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A conjecture of Bertino: from copulas to

graph theory

Gregory A. Fredricks

Abstract. In this article we prove a conjecture of Salvatore Bertino
which centers on a study of the function

F (C) =

∫ 1/2

0

VC([t, t + 1/2]2) dt, (1)

where C is a copula. This function, which arises in the study of the
index of dissimilarity between two random variables (see Bertino 1977),
is the integral of the C-volumes of the family of squares of sidelength
1/2 sliding from the lower left to the upper right along the ascending
diagonal of the unit square. The conjecture made in 1999 is that the
minimum value of F among the Bertino copulas is 1/8, which is the
value of F at the Fréchet lower bound. The conjecture is established
by showing that a certain family of shuffles of M is dense in the set of
Bertino copulas and then solving a problem in weighted graphs, which
is equivalent to the conjecture in the restricted case.

Introduction

We begin with some observations about the function F defined in (1) to
frame the conjecture of Bertino. Since 0 ≤ VC([t, t + 1/2]2) ≤ 1/2 for each
copula C and each t ∈ [0, 1/2], the values of F lie in the interval [0, 1/4]. In
fact, there exist copulas for which F takes on the values 0 and 1/4 – in the
latter case, the copula M(u, v) = min{u, v} works as VM ([t, t+1/2]2) ≡ 1/2,
and in the former case, the copula K with mass spread uniformly on the
union of the line segments between (0,1/2) and (1/2,1) and between (1/2,0)
and (1,1/2) works as VK([t, t + 1/2]2) ≡ 0. Of particular importance is the
copula W (u, v) = max{u + v − 1, 0} which spreads mass uniformly on the
descending diagonal of the unit square, so VW ([t, t + 1/2]2) is equal to 2t on
[0, 1/4] and 1 − 2t on [1/4, 1/2], and thus F (W ) = 1/8. M and W are both
Bertino copulas, while K is not. Therefore the maximum value of F among
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the Bertino copulas is 1/4 and the Bertino conjecture is that the minimum
value of F among the Bertino copulas is the value at W , i.e., 1/8.

Section 1 contains preliminary definitions and results on shuffles of M and
Bertino copulas. In Section 2 critical shuffles are defined and their denseness
in the space of Bertino copulas is established. In Section 3 critical graphs are
defined and the Bertino conjecture is re-formulated as a problem in graph
theory. The proof is given in Section 4.

1. Preliminaries

A copula is a function C : I2 → I = [0, 1] that satisfies the boundary
conditions C(t, 0) = C(0, t) = 0 and C(t, 1) = C(1, t) = t for all t ∈ I, and
the two-increasing condition

C(u1, v1) − C(u1, v2) − C(u2, v1) + C(u2, v2) ≥ 0

whenever u1 < u2 and v1 < v2 in I. The expression on the left is the C-
volume of [u1, u2] × [v1, v2] and is denoted by VC([u1, u2] × [v1, v2]). The
set of copulas is a metric space under the uniform metric. The support of
a copula C is the complement of the union of all open rectangles whose
closures have C-volume equal to zero. For an introduction to copulas and
more information on the topics in this section, see Nelsen 2006.

Proposition 1. F is a continuous function on the space of copulas.

Proof. Let ε > 0 be given. If C1 and C2 are copulas for which
∣

∣C1(u, v)−

C2(u, v)
∣

∣ ≤ ε whenever (u, v) ∈ I2 then
∣

∣VC1
([t, t + 1/2]2) − VC2

([t, t + 1/2]2)
∣

∣

≤ 4ε for all t ∈ [0, 1/2] and hence

|F (C1) − F (C2)| ≤

∫ 1/2

0

∣

∣VC1
([t, t + 1/2]2) − VC2

([t, t + 1/2]2)
∣

∣ dt ≤ 2ε.

