7 equivalence class would not be of the first type. O

The eigenindex of a family M = {Mj,...,M;} of symmetric matrices
that commute is the number of first type 7 equivalence classes defined for
the eigenvectors of the matrices in M. This index is the dimension of <7 (M).
We now establish

Proposition 2. The family M = {M;y,...,M;} of symmetric matrices
that commute is a basis for o/ (M) if and only if it has eigenindex | and if
its matrices are linearly independent.

Proof. The condition is necessary since dim(szf (M )), the dimension of
o/ (M), equals the eigenidex of <7 (M). To establish sufficiency we represent
the principal basis of o/ (M) by {Qu,...,Q;}. Then M; = 23:1 b ;i Qj,
1 =1,...,1. Since 2221 cM; = 22:1 Zézl b; jciQ;, and My,..., M, are
linearly independent, B = [b; ;] and B’ will be non-singular. Then the ma-
trices Qq, ..., Q; are linear combinations of the My, ..., M; and the proof is
complete. O

The arguments used in this proof show that an orthogonal projection ma-
trix belonging to a CJA is the sum of all or part of the matrices in the
principal basis. It is also easy to see that the rank of Q is the sum of the
ranks of those matrices. Thus if rank(Q) = 1, where rank(Q) denotes the
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rank of Q, it must belong to the principal basis. Now J,, = %ln’ln, where
1, is a vector of ones, is an orthogonal projection matrix with rank one so it
belongs to the principal basis of any CJA it belongs to. These CJA are said
to be regular.

The unity E of a CJA will be the sum of the matrices of the principal
basis. If E = I,, we say that the CJA is complete. If Q@ = {Q1,...,Qu}
is the principal basis of a non-complete CJA &7, Q4+ = {Q1,..., Qu, Qu+1}
with Qu11 = I, — E will be the principal basis of a complete CJA o7, . If
there exists a second type 7T equivalence class, A(G) will not be complete.
Actually, o7 (G) is complete if and only if there is no second type 7 equivalence
class.

If M belongs to a CJA with principal basis @ = {Qq,...,Qy} we will
have

M = Zw: aiQi,
i=1

and the ortogonal projection matrix T(M) on the range space of M, R(M),

will be
™M)= ) Q,
1€C(M)
where C(M) = {i : a; # 0}. If M is non-singular, R(M) = R™ and T(M) =
I, so that if M belongs to a CJA it has to be complete. Vice-versa, if a CJA
is complete, it contains I, which is non-singular. Thus, for a CJA to contain
non-singular matrices, it is necessary and sufficient that it is complete.
Putting

' 0 a;=0
it is easy to check that the Moore-Penrose inverse of M will be

M+ = zw: anZ

1=1

+:{a;1 a; #0

Namely, when M is non-singular we will have
w
M=) a'Q.
i=1

Moreover, the a; will be the eigenvalues of M with multiplicity ¢g; = rank(Q;),
i=1,...,w. Thus, if M is non-singular,

det(M) = H al’.
i=1

Pairs of complete CJA will be instrumental for the purpose of this research.
Given a model with COBS we must first consider CJA 7 (Q) with principal
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basis @ = {Q1,...,Qu} to which V belongs to, and CJA &/ (T), with prin-
cipal basis {T, U}, where U =1I,, — T, the orthogonal projection matrix on
the orthogonal complement of the mean vector space. We now establish

Proposition 3. If Q = {Q1,...,Qu} and L = {Ly,...,Ls} are the
principal bases of complete CJA and all the matrices in both of these sets
commute, the principal basis of d(%(@) U &%(L)) will be constituted by the
non null products Q;L;, i =1,...,w, j=1,...,s.

Proof. Since Q;L; = L;Q;, it is easy to check that these matrices are
symmetric and idempotent. Thus, if non-null, they are orthogonal projection
matrices, pairwise orthogonal, since

Qi1Lj1Qi2Lj2 = QilelezQiz = 0nxn
whenever i1 # 43 or ji # jo. Then the set of non-null matrices Q;L; will
be the principal basis of a CJA 7. Now, Q; = ijl Q;L; so @ C 4 and
analogously L C . Consequently «/(Q)U @ (L) C «, and & (#/(Q) U
(L)) C .

