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Inference in normal models with commutative

orthogonal block structure

Miguel Fonseca, João Tiago Mexia, and Roman Zmyślony

Abstract. Linear mixed normal models are studied in this paper.
Using commutative Jordan algebras, the algebraic properties of these
models are studied, as well as optimal estimators, hypothesis tests and
confidence regions for fixed and random effects. Model crossing and
nesting is then presented and analyzed.

1. Introduction

Linear mixed models with Orthogonal Block Structure (OBS) play an
important role in the design and analysis of experiments (see [1] and [2]).
OBS was introduced by J.A. Nelder in 1965 (see [7] and [8]) in the framework
of the design of experiments in agricultural trials. Now these designs are also
applied in biology, medicine, engineering and social sciences. A model with
OBS can be characterized by having a covariance matrix of the form

V =

w
∑

i=1

λiQi,

where the Qi, i = 1, . . . , w, are known orthogonal projection matrices that
are mutually orthogonal, i. e.,

QiQj = 0, i 6= j.

These models allow optimal estimation for variance components of blocks
and contrasts of treatments, as we shall see.

We intend to consider a special class of such models. Let the mean vector
of the model be µ = Xβ, belonging to the subspace Ω. If the orthogo-
nal projection matrix T on Ω, the range space of X, commutes with Qi,
i = 1, . . . , w, the model will have commutative orthogonal block structure,
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COBS. Then T and V will commute and the least squares estimators, LSE,
will give the best linear unbiased estimators, BLUE, for estimable vectors
(see [5]).

We start by studying the algebraic structure of models with COBS using
commutative Jordan algebras, CJA. Next we show how, crossing and nest-
ing models with COBS, we obtain models with COBS. Finally, assuming
normality we use our results to examine inference problems.

2. Algebraic structure

2.1. Commutative Jordan algebras. Commutative Jordan Algebras
(CJA) are linear spaces constituted by symmetric matrices that commute
and contain the squares of their elements. It was shown in [10] that any
CJA has one and only one basis constituted by orthogonal projection ma-
trices that are pairwise orthogonal. This basis is called the principal basis:
pb (A ) = Q = {Q1, . . . ,Qw}. These algebras have been widely used in the
study of classes of models, for instance see [4], [12] and [11].

Let A (K) be the family of all symmetric matrices diagonalized by an or-
thogonal matrix K. It is easy to see that A (K) is a CJA. Moreover, the
symmetric matrices G1, . . . ,Gm commute if and only if (see [9], p. 157)
they are diagonalized by the same matrix K, thus belonging to A (K). The
intersection of CJA is still a CJA, so, if the G1, . . . ,Gm commute, the inter-
section of all CJA containing G = {G1, . . . ,Gm} will be a CJA containing
G. This minimal CJA A (G) that contains G is called the CJA generated by
G.

When G is contained in A (K), the column vectors α1, . . . ,αn of K are
the eigenvectors of the matrices G1, . . . ,Gn. We now define the equivalence
relation in {α1, . . . ,αn} writing αjταl when

α′
jGkαj = α′

lGkαl; k = 1, . . . ,m.

The equivalence classes may be of two types. A τ equivalence class is of
first type if for at least one of the matrices in G its vectors do not have null
eigenvalue. Otherwise we have a second type τ equivalence class. Whilst
there are always first type τ equivalence classes, there exists at most one
second type τ equivalence class. Let C1, . . . Cw be the sets of indexes of the
vectors in the first type equivalence classes and Cw+1 the set of indexes of
the second type equivalence class. If there is no second type τ equivalence
class we will have Cw+1 = ∅. Let

Qj =
∑

i∈Cj

αiα
′
i; j = 1, . . . , w + 1.
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Put Q = {Q1, . . . ,Qw} and, if Cw+1 6= ∅, Q+ = {Q1, . . . ,Qw,Qw+1}. Q and
Q+ will be the families of orthogonal projection matrices, pairwise orthog-
onal. Thus Q and, if Cw+1 6= ∅, Q+ will be the principal basis of the CJA
A (Q) and A (Q+), respectively. We now establish

Proposition 1. A (G) = A (Q).