�

For each copula C, the function δC : I → I defined by δC(t) = C(t, t) is
the diagonal section of C. A diagonal is any function δ : I → I for which
δ(0) = 0, δ(1) = 1, δ(t) ≤ t for all t ∈ I, and 0 ≤ δ(t2) − δ(t1) ≤ 2(t2 − t1)
whenever t1 < t2 in I. Every diagonal section of a copula is a diagonal and
conversely (see Fredricks and Nelsen 1997). One easily establishes

Proposition 2. For each diagonal δ, the function δ̂ : I → I defined by

δ̂(t) = t − δ(t) satisfies δ̂(0) = δ̂(1) = 0 and
∣

∣

∣
δ̂(t2) − δ̂(t1)

∣

∣

∣
≤ |t2 − t1| for all

t1, t2 ∈ I. Conversely, if a function δ̂ satisfies the preceding conditions, then
δ(t) = t − δ̂(t) is a diagonal.
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A shuffle of M is a copula whose mass is uniformly distributed on the image
of the ascending diagonal ∆ of I2 under the following action: partition I2 into
a finite number of closed vertical strips; permute the strips; and, perhaps,
flip some of the strips about their vertical axes of symmetry. Thus, a shuffle
of M is determined by a partition P of I, a permutation π on n = {1, 2, ..., n}
where n is the number of subintervals of P , and a function ω : n → {−1, 1}
where w(i) is –1 or 1 depending on whether or not the corresponding strip is
flipped. The resulting shuffle of M is denoted by M(P, π, ω). A shuffle of M
for which w ≡ −1 is called a flipped shuffle of M. For each positive integer
n, let Pn denote the partition of I consisting of all the multiples of 1/n. A
shuffle of M for which P = Pn is called a regular (or, more specifically, an
n-regular) shuffle of M.

Proposition 3. If C = M(Pn, π, ω) is a shuffle of M with n even, then
the function VC(t) ≡ VC([t, t + 1/2]2) is piecewise linear on [0, 1/2] with
constant slope on each subinterval of the partition Pn/2 of [0, 1/2]. If, in
addition, ω(i) = 1 whenever i is a fixed point of π or |π(i) − i| = n/2, then
the function VC has constant slope on each subinterval of the partition Qn

of [0, 1/2] consisting of all multiples of 1/n.

Proof. Note that VC is piecewise linear on [0, 1/2] for any shuffle C of
M , as shuffles of M have mass uniformly spread on line segments, so each
component (or portion of a component) of the support of C makes a linear
contribution to VC as it enters or leaves the family of squares [t, t + 1/2]2.
When C is an n-regular shuffle of M with n even, then VC is linear on
each subinterval of Pn/2 and the slopes of VC can only change at an odd
multiple of 1/2n if a fixed strip is flipped or if the support of C in one
strip intersects either of the line segments between (0,1/2) and (1/2,1/2) or
between (1/2,0) and (1,1/2) (which are part of the boundary of the hexagon

∪
t∈[0,1/2]

[t, t+1/2]2) at its midpoint. The conditions in the second part of this

proposition preclude either of these from happening. �

A function g : I → I is a Dyck path (or, more specifically, an n-Dyck path)
if g is piecewise linear on I with slope 1 or −1 on each subinterval of Pn and
g(0) = g(1) = 0. Note that each Dyck path g satisfies the conditions on δ̂ in
Proposition 2 and thus t − g(t) is a diagonal.

Proposition 4. If C = M(Pn, π, ω) is a shuffle of M for which π2 = e

(the identity permutation) and π has no fixed points, then δ̂C is an n-Dyck
path.

Proof. For each pair (i, j) with i < π(i) = j, δ̂C has slope 1 on the i-th
subinterval of Pn and slope −1 on the j-th subinterval of Pn. �

For each diagonal δ, the associated Bertino copula (see Bertino 1977 and
Fredricks and Nelsen 2002) is defined by
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Bδ(u, v) = min(u, v) − min
s∈[{u,v}]

δ̂(s),

where [{u, v}] is the closed interval from min(u, v) to max(u, v). Note that
the diagonal section of Bδ is δ. A Bertino set is a closed subset S of I2

which is symmetric with respect to the ascending diagonal ∆ of I2, consists
of the union of ∆ and a collection of graphs of continuous, strictly decreasing
functions, and satisfies the property:

if (u, v) ∈ S and u < v, then S ∩ (u, v) × (v, 1) is empty. (2)

Proposition 5. M(Pn, π, ω) is a Bertino copula if and only if π2 = e,
w(i) = −1 whenever i is not a fixed point of π, and

if i, j ∈ n and j is between i and π(i), (3)

then π(j) is also between i and π(i).

