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On representations of stochastic processes by

Radon measures on D(0, 1)

Jolanta Grala-Michalak and Artur Michalak

Abstract. We provide a necessary and sufficient condition for a sto-
chastic process X = {Xt : t ∈ [0, 1]}, taking values in a real Banach
space B, for the existence of a probability Radon measure on the space
D((0, 1), B) such that the process {et : t ∈ [0, 1]} consisting of evaluation
functionals is distributed as X. The condition may be easy verified for
Levy processes.

Throughout the paper X = {Xt : t ∈ [0, 1]} is a stochastic process on a
probability space (Ω,Σ, P ) and B is a real Banach space with a norm ‖ · ‖B .
We denote by D((0, 1), B) the Banach space of all functions f : [0, 1] → B

that are right continuous at each point of [0, 1) with left-hand limit at each
point of (0, 1] equipped with the norm ‖f‖ = sup{‖f(t)‖B : t ∈ [0, 1]}. In
the paper we find a necessary and sufficient condition (~) for a stochastic
process X, taking values in a Banach space B, for the existence of a proba-
bility Radon measure on D((0, 1), B) such that the process {et : t ∈ [0, 1]}
consisting of evaluation functionals is distributed as X (i.e., has the same
finite dimensional probability laws). The process {et : t ∈ [0, 1]} is called the
process of evaluation functionals. By the Phillips-Grothendieck theorem this
is the same as to represent X by a probability Radon measure on the space
D((0, 1), B) equipped with the weak topology (see [10]). Our condition (~)
is quite technical but it may be easily verified for Levy processes.

For a given subset Q of [0, 1] we denote by DQ((0, 1), B) the subspace
of D((0, 1), B) consisting of all functions continuous at every point of the
set [0, 1] \ Q. If Q and R are subsets of [0, 1) such that Q ∩ R ⊂ {0}, then
DQ((0, 1), B)∩DR((0, 1), B) = C([0, 1], B), the Banach space of all B-valued
continuous functions on [0, 1]. The evaluation functional et : D((0, 1), B) →
B at a point t ∈ [0, 1] is given by et(f) = f(t). For every t ∈ [0, 1) we define
the function πt : [0, 1] → R by πt = χ[t,1] and π1 = χ{1}. Then for every
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0 6 t1 < t2 < · · · < tn 6 1 and y1, . . . , yn ∈ B we have
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∥
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It is easy to see that the closed linear hull of functions {πt : t ∈ Q} coincides
with DQ((0, 1), R) for every dense subset Q of [0, 1]. Consequently, the closed
linear hull of functions {yπt : t ∈ Q, y ∈ B} coincides with DQ((0, 1), B) for
every dense subset Q of [0, 1].

A function f : Ω → B is strongly measurable if there exists a sequence
(fn) of Σ-simple B-valued functions such that f = limn→∞ fn P -almost
everywhere (we briefly write P -a.e.). If B is finite dimensional, the no-
tion coincides with the notion of random variable. In the present paper we
consider only stochastic processes consisting of strongly measurable func-
tions. The space of all B-valued strongly measurable random variables on
(Ω,Σ, P ), equipped with the topology of convergence in probability, is de-
noted by L(B). It is a complete metric space with the metric given by

d(x, z) =
∫

Ω
‖x−z‖

1+‖x−z‖ dP for every x, z ∈ L(B). We say that X is contin-

uous in probability if the map t → Xt from [0, 1] into L(B) is continu-
ous. If the left- and right-hand limits of X in L(B) exist, we denote them
by Xt− = lims→t− Xs and Xt+ = lims→t+ Xs, respectively. We say that
T = (Tn) is a partition of [0, 1] if

1) Tn = {0 = t0,n < t1,n < · · · < tNn,n = 1} is a finite subset of [0, 1] for
every n ∈ N,

2) Tn ⊂ Tn+1 for every n ∈ N and
3) limn→∞ max16j6Nn tj,n − tj−1,n = 0.

For a partition T = (Tn) we put T̃ =
⋃∞

n=1 Tn. For every integer k > 2 the

partition ({ j
kn : j = 0, . . . , kn}) of [0, 1] is denoted by T k.

For a given stochastic process X = {Xt : t ∈ [0, 1]}, a partition T , ε > 0
and m > n we denote

AX,T,n,m,ε =
{

ω ∈ Ω : max
06j<Nn

max
kj<l<kj+1

‖(Xtl,m − Xtj,n
)(ω)‖B > ε

}

where tj,n = tkj ,m for j = 0, 1, . . . , Nn. We say that a stochastic process
{Xt : t ∈ [0, 1]} with values in B on a probability space (Ω,Σ, P ) has the
property (~) with respect to a partition T of [0, 1] if

a) Xt is a strongly measurable function for every t ∈ [0, 1],

b) limh→0+ Xt+h = Xt in probability for every t ∈ [0, 1) \ T̃ ,
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c) for every ε > 0

lim
N→∞

P
(

∞
⋃

n=N

∞
⋃

m=n+1

AX,T,n,m,ε

)

= 0.

The space D((0, 1), B), equipped with the weak topology, is denoted by
(D((0, 1), B), weak).

Theorem 1. If X = {Xt : t ∈ [0, 1]} is a stochastic process with values
in B with the property (~) with respect to a partition T of [0, 1], then there
exists a probability Radon measure on DT̃ ((0, 1), B) such that the process of
evaluation functionals {et : t ∈ [0, 1]} is distributed as X.

For every probability Radon measure on (D((0, 1), B), weak) there exists
a countable dense subset Q of [0, 1] such that the stochastic process {et : t ∈
[0, 1]} has the property (~) with respect to any partition T of [0, 1] such that

Q ⊂ T̃ .