Proof. Let γkj be the eigenvalues of Gk, with k = 1, . . . ,m. For the eigen-
vectors corresponding to the sets Cj , j = 1, . . . , w, we have Gk =

∑w
j=1 γkjQj

in G ⊆ A (Q) and so A (G) ⊆ A (Q).
Let now pb (A (G)) = L = {L1, . . . ,Ls}. Since A (G) ⊆ A (Q), we have

L ⊆ A (Q), and so

Lu =

w
∑

v=1

cuvQv; u = 1, . . . , s.

Since Lu, u = 1, . . . , s, and Qv, v = 1, . . . , w, are idempotent and pairwise
orthogonal, cuv = 0 or cuv = 1. The sets

Du = {v : cuv = 1}; u = 1, . . . , s,

are singletons since, if v1 6= v2 belong to Du, the eigenvalues of the matrices
G1, . . . ,Gn with indexes in Cv1

∪ Cv2
have to be equal, which is impossible

since Cv1
and Cv2

belong to distinct τ equivalence classes. Thus s = w since
for every v = 1, . . . , w there must be a u such that cuv = 1, otherwise the
corresponding τ equivalence class would not be of the first type. �

The eigenindex of a family M = {M1, . . . ,Ml} of symmetric matrices
that commute is the number of first type τ equivalence classes defined for
the eigenvectors of the matrices in M . This index is the dimension of A (M).
We now establish

Proposition 2. The family M = {M1, . . . ,Ml} of symmetric matrices

that commute is a basis for A (M) if and only if it has eigenindex l and if

its matrices are linearly independent.

Proof. The condition is necessary since dim
(

A (M)
)

, the dimension of
A (M), equals the eigenidex of A (M). To establish sufficiency we represent

the principal basis of A (M) by {Q1, . . . ,Ql}. Then Mi =
∑l

j=1 bi,jQj,

i = 1, . . . , l. Since
∑l

i=1 ciMi =
∑l

j=1

∑l
i=1 bi,jciQj, and M1, . . . ,Ml are

linearly independent, B = [bi,j] and B′ will be non-singular. Then the ma-
trices Q1, . . . ,Ql are linear combinations of the M1, . . . ,Ml and the proof is
complete. �

The arguments used in this proof show that an orthogonal projection ma-
trix belonging to a CJA is the sum of all or part of the matrices in the
principal basis. It is also easy to see that the rank of Q is the sum of the
ranks of those matrices. Thus if rank(Q) = 1, where rank(Q) denotes the
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rank of Q, it must belong to the principal basis. Now Jn = 1
n
1n

′1n, where
1n is a vector of ones, is an orthogonal projection matrix with rank one so it
belongs to the principal basis of any CJA it belongs to. These CJA are said
to be regular.

The unity E of a CJA will be the sum of the matrices of the principal
basis. If E = In we say that the CJA is complete. If Q = {Q1, . . . ,Qw}
is the principal basis of a non-complete CJA A , Q+ = {Q1, . . . ,Qw,Qw+1}
with Qw+1 = In − E will be the principal basis of a complete CJA A+. If
there exists a second type τ equivalence class, A(G) will not be complete.
Actually, A (G) is complete if and only if there is no second type τ equivalence
class.

If M belongs to a CJA with principal basis Q = {Q1, . . . ,Qw} we will
have

M =

w
∑

i=1

aiQi,

and the ortogonal projection matrix T(M) on the range space of M, R(M),
will be

T(M) =
∑

i∈C(M)

Qi,

where C(M) = {i : ai 6= 0}. If M is non-singular, R(M) = R
n and T(M) =

In, so that if M belongs to a CJA it has to be complete. Vice-versa, if a CJA
is complete, it contains In, which is non-singular. Thus, for a CJA to contain
non-singular matrices, it is necessary and sufficient that it is complete.

Putting

a+
i =

{

a−1
i ai 6= 0

0 ai = 0

it is easy to check that the Moore-Penrose inverse of M will be

M+ =
w
∑

i=1

a+
i Qi.

Namely, when M is non-singular we will have

M−1 =

w
∑

i=1

a−1
i Qi.

Moreover, the ai will be the eigenvalues of M with multiplicity gi = rank(Qi),
i = 1, . . . , w. Thus, if M is non-singular,

det(M) =
w
∏

i=1

agi

i .