Proof. The support of M(Pn, π, ω) lies in a Bertino set if and only if each
moved strip interchanges places with one other strip and is flipped, and (3)
holds (as it is equivalent to (2) holding in this setting). The result follows
from the fact (see Fredricks and Nelsen 2002) that a copula is a Bertino
copula if and only if its support lies in a Bertino set. �

2. Critical shuffles

For each permutation π on n, let Mπ denote the flipped, n-regular shuffle
of M determined by π. Such a shuffle Mπ is critical (or, more specifically
n-critical) if π2 = e, π has no fixed points and (3) holds. Every critical
shuffle is a Bertino copula by Proposition 5. For example, M(1,6)(2,3)(4,5) is
a critical shuffle and its support is the union of the descending diagonals of
the (1,6), (6,1), (2,3), (3,2), (4,5), (5,4) squares in the standard partition
of I2 into closed squares of sidelength 1/6 – specifically, the (i, j) square is
[(i − 1)/6, i/6] × [(j − 1)/6, j/6]. Note that any permutation π on n giving
rise to a critical shuffle can be written as a product of transpositions (ak, bk),
where each element of n appears once among the aks and bks and each pair
(ak, bk) consists of an even and an odd integer.

Proposition 6. If C = Mπ is an an n-critical shuffle, then δ̂C is an
n-Dyck path. Conversely, if δ̂ is an n-Dyck path, then Bδ is an n-critical
shuffle.

Proof. The first part follows from Proposition 4. For the second part,
note that n is even and that there are n/2 subintervals of Pn on which δ̂ has

slope 1 and n/2 on which δ̂ has slope −1. If δ̂ has slope 1 on a subinterval
J of Pn, then the function h : I → I defined by

h(u) = max{s ≥ u : δ̂(t) ≥ δ̂(u) for all t ∈ [u, s]}



A CONJECTURE OF BERTINO: FROM COPULAS TO GRAPH THEORY 21

has slope −1 on J . It follows from Theorem 2.2 of Fredricks and Nelsen
2002 and δ̂(t) = VBδ

([0, t] × [t, 1]) that Bδ spreads mass 1/n uniformly on
the graph of h restricted to J . Hence Bδ spreads no mass on ∆J (the part of
∆ corresponding to J). Since Bδ is symmetric, it spreads mass 1/n uniformly
on the subset of h(J) × I which is the reflection about ∆ of the graph of h
restricted to J , and it spreads no mass on ∆h(J). Since h(J) is a subinterval

of Pn on which δ̂ has slope −1 and the mass distribution on h(J) × I has
already been determined, it is clear that Bδ is a flipped, n-regular shuffle of
M and that the associated permutation has no fixed points. �

It is interesting to note that the natural correspondence between critical
shuffles and Dyck paths in the preceding proposition leads to the conclusion
that the number of n-critical shuffles is a Catalan number (see Stanley 1999,
p. 221). The following theorem is reminiscent of the well-known fact (see
Mikusinski et al 1992) that the shuffles of M are dense in the space of copulas.

Theorem 7. The set of critical shuffles is dense in the space of Bertino
copulas.

Proof. Note that if δ1 and δ2 are diagonals that satisfy
∣

∣

∣
δ̂1(t) − δ̂2(t)

∣

∣

∣
≤ ε

for all t ∈ I, then

∣

∣

∣

∣

min
t∈J

δ̂1(t) − min
t∈J

δ̂2(t)

∣

∣

∣

∣

≤ ε for any subinterval J of I, and

hence

|Bδ1(u, v) − Bδ2(u, v)|

=

∣

∣

∣

∣

min
t∈[{u,v}]

δ̂1(t) − min
t∈[{u,v}]

δ̂2(t)

∣

∣

∣

∣

≤ ε for all (u, v) ∈ I2.

Let δ be a diagonal and let ε > 0 be given. Choose an even integer n for
which 1/n ≤ ε. Define δ̂# inductively to be the piecewise linear function on

I for which δ̂#(0) = 0 and, for each k = 0 , ... , n − 1, δ̂# has slope 1 or −1

on [k/n, (k + 1)/n] depending on whether δ̂((k + 1)/n) is ≥ or < δ̂#(k/n),

respectively. Then δ̂# is a Dyck path and
∣

∣

∣
δ̂(t) − δ̂#(t)

∣

∣

∣
≤ 1/n ≤ ε for all

t ∈ I. It follows from Proposition 6 and the preceding note that Bδ# is
critical shuffle Mπ and that

|Bδ(u, v) − Mπ(u, v)| ≤ 1/n ≤ ε for all (u, v) ∈ I2,

as desired. �

It is obvious from the preceding proof that the set of n-critical shuffles,
with n taking on all values in any subsequence of the even integers, is also
dense in the space of Bertino copulas. In the next section, we consider ns
which are multiples of 4.
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3. Critical graphs

A critical (or, more specifically, an n-critical) graph is a graph in the plane
with an even number of vertices at the points corresponding to n along a
horizontal line and n/2 nonintersecting edges, each edge connecting two ver-
tices and lying above the horizontal line (see Stanley 1999, p. 222). If G is a
critical graph and π is the permutation defined by π(a) = b if a and b are ver-
tices of the same edge of G, then π2 = e, π has no fixed points and (3) holds.
Conversely, a permutation with these properties determines a critical graph.
Thus, there is a natural one-to-one correspondence between critical graphs
and critical shuffles and we may represent either by a “critical” permutation.