To establish the inverse inclusion we point out that Q U L C &/ (427 (Q)U
szf(L)) so that, since any CJA contains the products of its matrices, Q;L; €
W(M(Q)UM(L)),Z =1,...,w,j=1,...,s, it implies that <7, C W(M(Q)U
JZ%(L)) O

2.2. Models. A COBS model encompasses two CJA: &/(Q) and </ (T).
The matrices in the principal basis of these CJA commute so their matri-
ces will commute. Thus, according to Proposition 3, the principal basis of
the CJA generated by «/(Q) and <7 (T) will be constituted by the non-null
matrices Q; T and Q;U, ¢ =1,...,w. We also see that

=1
U= zw: Q.U.
=1

Let us put

Dl == {’L : QZT 75 Oan},
Dy = {i: QiU # Opxn}.
Since Q;T+ QU =Q;,i=1,...,w, we have Dy UDy =W = {1,...,w}.

With ky = #(Dy), 1 = 1,2, and k = #(D1ND3), where #(A) is the cardinality
of the set A, we have

ki+ko+k=n.
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Let us denote by Py, ..., Py, the non-null matrices Q;T and by Py, 4+1,.. .,
Py, +1, the non-null matrices Q;U. Let the column vectors of Aj, constitute
an orthonormal basis for Vj, = R(Pp), h=1,...,k; + ka. Then

Ph:AhA;L; h=1,...,k + ko.

Further,
w k1 k1
T=) QT=) Pi=) AuAj,
i=1 h=1 h=1
thus,
k1
p=Tu=73 Al
h=1

with ¢, = A'p, h=1,... ki + ko. We point out that
Ch:E[nh]7 h:17"'7k1+k27

where n;, = Aly, h = 1,...,k1 + kg, and that {;, = 0, h = 1,... k.
Moreover,
k1+ko k1+k2

w
V=) 0iQi= ) Pn= ) vnAnAj
=1 h=1 h=1

where o; = 7, if either P, = A} T or P, = AU, h=1,..., ki + ka. If the
n;, have mean vectors ¢, and covariance matrices v;1,, with g, = rank(Pp,),
h=1,...,k + ko, and are independent, then

k1+k2

y= Y A,
h=1

will have mean vector g and covariance matrix V. This may be summarized
into the following

Proposition 4. Whatever the orthogonal projection matrices pairwise or-
thogonal Qq, ..., Q. that commute with the orthogonal projection matriz T,
there is a model with COBS

k1+k2
y= > A,
h=1
with covariance matriz
w
V = Z ;Q;
i=1

and a mean vector p that spans Q = R(T).

Remark. Since V has to be positive semi-definite, the variance components
o1, -...,0y cannot be negative. If we require V to be positive definite we must
have o; > 0,i=1,...,w.
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Corollary 1. There is a normal model with COBS whose mean vector
spans ) and has covariance matrix V whenever the conditions of Proposition
4 are met.

Proof. It suffices to require the n;,, h = 1,...,k; + k2, to be normal with
mean vectors ¢, and covariance matrices v,Ig,, h = 1,..., k1 + ko, besides
being independent. O

In what follows we write z ~ .47 (X, C) to indicate that z is normal with
mean vector A and covariance matrix C.

These results show that a model with COBS may always be written as a
sum of independent terms. This will be the canonical form of the models
while k1 and ko will be the structure parameters of the models. While kq
gives the number in the fixed effects terms part, ko will give the corresponding
number for the random effects of the model.

2.3. Functional forms. Let

m l
y:ZXj,Bj+ Z XjTj+e,
7j=1

j=m+1
where the 34,...,3,, are fixed while 7,,41,...,7; and e are independent,
with null mean vectors and covariance matrices 0']2-ch, j=m-+1,...,l, and
02l,, with ¢; = rank(X;), j = 1,...,l. The mean vector and covariance

matrix of y are
m
j=1

1
V=> oM, +0l,,
j=1

where M; = X; X%, j =1,...,1. We now establish

Proposition 5. If the M,,11,...,M; commute, the model has OBS. If
matrices My, ..., M; commute, the model has COBS.

Proof. If M,;,41,...,M; commute, they will belong — as well as I,, — to
a CJA with principal basis {Rq,...,Rg}. Then V will be a linear combi-
nation of the matrices in this basis and the first part of the statement is
established. Likewise, if My,...,M; commute, they will belong to a CJA
with principal basis {R,..., Ry}, with v > d. Now, p will span R(X), with
X =[X; - X,]. Since R(X) = R(M), with M = XX’ = """ M,,
the orthogonal projection matrix T on R(M) will also belong to this CJA so
that it will commute with V. O
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To distinguish it from the canonical form, we call this last form of the
model the functional form, since its terms are usually connected with factor
effects and factor interactions (see [3]). Moreover, if matrices My, ..., M;
commute, according to Proposition 2, M = {Mj,...,M;} will be a basis
for o/ (M) if and only if these matrices are linearly independent and M has
eigenindex . Thus the model we are considering will be (see [4]) strictly
associated to «7(M). It is also clear, according to Proposition 5, that if a
model is associated to /(M ), matrices My, ..., M; will commute and the
model will have COBS.