Pairs of complete CJA will be instrumental for the purpose of this research.
Given a model with COBS we must first consider CJA A (Q) with principal
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basis Q = {Q1, . . . ,Qw} to which V belongs to, and CJA A (T), with prin-
cipal basis {T,U}, where U = In − T, the orthogonal projection matrix on
the orthogonal complement of the mean vector space. We now establish

Proposition 3. If Q = {Q1, . . . ,Qw} and L = {L1, . . . ,Ls} are the

principal bases of complete CJA and all the matrices in both of these sets

commute, the principal basis of A
(

A (Q) ∪ A (L)
)

will be constituted by the

non null products QiLj , i = 1, . . . , w, j = 1, . . . , s.

Proof. Since QiLj = LjQi, it is easy to check that these matrices are
symmetric and idempotent. Thus, if non-null, they are orthogonal projection
matrices, pairwise orthogonal, since

Qi1Lj1Qi2Lj2 = Qi1Lj1Lj2Qi2 = 0n×n

whenever i1 6= i2 or j1 6= j2. Then the set of non-null matrices QiLj will
be the principal basis of a CJA A∗. Now, Qi =

∑s
j=1 QiLj so Q ⊂ A∗ and

analogously L ⊂ A∗. Consequently A (Q) ∪ A (L) ⊆ A∗ and A
(

A (Q) ∪

A (L)
)

⊆ A∗.

To establish the inverse inclusion we point out that Q ∪ L ⊂ A
(

A (Q) ∪

A (L)
)

so that, since any CJA contains the products of its matrices, QiLj ∈

A
(

A (Q)∪A (L)
)

, i = 1, . . . , w, j = 1, . . . , s, it implies that A∗ ⊆ A
(

A (Q)∪

A (L)
)

. �

2.2. Models. A COBS model encompasses two CJA: A (Q) and A (T).
The matrices in the principal basis of these CJA commute so their matri-
ces will commute. Thus, according to Proposition 3, the principal basis of
the CJA generated by A (Q) and A (T) will be constituted by the non-null
matrices QiT and QiU, i = 1, . . . , w. We also see that

T =

w
∑

i=1

QiT,

U =
w
∑

i=1

QiU.

Let us put

D1 = {i : QiT 6= 0n×n},

D2 = {i : QiU 6= 0n×n}.

Since QiT + QiU = Qi, i = 1, . . . , w, we have D1 ∪ D2 = W = {1, . . . , w}.
With kl = #(Dl), l = 1, 2, and k = #(D1∩D2), where #(A) is the cardinality
of the set A, we have

k1 + k2 + k = n.
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Let us denote by P1, . . . ,Pk1
the non-null matrices QiT and by Pk1+1, . . .,

Pk1+k2
the non-null matrices QiU. Let the column vectors of Ah constitute

an orthonormal basis for ∇h = R(Ph), h = 1, . . . , k1 + k2. Then

Ph = AhA
′
h; h = 1, . . . , k1 + k2.

Further,

T =

w
∑

i=1

QiT =

k1
∑

h=1

Ph =

k1
∑

h=1

AhA
′
h,

thus,

µ = Tµ =

k1
∑

h=1

Ahζh,

with ζh = A′µ, h = 1, . . . , k1 + k2. We point out that

ζh = E[ηh] ; h = 1, . . . , k1 + k2,

where ηh = A′
hy, h = 1, . . . , k1 + k2, and that ζh = 0, h = 1, . . . , k1.

Moreover,

V =
w
∑

i=1

σiQi =

k1+k2
∑

h=1

γiPh =

k1+k2
∑

h=1

γiAhA
′
h,

where σi = γh if either Ph = A′
hT or Ph = A′

hU, h = 1, . . . , k1 + k2. If the
ηh have mean vectors ζh and covariance matrices γiIgh

with gh = rank(Ph),
h = 1, . . . , k1 + k2, and are independent, then

y =

k1+k2
∑

h=1

Ahζh

will have mean vector µ and covariance matrix V. This may be summarized
into the following

Proposition 4. Whatever the orthogonal projection matrices pairwise or-

thogonal Q1, . . . ,Qw that commute with the orthogonal projection matrix T,

there is a model with COBS

y =

k1+k2
∑

h=1

Ahζh

with covariance matrix

V =
w
∑

i=1

σiQi

and a mean vector µ that spans Ω = R(T).

Remark. Since V has to be positive semi-definite, the variance components
σ1, . . . , σw cannot be negative. If we require V to be positive definite we must
have σi > 0, i = 1, . . . , w.
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Corollary 1. There is a normal model with COBS whose mean vector

spans Ω and has covariance matrix V whenever the conditions of Proposition

4 are met.