The weight w(G) of a critical graph G is the sum of the weights of the
edges of G, where the weights of edges are assigned according to the following
rules (L for left, R for right, Z for zero and S for short span), with w((a, b))
denoting the weight of the edge connecting a and b, with a < b.

Rule L: w((a, b)) = a if a, b ∈ [1, n/2];
Rule R: w((a, b)) = n − b if a, b ∈ [n/2 + 1, n];
Rule Z: w((a, b)) = 0 if b − a > n/2; and
Rule S: w((a, b)) = n/2 − (b − a) otherwise.

As an example, the critical graph G = (1, 2)(3, 6)(4, 5)(7, 8) has respective
edge weights 1,1,3,0 and therefore w(G) = 5.

Suppose now that Mπ is an n-critical shuffle with n a multiple of 4. Note
that the conditions in the second part of Proposition 3 are vacuous as π has
no fixed points and the absolute value of the difference between an even and
an odd integer cannot be even. It follows that Vπ(t) = VMπ([t, t + 1/2]2) is
piecewise linear on [0, 1/2] and has constant slope on each subinterval of Qn.
(In fact, one can easily show that the only possible slopes are 0, 2 and −2,
as the components of the support of Mπ enter and exit the family of squares
[t, t + 1/2]2 in pairs.) Since the Trapezoidal Rule with ∆t = 1/n gives the
exact value of integral, we conclude that

F (Mπ) = [Vπ(0) + 2Vπ(1/n) + . . . + 2Vπ((n − 2)/2n) + Vπ(1/2)]/2n.

Note that Vπ(k/n) = 2η(π)k/n for k = 0, . . . , n/2, where η(π)k is the number
of pairs of interchanged strips that come from the original k + 1 through
k+n/2 strips. Note that η(π)0 = η(π)n/2, as if π has m pairs of interchanges
among the first half of strips, then it has n/2 − 2m pairs of interchanges
with one from the first half and one from the second half, and thus it must
also have m pairs of interchanges from the second half of strips. Therefore
Vπ(0) = Vπ(1/2) and we have

F (Mπ) = [Vπ(0) + Vπ(1/n) + . . . + Vπ((n − 2)/2n)]/n.
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Suppose now that (a, b) is a transposition in π. The contribution of (a, b) to
the bracketed sum in the preceding equation is 2`/n, where ` is the number
of intervals of the form [k+1, k+n/2] for k = 0, . . . , n/2−1 to which both a
and b belong. If we assume that a < b, then ` = a if a, b ∈ [1, n/2]; ` = n− b
if a, b ∈ [n/2 + 1, n]; ` = 0 if b − a > n/2; and ` = n/2 − (b − a) otherwise.
For example, if π = (1, 10)(2, 3)(4, 9)(5, 6)(7, 8)(11, 12), then the values of `
for the transpositions in π in the displayed order are 0,2,1,5,4,0. Since these
are the rules for computing edge weights of critical graphs we have

Theorem 8. If Mπ is an n-critical shuffle with n a multiple of 4 and G
is the corresponding critical graph, then F (Mπ) = 2w(G)/n2.

If n is not a multiple of 4, the preceding conclusion is invalid under the given
weighting system.

4. Proof of the conjecture

Assume throughout this section that n is a fixed multiple of 4. The
primary role in the proof of the conjecture is played by the critical graph R =
(1, n)(2, n − 1) ... (n/2, n/2 + 1), called the rainbow graph, as it corresponds
to the critical shuffle W . Note that the edge weights of R consist of n/4
zeros and the first n/4 odd integers, so w(R) = n2/16, as the sum of the
first k odd integers is k2. It follows from the continuity of F (Proposition
1), the denseness of the critical shuffles (Theorem 7 and the remark at the
end of section 2), the one-to-one correspondence between critical shuffles
and graphs, and the formula in Theorem 8 that the validity of the Bertino
conjecture is a consequence of

Theorem 9. If G is an n-critical graph, then w(G) ≥ w(R) = n2/16.