We now establish

Proposition 6. If the My,...,M; commute and, moreover, if
m l
(Lo (3 ) -0
i=1 j=m+1

the model will have COBS with k1 = 1.
Proof. The R(M;), i =1,...,m, are subspaces of R(} ;" M;) since

R(iMz):R([Xl e X))

Likewise, the R(M;), ¢ = m + 1,...,[, are subspaces of R(Zé:mﬂ Ml)

since R(zﬁn i M) —R(Xpmi1 - XJ]). Then Q = R(X7, M;) will
be orthogonal to the R(M;), i = m + 1,...,l, and so TM; = Opxp, @ =
m+1,...,10.

My = {My41,...,M;} generates a CJA o (Ms) with principal basis
{Rl,...,RU}, and M; = Z;:l b,’J’Rj, i = m+1,...,1. The bi,j7 1 =
m + 1,...,[, cannot be all zeros since, otherwise, R; would be discarded
from the principal basis of @ (Ms), j = 1,...,v. Thus R(R;) is a subspace

of at least one of the R(M;), i = m+1,...,[, and so of R(Zi:m—i—l Mi), thus
making 2 orthogonal to the R(R;), j = 1,...,v. Therefore TR; = 0,xp,
j=1,...,v. Adding Ry+1 =1, — 233:1 R; to the matrices in the prin-

cipal basis of o7 (Ms) we get the principal basis of a CJA that contains V

since this matrix is a linear combination of the M;, ¢ =m + 1,...,[, and of
I,,. Thus we will have V = Z;’i% a;R; and since TR, 41 is non-null whilst
TR; =0 (xn), J=1,...,, k1= 1. O

Consider binary operations in models with COBS. Assume the models are
written in their functional form. Given a pair

mq ld
Ya = Z X]dﬁ]d + Z deTjd + eg; d= 17 27
Ja=1 Ja=maq+1
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of such models, when we cross them we obtain a model y; Ky9 expressed by
mi me I l2
yi1 Wy = Z Z Xj17j218j1,j2 + Z Z Xj1,j2Tjrga T €
Jj1=1j2=1 Jji=mi1+1 jo=ma+1
where, representing by ® the Kronecker product,
le,jQ — X1,j1 & Xg,j2; j1 = 1, PN ,ll; jg = 1, PN ,lg.

The vectors 8, ;,

we assume that 8; . ~ ,/V(O o . 1 >, and e ~ JV(O,JSIn). All these

are fixed for j1 = 1,...,m71 and jo = 1,...,mg, otherwise

Y7 1.2
vectors are assumed to be independent. We now establish

Proposition 7. Crossing models with COBS give models with COBS.

Proof. According to Proposition 5 we have only to show that matrices

My, g = Xy X s G151, ja = 1,4, 2, commute. Now,
M]17J2M]{7j2 (MJ1 ® JQ)(MJ'{ ® M]é)
=M J1MJ1) ® (szMjé)
( ]{Mjl) ® (MjéMjQ)
(M]{ ® M]é)(Mjl ® M]2)y
JL,70 =1, ja, 45 = 1,... 12, so the statement is established. O

Let X3 1 = 1,, and Eo be the unity of the CJA to which the first model
is strictly associated. Then nesting the treatments of the second model into
the treatments of the first one originates a model y; [ yo expressed by

l1

lo
yiOy2 =) (X1, ®1,)8; + > (E1 ®Xa;)By, 4, +e.
j=1 Jj=2

Since random effect factors do not nest fixed effect factors, if the first model
has random factors, the second one must be a random model. Likewise, if
the second model has fixed effect factors, the first one must be a fixed effects
model. Reasoning as to establish Proposition 7, we get

Proposition 8. Nesting models with COBS give models with COBS.
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3. Inference

3.1. Sufficient statistics. Let us assume that y ~ A (u, V) with p € Q =
R(T) and V = Y% |, 62Q;. Then, from the proof of Proposition 4,

k1

H = Z AhC}w
h=1
k1+ko

V= vAnA,
h=1
and, assuming V is non-singular, (see [4])
k1+k2
= D 7 TARAG
h=1
k1+k2

det(V H i

Thus
k1+ko
=)V iy—m =Y %' y—nAALly—p
h=1
K1k
:Z th Cth - Sk
helrg1 1h

where Sy, = |n,|12 = ||ALyl?, h = ki +1,...,k + ka. So, the observation
vector has the density

k —Cull? 1 —kit+k2 S
exXp < Zhl 1 I —Cal h'yh o p) Ehlzklil TZ)
k1+k ’
V@mn T 42

The next proposition summarizes these results.

n(y) =

Proposition 9. Then,, h =1,... k1, and the Sy, h = k1+1,... k1 +ko,
constitute a complete and sufficient set of statistics.