Proof. It suffices to require the ηh, h = 1, . . . , k1 + k2, to be normal with
mean vectors ζh and covariance matrices γhIgh

, h = 1, . . . , k1 + k2, besides
being independent. �

In what follows we write z ∼ N (λ,C) to indicate that z is normal with
mean vector λ and covariance matrix C.

These results show that a model with COBS may always be written as a
sum of independent terms. This will be the canonical form of the models
while k1 and k2 will be the structure parameters of the models. While k1

gives the number in the fixed effects terms part, k2 will give the corresponding
number for the random effects of the model.

2.3. Functional forms. Let

y =
m
∑

j=1

Xjβj +
l
∑

j=m+1

Xjτ j + e,

where the β1, . . . ,βm are fixed while τm+1, . . . , τ l and e are independent,
with null mean vectors and covariance matrices σ2

j Icj
, j = m + 1, . . . , l, and

σ2
eIn, with cj = rank(Xj), j = 1, . . . , l. The mean vector and covariance

matrix of y are

µ =

m
∑

j=1

Xjβj ,

V =

l
∑

j=1

σ2
jMj + σ2

eIn,

where Mj = XjX
′
j , j = 1, . . . , l. We now establish

Proposition 5. If the Mm+1, . . . ,Ml commute, the model has OBS. If

matrices M1, . . . ,Ml commute, the model has COBS.

Proof. If Mm+1, . . . ,Ml commute, they will belong – as well as In – to
a CJA with principal basis {R1, . . . ,Rd}. Then V will be a linear combi-
nation of the matrices in this basis and the first part of the statement is
established. Likewise, if M1, . . . ,Ml commute, they will belong to a CJA
with principal basis {R1, . . . ,Rv}, with v > d. Now, µ will span R(X), with
X = [X1 · · · Xm]. Since R(X) = R(M), with M = XX′ =

∑m
i=1 Mi,

the orthogonal projection matrix T on R(M) will also belong to this CJA so
that it will commute with V. �
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To distinguish it from the canonical form, we call this last form of the
model the functional form, since its terms are usually connected with factor
effects and factor interactions (see [3]). Moreover, if matrices M1, . . . ,Ml

commute, according to Proposition 2, M = {M1, . . . ,Ml} will be a basis
for A (M) if and only if these matrices are linearly independent and M has
eigenindex l. Thus the model we are considering will be (see [4]) strictly
associated to A (M). It is also clear, according to Proposition 5, that if a
model is associated to A (M), matrices M1, . . . ,Ml will commute and the
model will have COBS.

We now establish

Proposition 6. If the M1, . . . ,Ml commute and, moreover, if
(

m
∑

i=1

Mi

)





l
∑

j=m+1

Mj



 = 0n×n

the model will have COBS with k1 = 1.

Proof. The R(Mi), i = 1, . . . ,m, are subspaces of R(
∑m

i=1 Mi) since

R

(

m
∑

i=1

Mi

)

= R([X1 · · · Xm]) .

Likewise, the R(Mi), i = m + 1, . . . , l, are subspaces of R
(

∑l
i=m+1 Mi

)

since R
(

∑l
m+i=1 Mi

)

= R([Xm+1 · · · Xl]). Then Ω = R(
∑m

i=1 Mi) will

be orthogonal to the R(Mi), i = m + 1, . . . , l, and so TMi = 0n×n, i =
m + 1, . . . , l.

M2 = {Mm+1, . . . ,Ml} generates a CJA A (M2) with principal basis
{R1, . . . ,Rv}, and Mi =

∑v
j=1 bi,jRj , i = m + 1, . . . , l. The bi,j, i =

m + 1, . . . , l, cannot be all zeros since, otherwise, Rj would be discarded
from the principal basis of A (M2), j = 1, . . . , v. Thus R(Rj) is a subspace

of at least one of the R(Mi), i = m+1, . . . , l, and so of R
(

∑l
i=m+1 Mi

)

, thus

making Ω orthogonal to the R(Rj), j = 1, . . . , v. Therefore TRj = 0n×n,
j = 1, . . . , v. Adding Rv+1 = In −

∑v
j=1 Rj to the matrices in the prin-

cipal basis of A (M2) we get the principal basis of a CJA that contains V

since this matrix is a linear combination of the Mi, i = m + 1, . . . , l, and of
In. Thus we will have V =