In the case n = 4, there are two critical graphs: (1,2)(3,4) and R =
(1, 4)(2, 3). The first has weight 1 + 0 = 1; the second has weight 0 + 1 = 1.
In the case n = 8, there are 14 critical graphs. They are given along with
their respective edge weights and their (total) weight in Table 1. Note that
R appears first and that Theorem 9 is valid in the cases n = 4 and 8. Hence-
forth assume that n is a multiple of 4 which is ≥ 8.

Note from Table 1 that the weight of a critical graph seems to be less as
more “nesting” occurs. This nesting feature is studied through the concept
of rainbows. For each pair (k, r) of positive integers with r ≤ n/2 and
k + 2r − 1 ≤ n, define the rainbow

R(k, r) = (k, k + 2r − 1)(k + 1, k + 2r − 2) ... (k + r − 1, k + r)

which consists of r edges with vertices all the integers in [k, k + 2r − 1].
The rainbow graph in this notation is R(1, n/2). For each triple (k, r, s) of
positive integers with r + s ≤ n/2 and k +2(r + s)−1 ≤ n, define the double
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G edge weights w(G)
(1,8)(2,7)(3,6)(4,5) 0,0,1,3 4
(1,6)(2,5)(3,4)(7,8) 0,1,3,0 4
(1,4)(2,3)(5,8)(6,7) 1,2,0,1 4
(1,2)(3,8)(4,7)(5,6) 1,0,1,2 4
(1,2)(3,8)(4,5)(6,7) 1,0,3,1 5
(1,2)(3,6)(4,5)(7,8) 1,1,3,0 5
(1,6)(2,3)(4,5)(7,8) 0,2,3,0 5
(1,8)(2,7)(3,4)(5,6) 0,0,3,2 5
(1,8)(2,5)(3,4)(6,7) 0,1,3,1 5
(1,8)(2,3)(4,7)(5,6) 0,2,1,2 5
(1,2)(3,4)(5,8)(6,7) 1,3,0,1 5
(1,4)(2,3)(5,6)(7,8) 1,2,2,0 5
(1,8)(2,3)(4,5)(6,7) 0,2,3,1 6
(1,2)(3,4)(5,6)(7,8) 1,3,2,0 6

Table 1. Weights of critical graphs when n = 8.

rainbow R(k, r, s) = R(k, r)R(k + 2r, s), which consists of r + s edges with
vertices all the integers in [k, k + 2(r + s) − 1].

For each graph G which does not have n as a vertex, let G′ denote the
graph in which every edge of G is shifted one unit to the right. The difference
in the weights of an edge E and its shift E′ depends only on the rules used
to compute the weights of those edges. The notation X → Y means that
Rule X applies to E, while Rule Y applies to E′.

Proposition 10. Let E = (a, b) with a+ b odd and b < n. Then w(E′)−
w(E) is 1 if L → L; 0 if L → S, S → S or Z → Z; and −1 if S → R or
R → R.

Proof. If L → S, then b = n/2 and w(E′) = a = w(E). If S → R, then
a = n/2 and w(E) = n − b, while w(E′) = n − b − 1. The other parts are
obvious. �

Proposition 11. For each t ∈ [1, n/2], w(R(1, t)) is the sum of the first
t entries in the list 1, 2, . . . , n/4, n/4 − 1, . . . , 1, 0. Consequently, the sum of
the whole list is n2/16 and the weight of R(1, n/2 − 1) is n2/16.

Proof. If t ∈ [1, n/4], then Rule L applies to all of the edges of R(1, t)
and thus w(R(1, t)) is the sum of the first t positive integers. Let f(k) =
w(R(1, n/4 + k)) − w(R(1, n/4 + k − 1)) for each k ∈ [1, n/4]. When k = 1,
note that R(1, n/4 + 1) = (1, n/2 + 2)R′(1, n/4) and hence w(R(1, n/4 +
1)) = w(R′(1, n/4)) as Rule Z applies to the edge (1, n/2 + 2). Therefore
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f(1) = n/4 − 1 by Proposition 10, as one edge is L → S and n/4 − 1 edges
are L → L. When k = 2, we have w(R(1, n/4 + 2)) = w(R′(1, n/4 + 1)) and
hence f(2) = n/4−2 by Proposition 10 as one edge is Z → Z, one is S → S,
one is L → S and n/4 − 2 are L → L. Since Rule R is never used and with
each successive k there is one fewer L → L edge, we see from Proposition
10 that f(k) = n/4 − k and the first part is established. The second part
follows from the fact that R(1, n/2) is the rainbow graph and that the last
entry in the list is 0. �

A similar analysis of rule application leads to a technique for computing
the weight of shifted rainbows. Consider the case n = 20. When t = 4 we
have the following rule applications, where, in each set of four, the edges
from left to right are in increasing order of the smallest vertex of each edge.