Proof. Given the expression of the density, sufficiency follows from the fac-
torization theorem whilst completeness results from the fact that the normal
distribution belongs to the exponential family of densities and (see [6], p.
142) that the parameter space contains a product of non-degenerate inter-
vals. O
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By construction Sp /7, has the central chi-square distribution with g
degrees of freedom, from where S; ~ th%gh)’ h =k +1,...,k + ko,
whilst 9y, ~ A(¢;1g,), h = 1,..., k1. Thus, according to the Blackwell-
Lehmann-Scheffé theorem (see [6]),

- S
="l h=ki+1,... ki +k
9h
Ui h = 1,...,]€1

will be Uniformly Best Linear Unbiased Estimators — UMVUE.

3.2. Variance components. Since S; ~ 'YhX?gh) we can obtain two-sided

and one-sided confidence intervals for v;,, h = k1 +1,... k1 +ko. Let 24, be
the p-quantile of a central chi-square distribution with g degrees of freedom.
We have for v;, the 1 — ¢ level confidence intervals

Sh Sh
) M
xg]'ul_% xghm%

S
il
xgh,(]
S
[ , +o0 [
':Ugh’l_q
which enable us to test, through duality,
Ho(h) : v = ¢,
Ho(h) : yn > ¢,
Ho(h) Y < G,

respectively. These tests will have level ¢ and the null hypothesis is rejected
when 4y, is not contained in the corresponding interval.
Moreover, as

Th
Ay = —; hiyhe = ki + 1, k1 + ko by # ha,

Yha
it is easy to see that the statistic

S
Fhin, :%; hi,ho = k1 +1,..., ki + ko; hy # ho,
2

will be the product by Ap, p, of a central .# distribution with ¢g; and g
degrees of freedom, hi,ho = k1 +1,..., k1 + k2, h1 # he. Thus, with f,,
the p-quantile of a central % distribution with r and s degrees of freedom,
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we have the (1 — g)-level confidence intervals for A, ,

Fpih, Fhin, ]
)

)
fgh17gh271_% f9h179h27%

0 Fhihy

)

)
fghl »Gho 9

1n2
774_00

fghl 19hos1—q
These intervals may be used to obtain, through duality, % tests for
Ho(h1,h2) : Apyny = ¢
Ho(hl,hg) : /\h1h2 > c,
Ho(hl,hg) : /\h1h2 <c,
respectively. These tests will have level gq.
3.3. Estimable vectors. In models with COBS the LSE estimators of es-

timable vectors are BLUE. Further, if 2 = R(X), and the column vectors of
X are linearly independent,

n=Xg
and
B=X"p,
whilst the estimable vectors are
¢ =GB =GX"pu.

When normality holds, the estimator for the mean vector can be expressed

as
k1
=Y Apm,
h=1
and is, according to the Blackwell-Lehmann-Scheffé Theorem, the UMVUE
of p, while

¢ =GX"fa
will be the UMVUE of ¢.
When k1 = 1 we have

p=Ain ~ A (p,11P1)
¢=GX i~ N (,71GXP(XT)G).
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To shorten the writing, let

W = GX'TP(X1)G'.

Since k1 = 1, there is only one matrix Q;, ¢ = 1,...,w, such that Q;T =
0y,xn, say Qy,. Let us assume that Py, = Q;,U. Thus Sp, ~ 71X?go)’ with

go = rank(Pp,), independent from n; and from ¢. Hence

(¢ — D)W (p— ) ~nx(,

with ¢ = rank(W). Thus

g0(¢p— )W (¢ — ¢)

=
cShy

will have central .% distribution with ¢ and go degrees of freedom. We then
obtain the (1 — ¢)-level confidence ellipsoid

{x D(x— &)'W‘F(x - c}ﬁ) < Cfc,go,l_p%}

for ¢. Through duality we get a g-level .# test for

Ho(c): p=c

with ¢ and gy degrees of freedom.
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