∑v+1
j=1 αjRj and since TRv+1 is non-null whilst

TRj = 0N (×,n), j = 1, . . . ,, k1 = 1. �

Consider binary operations in models with COBS. Assume the models are
written in their functional form. Given a pair

yd =

md
∑

jd=1

Xjd
βjd

+

ld
∑

jd=md+1

Xjd
τ jd

+ ed; d = 1, 2,
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of such models, when we cross them we obtain a model y1 �y2 expressed by

y1 � y2 =

m1
∑

j1=1

m2
∑

j2=1

Xj1,j2βj1,j2
+

l1
∑

j1=m1+1

l2
∑

j2=m2+1

Xj1,j2τ j1,j2 + e,

where, representing by ⊗ the Kronecker product,

Xj1,j2 = X1,j1 ⊗ X2,j2; j1 = 1, . . . , l1; j2 = 1, . . . , l2.

The vectors βj1,j2
are fixed for j1 = 1, . . . ,m1 and j2 = 1, . . . ,m2, otherwise

we assume that βj1,j2
∼ N

(

0, σ2
j1,j2

In

)

, and e ∼ N
(

0, σ2
eIn

)

. All these

vectors are assumed to be independent. We now establish

Proposition 7. Crossing models with COBS give models with COBS.

Proof. According to Proposition 5 we have only to show that matrices
Mj1,j2 = Xj1,j2X

′
j1,j2

, j1, . . . , l1, j2 = 1, . . . , l2, commute. Now,

Mj1,j2Mj′
1
,j′

2
= (Mj1 ⊗ Mj2)(Mj′

1
⊗ Mj′

2
)

= (Mj1Mj′
1
) ⊗ (Mj2Mj′

2
)

= (Mj′
1
Mj1) ⊗ (Mj′

2
Mj2)

= (Mj′
1
⊗ Mj′

2
)(Mj1 ⊗ Mj2),

j1, j
′
1 = 1, . . . , l1, j2, j

′
2 = 1, . . . , l2, so the statement is established. �

Let X2,1 = 1n2
and E2 be the unity of the CJA to which the first model

is strictly associated. Then nesting the treatments of the second model into
the treatments of the first one originates a model y1 � y2 expressed by

y1 � y2 =

l1
∑

j=1

(X1,j ⊗ 1n2
)βj +

l2
∑

j=2

(E1 ⊗ X2,j)βl1+j + e.

Since random effect factors do not nest fixed effect factors, if the first model
has random factors, the second one must be a random model. Likewise, if
the second model has fixed effect factors, the first one must be a fixed effects
model. Reasoning as to establish Proposition 7, we get

Proposition 8. Nesting models with COBS give models with COBS.
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3. Inference

3.1. Sufficient statistics. Let us assume that y ∼ N (µ,V) with µ ∈ Ω =
R(T) and V =

∑w
i=1 σ2

i Qi. Then, from the proof of Proposition 4,

µ =

k1
∑

h=1

Ahζh,

V =

k1+k2
∑

h=1

γiAhA
′
h

and, assuming V is non-singular, (see [4])

V−1 =

k1+k2
∑

h=1

γ−1
i AhA

′
h,

det(V) =

k1+k2
∏

h=1

γgi

i .

Thus

(y − µ)′V−1(y − µ) =

k1+k2
∑

h=1

γ−1
i (y − µ)′AhA

′
h(y − µ)

=

k1
∑

h=1

‖ηh − ζh‖
2

γh

+

k1+k2
∑

h=k1+1

Sh

γh

,

where Sh = ‖ηh‖
2 = ‖A′

hy‖
2, h = k1 + 1, . . . , k1 + k2. So, the observation

vector has the density

n(y) =
exp

(

−1
2

∑k1

h=1
‖ηh−ζh‖

2

γh
− 1

2

∑k1+k2

h=k1+1
Sh

γh

)

√

(2π)n
∏k1+k2

h=1 γgi

i

.

The next proposition summarizes these results.

Proposition 9. The ηh, h = 1, . . . , k1, and the Sh, h = k1+1, . . . , k1+k2,

constitute a complete and sufficient set of statistics.