LLLL → LLLL → LLLL → SLLL → SSLL → SSSL → SSSS →

SSSR → SSRR → SRRR → RRRR → RRRR → RRRR

In the case t = 7, the rule applications using the ordering of the smallest
vertex of each edge are

ZZSSLLL → ZZSSSLL → ZZSSSSL → ZZSSSSS →

ZZSSSSR → ZZSSSRR → ZZSSRRR.

Any Zs that occur at the start (for w(R(1, t))) will continue at each successive
step and thus may be ignored. Using Proposition 10, we arrive at Table 2,
which specifies every value for w(R(1, t)) and each of its incremental shifts
in the case n = 20.

t w(R(1,t)) Shift list: t j

1 1 1,1,1,1,1,1,1,1,0,-1,-1,-1,-1,-1,-1,-1,-1,-1
2 3 2,2,2,2,2,2,1,0,-1,-2,-2,-2,-2,-2,-2,-2
3 6 3,3,3,3,2,1,0,-1,-2,-3,-3,-3,-3,-3
4 10 4,4,3,2,1,0,-1,-2,-3,-4,-4,-4
5 15 4,3,2,1,0,-1,-2,-3,-4,-5
6 19 3,2,1,0,-1,-2,-3,-4
7 22 2,1,0,-1,-2,-3
8 24 1,0,-1,-2
9 25 0,-1
10 25 NA

Table 2. The values of w(R(k, t)) when n = 20.

For example, w(R(3, 5)) = 15 + 4 + 3 = 22 as R(3, 5) is R(1, 5) shifted twice
to the right. It is easy to see that the obvious pattern in the case n = 20
works in general. Thus we have
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Proposition 12. Suppose 1 ≤ t < n/2. The shift list for t has n − 2t
entries as follows. If t < n/4, then the first half of the list from right to left
is 0, 1, . . . , t, then remaining t for a total of n/2− 2t t’s, and the second half
of the list from left to right is −1,−2, . . . ,−t, then remaining −t for a total
of n/2 − 2t + 1 −t’s. If n/4 ≤ t < n/2, then the first half of the list from
right to left starts with 0 and increases by 1 at each step, and the second half
of the list from left to right starts with −1 and decreases by 1 at each step.

We now consider the double rainbows. Since R(1, r, s) = R(1, r) R(2r +
1, s), we see that w(R(1, r, s)) = w(R(1, r)) + w(R(1, s)) + S(2r, s), where
S(m, t) is the sum of the first m entries in the shift list for t. Note from
Table 2 that in the case n = 20, w(R(1, 6, 2)) = 19 + 3 + 6 = 28. We can
also compute weights of double rainbows that don’t have 1 as a vertex. For
example, w(R(2, 6, 2)) = w(R(1, 6, 2)) + 61 + 213 = 28 + 3 − 2 = 29, as
R(2, 6, 2) is obtained from R(1, 6, 2) by shifting both R(1, 6) and R(13, 2)
one unit to the right.

We will use properties of shift lists to establish results about the com-
parative weights of rainbows and double rainbows. For each pair of positive
integers (r, s) with r + s ≤ n/2, let µ(r, s) = w(R(1, r, s)) − w(R(1, r + s)).

Proposition 13. Let (r,s) be a pair of positive integers with r + s ≤ n/2.

(a) If r + s = n/2, then µ(r, s) = 0 and, consequently, w(R(1, r, s)) =
w(R).

(b) If r + s ≤ n/4, then µ(r, s) = rs.
(c) If r ≥ n/4, s < n/4 and r + s < n/2, then µ(r, s) − µ(r + 1, s) = s.
(d) If r < n/4, s ≥ n/4 and r + s < n/2, then µ(r, s) − µ(r, s + 1) = r.
(e) If r < n/4 and n/4 − r < s < n/4, then µ(r, s) − µ(r, s − 1) =

n/2 − r − 2s + 1.

Consequently, µ is symmetric (and so w(R(1, r, s)) = w(R(1, s, r)) whenever
r + s ≤ n/2), and µ is nonnegative.

Proof. For (a), the vertices of R(1, r, s) are all of n and R(1, r + s) is
the rainbow graph. Suppose s ≥ n/4. Since the sum of the whole shift
list for s is −r, the weight of R(1, s) shifted all the way to the right is
w(R(1, s)) − r, which by Proposition 11 is n2/16 minus the sum of the first
r entries in the list of consecutive integers from 1 to n/4. Since the weight
of R(1, r) is the sum of the first r entries in the same list, we see that
w(R(1, r, s)) = n2/16 = w(R) and hence µ(r, s) = 0. If s ≤ n/4, then the
sum of the whole shift list for s is −s and the weight of R(1, s) shifted all
the way to the right is the sum of the first s entries in the list of consecutive
integers from 0 to n/4 − 1. Since the weight of R(1, r) is r2/16 minus the
sum of the first s entries in the same list, we again see that µ(r, s) = 0. For
(b), note that Rule L applies to all of the edges. Since w(R(1, r, s)) is the
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sum of the consecutive integers from 1 to r and those from 2r + 1 to 2r + s,
while w(R(1, r + s)) is the sum of the consecutive integers from 1 to r + s,
the result is clear. For (c), note that w(R(1, t + 1)) = w(R′(1, t)) whenever
t ≥ n/4 and therefore

µ(r, s) − µ(r + 1, s)

= w(R(1, r, s)) − w(R(1, r + s)) −
[

w(R(1, r + 1, s)

− w(R(1, r + s + 1))
]

= w(R(1, r)) + w(R(2r + 1, s)) − w(R(1, r + s))

−
[

w(R(1, r + 1)) + w(R(2r + 3, s)) − w(R(1, r + s + 1))
]

= w(R(1, r + s + 1)) − w(R(1, r + s)) −
[

w(R(1, r + 1))

− w(R(1, r)) + w(R(2r + 3, s)) − w(R(2r + 1, s))
]

= w(R′(1, r + s)) − w(R(1, r + s)) −
[

w(R′(1, r))

− w(R(1, r)) + w(R′′(2r + 1, s) − w(R(2r + 1, s))
]

= (r + s)1 − r1 − s2r+1 − s2r+2 = s,

as t1 = n/2 − 1 − t whenever t ≥ n/4 and sj = −s whenver j ≥ n/2. For
(d), we have

µ(r, s) − µ(r, s + 1) = w(R(1, r, s)) − w(R(1, r + s))

− [w(R(1, r, s + 1)) − w(R(1, r + s + 1))]

= w(R(1, r + s + 1)) − w(R(1, r + s))

− [w(R(2r + 1, s + 1)) − w(R(2r + 1, s))]

= w(R′(1, r + s)) − w(R(1, r + s))

−
[

w(R′(2r + 1, s)) − w(R(2r + 1, s))
]

= (r + s)1 − s2r+1.

The result follows from the consequence of Proposition 12 that the first shift
entry in a line is 1 more than the third entry in the preceding line (r = 1);
that the first shift entry in a line is 2 more than the fifth entry two lines
above (r = 2); etc. For (e), note that r 6= 1 and s 6= 1. Also 2r + 1 < n/2,
2r + 2s > n/2 and 2s − 1 < n/2, so w((2r + 1, 2r + 2s)) = n/2 − 2s + 1 by
Rule S. Now

µ(r, s) − µ(r, s − 1) = w(R(1, r, s)) − w(R(1, r + s))

− [w(R(1, r, s − 1)) − w(R(1, r + s − 1))]

= w(R(2r + 1, s)) − w(R(2r + 1, s − 1))

− [w(R(1, r + s)) − w(R(1, r + s − 1))]
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= w((2r + 1, 2r + 2s)) + w(R′(2r + 1, s − 1)) − w(R(2r + 1, s − 1))

−
[

w(R′(1, r + s − 1)) − w(R(1, r + s − 1))
]

= n/2 − 2s + 1 + (s − 1)2r+1 − (r + s − 1)1.