Proof. Given the expression of the density, sufficiency follows from the fac-
torization theorem whilst completeness results from the fact that the normal
distribution belongs to the exponential family of densities and (see [6], p.
142) that the parameter space contains a product of non-degenerate inter-
vals. �
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By construction Sh/γh has the central chi-square distribution with gh

degrees of freedom, from where Sh ∼ γhχ2
(gh), h = k1 + 1, . . . , k1 + k2,

whilst ηh ∼ N (ζ, γhIgh
), h = 1, . . . , k1. Thus, according to the Blackwell-

Lehmann-Scheffé theorem (see [6]),

γ̃h =
Sh

gh

; h = k1 + 1, . . . , k1 + k2

ηh; h = 1, . . . , k1

will be Uniformly Best Linear Unbiased Estimators – UMVUE.

3.2. Variance components. Since Sh ∼ γhχ2
(gh) we can obtain two-sided

and one-sided confidence intervals for γh, h = k1 +1, . . . , k1 +k2. Let xg,p be
the p-quantile of a central chi-square distribution with g degrees of freedom.
We have for γh the 1 − q level confidence intervals

[

Sh

xgh,1− q

2

,
Sh

xgh,
q

2

]

,

[

0,
Sh

xgh,q

]

,

[

Sh

xgh,1−q
,+∞

[

,

which enable us to test, through duality,

H0(h) : γh = c,

H0(h) : γh > c,

H0(h) : γh < c,

respectively. These tests will have level q and the null hypothesis is rejected
when γ̃h is not contained in the corresponding interval.

Moreover, as

λh1h2
=

γh1

γh2

; h1, h2 = k1 + 1, . . . , k1 + k2; h1 6= h2,

it is easy to see that the statistic

Fh1h2
=

g2Sh1

g1Sh2

; h1, h2 = k1 + 1, . . . , k1 + k2; h1 6= h2,

will be the product by λh1,h2
of a central F distribution with g1 and g2

degrees of freedom, h1, h2 = k1 + 1, . . . , k1 + k2, h1 6= h2. Thus, with fr,s,p

the p-quantile of a central F distribution with r and s degrees of freedom,
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we have the (1 − q)-level confidence intervals for λh1,h2

[

Fh1h2

fgh1
,gh2

,1− q

2

,
Fh1h2

fgh1
,gh2

,
q

2

]

,

[

0,
Fh1h2

fgh1
,gh2

,q

]

,

[

Fh1h2

fgh1
,gh2

,1−q
,+∞

[

.

These intervals may be used to obtain, through duality, F tests for

H0(h1, h2) : λh1h2
= c,

H0(h1, h2) : λh1h2
> c,

H0(h1, h2) : λh1h2
< c,

respectively. These tests will have level q.

3.3. Estimable vectors. In models with COBS the LSE estimators of es-
timable vectors are BLUE. Further, if Ω = R(X), and the column vectors of
X are linearly independent,

µ = Xβ

and
β = X+µ,

whilst the estimable vectors are

φ = Gβ = GX+µ.

When normality holds, the estimator for the mean vector can be expressed
as

µ̃ =

k1
∑

h=1

Ahηh

and is, according to the Blackwell-Lehmann-Scheffé Theorem, the UMVUE
of µ, while

φ̃ = GX+µ̃

will be the UMVUE of φ.
When k1 = 1 we have

µ̃ = A1η1 ∼ N (µ, γ1P1)

φ̃ = GX+µ̃ ∼ N
(

φ, γ1GX+P1(X
+)′G′

)

.
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To shorten the writing, let

W = GX+P1(X
+)′G′.

Since k1 = 1, there is only one matrix Qi, i = 1, . . . , w, such that QiT =
0n×n, say Qi0 . Let us assume that Ph0

= Qi0U. Thus Sh0
∼ γ1χ

2
(g0)

, with

g0 = rank(Ph0
), independent from η1 and from φ. Hence

(φ − φ̃)′W+(φ − φ̃) ∼ γ1χ
2
(c),

with c = rank(W). Thus

F =
g0(φ − φ̃)′W+(φ − φ̃)

cSh0

will have central F distribution with c and g0 degrees of freedom. We then
obtain the (1 − q)-level confidence ellipsoid

{

x : (x− φ̃)′W+(x − φ̃) < cfc,g0,1−p
S

0

g0

}

for φ. Through duality we get a q-level F test for

H0(c) : φ = c

with c and g0 degrees of freedom.
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