Fix r throughout the remainder of the proof. Let s̄ = n/4 − r + 1, which is
the minimal applicable s for part (d). Two consequences of Proposition 12
are

(s̄ − 1)2r+1 = (n/4 − r)2r+1 = n/4 − r − 1

and (r + s̄ − 1)1 = (n/4)1 = n/4 − 1 so (s̄ − 1)2r+1 − (r + s̄ − 1)1 = −r
and the result holds for s̄. Finally, the lists {(s − 1)2r+1} and {(r + s − 1)1}
decrease by 1 for applicable s’s, so the list {µ(r, s) − µ(r, s − 1)} decreases
by 2 for applicable s’s and (d) follows. Parts (a) and (b) give the values
of µ on the line r + s = n/2 and the triangle r + s ≤ n/4, respectively.
Parts (c) and (a) determine the values of µ from right to left on the triangle
n/4 ≤ r < n/2− 1, 1 ≤ s < n/2− 1. Parts (d) and (a) determine the values
of µ from top to bottom on the triangle 1 ≤ r < n/4, n/4 ≤ s < n/2 − r.
The remaining values of µ are given from bottom to top by parts (e) and
(b). It is not difficult to see that the pattern in Table 3 for the case n = 20
holds in general and hence that µ is nonnegative and symmetric. �

9 0
8 1 0
7 2 2 0
6 3 4 3 0
5 4 6 6 4 0
4 4 7 8 7 4 0
3 3 6 8 8 6 3 0
2 2 4 6 7 6 4 2 0
1 1 2 3 4 4 3 2 1 0

s/r 1 2 3 4 5 6 7 8 9

Table 3. Values of µ when n = 20.

Note that the entries in the subtriangle r + s ≤ n/4 are repeated in the two
subtriangles corresponding to parts (c) and (d) in the preceding proposition.
Also note that the entries in the remaining central subtriangle are larger
than the entries in the other three subtriangles.

We begin an examination of w(R(k, r, s))−w(R(k, r + s)) by returning to
the shift lists in the case n = 20. As an example, take r = 3 and s = 1. As
usual,

w(R(1, 3, 1)) = w(R(1, 3)) + w(R(1, 1)) + S(6, 1) = 6 + 1 + 6 = 13.
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Now w(R(2, 3, 1)) is the sum of w(R(1, 3, 1)), the seventh entry in the first
shift list and the first entry in the third shift list, i.e., w(R(2, 3, 1)) = 13 +
1+3 = 17. From the fourth shift list, note that w(R(2, 4)) = w(R(1, 4))+4.
Therefore

w(R(2, 3, 1)) − w(R(2, 4)) = w(R(1, 3, 1)) − w(R(1, 4)).

In fact, if one deletes the first six entries in the first shift list and adds that
new list to the first part of the third shift list, one obtains the fourth shift
list. Thus, w(R(k, 3, 1)) − w(R(k, 4)) is independent of k (in this case for
k ∈ [1, 12]). One can easily check in the case n = 20 that for any pair of
positive integers (r, s) with r + s < 10, the sum of the s list with the first
2r entries deleted and the first part of the r list is equal to the r + s list.
A consequence of Proposition 12 is that this property holds in shift lists for
any n. Thus, we have

Proposition 14. For each triple (k, r, s) of positive integers with r + s ≤
n/2 and k + 2(r + s) ≤ n + 1, w(R(k, r, s)) − w(R(k, r + s)) = µ(r, s) and,
consequently, w(R(k, r, s)) = w(R(k, s, r)).

It follows from Propositions 13 and 14 that replacing a double rainbow
with a rainbow in the same place will yield a new graph that weighs less than
the original graph, except in the case that a double rainbow is replaced by
the rainbow graph and then the graphs will weigh the same. More generally,
we may replace any number of adjacent rainbows with a rainbow in the same
place without increasing the weight of the original graph.

To prove Theorem 9, let G be any n-critical graph. If every edge of G
belongs to a rainbow, then G is either the rainbow graph or G consists of
adjacent rainbows, and hence w(G) ≥ w(R). Now suppose that G has at
least one edge that does not belong to a rainbow and let E be such an edge of
G of minimal distance between its vertices. Then all the edges of G “inside”
E form a system of adjacent rainbows and replacing them with a rainbow
in the same place yields a graph that weighs less than G and for which the
edge E is part of a rainbow. Continuing this process will eventually lead to
the rainbow graph R and thus w(G) ≥ w(R). This completes the proof of
Theorem 9 and establishes the validity of the Bertino conjecture.

Note that a consequence of Proposition 13(a) is that there are an infinite
number of critical shuffles Mπ for which F (Mπ) = 1/8. Each of these shuffles
is either W or has support which is the union of two line segments.
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