Proof. For every finite subset R = {t0, t1, . . . , tn} of [0, 1] with 0 = t0 <

t1 < · · · < tn = 1 we define the map fR : Ω → D((0, 1), B) by

fR =

n
∑

j=1

(Xtj − Xtj−1)πtj .

It is clear that for every finite subset R the function fR is strongly measurable
(it is a linear combination of strongly measurable functions) and takes its
values in DR((0, 1), B). Moreover, e0(fR) = 0 and for every 1 6 k 6 n

etk(fR) =
n

∑

j=1

(Xtj − Xtj−1)πtj (tk) =
k

∑

j=1

(Xtj − Xtj−1) = Xtk − X0.

Let T = (Tn) = ({0 = t0,n < t1,n < · · · < tNn,n = 1}) be the partition.

For m > n we put tj,n = tkj ,m for j = 0, 1, . . . , Nn. Since
∑kj+1

i=kj+1(Xti,m −
Xti−1,m

) = Xtj+1,n
− Xtj,n

for every j = 1, . . . , Nn, we have

‖fTm(ω) − fTn(ω)‖ = max
06j<Nn

max
kj<l<kj+1

∥

∥

∥
Xtl,m(ω) − Xtj,n

(ω)
∥

∥

∥

B

for every ω ∈ Ω. It is clear that

AX,T,n,m,ε = {ω ∈ Ω : ‖fTm(ω) − fTn(ω)‖B > ε}.
By the property (~) the set DT = {ω ∈ Ω : fTn(ω) does not converges} =
⋃∞

k=1

⋂∞
N=1

⋃∞
n=N

⋃∞
m=n+1 AX,T,n,m, 1

k
has measure zero in (Ω,Σ, P ). We

define fT (ω) = limn→∞ fTn(ω) for every ω ∈ Ω \ DT . Since (fTn) is a
sequence of strongly measurable functions taking values in DT̃ ((0, 1), B),
the function fT is strongly measurable (by the Pettis measurability theorem,
see [10, Thm. 3-1-3]) and takes its values in DT̃ ((0, 1), B). It is clear that

et(fT (ω)) = Xt(ω) − X0(ω) for every t ∈ T̃ and for every ω ∈ Ω \ DT . For
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every t ∈ [0, 1) \ T̃ there exists a decreasing sequence (tn) ⊂ T̃ such that

t = limn→∞ tn. Since fT (ω) is a right continuous function on [0, 1] \ T̃ ,
et(fT (ω)) = limn→∞ etn(fT (ω)) = limn→∞ Xtn(ω) − X0(ω) for every ω ∈
Ω \ DT . Since (Xtn) converges to Xt in probability, et(fT ) = Xt − X0 P -
a.e.. Let FT = fT + X0π0. It is clear that FT is strongly measurable and
et(FT ) = Xt − X0 + X0 = Xt P -a.e. for every t ∈ [0, 1]. By the Pettis
measurability theorem there exist a closed separable subspace B0 of B and
a subset E of Ω with P (E) = 0 such that FT (ω) ∈ DT̃ ((0, 1), B0) for every
ω ∈ Ω \ (DT ∪ E). Let P1 be the Borel measure on the space DT̃ ((0, 1), B)

given by the formula P1(A) = P (F−1
T (A ∩ DT̃ ((0, 1), B0)) for every Borel

subset A of DT̃ ((0, 1), B). Since DT̃ ((0, 1), B0) is a separable Banach space
the measure P1 is Radon and the process {et : t ∈ [0, 1]} on the probability
space (DT̃ ((0, 1), B), the Borel σ-algebra of DT̃ ((0, 1), B), P1) is distributed
as X.

Due to the Phillips-Grothendieck theorem (see [10, Thm. 2-3-4]) for every
probability Radon measure P on (D((0, 1), B), weak) there exists a separable
subspace D0 of D((0, 1), B) such that P (A) = P (A ∩ D0). Therefore, there
exists a countable dense subset Q and a separable closed subspace B0 of B

such that D0 ⊂ DQ((0, 1), B0). Hence for every t ∈ [0, 1] the function et

takes P -almost all its values in B0. By the Pettis measurability theorem
et is strongly measurable for every t ∈ [0, 1]. Since DQ((0, 1), B0) consists
of right continuous functions on [0, 1) \ Q, the process E = {et : t ∈ [0, 1]}
satisfies the condition b) of the property (~). Let T = ({0 = t0,n < t1,n <

· · · < tNn,n = 1}) be a partition of [0, 1] such that Q ⊂ T̃ . Let Rn :
D((0, 1), B) → DQ((0, 1), B) be the projection given by Rn(f) = f(1)π1 +
∑Nn−1

i=0 f(ti,n)(πti+1,n
− πti,n). It is clear that ‖Rn‖ 6 1 for every n ∈ N and

limn→∞ Rn(yπt) = yπt for every y ∈ B0 and t ∈ T̃ . Therefore limn Rn(f) =
f for every f ∈ DQ((0, 1), B0). Consequently, (Rn(f)) is a Cauchy sequence
in D((0, 1), B) for every f ∈ DQ((0, 1), B0). Hence

P (

∞
⋃

j=1

∞
⋂

N=1

∞
⋃

n=N

∞
⋃

r=n+1

{f ∈ D((0, 1), B) : ‖Rr(f) − Rn(f)‖B > 1
j

}

) = 0.

Therefore

lim
N→∞

P
(

∞
⋃

n=N

∞
⋃

r=n+1

AE,T,n,r,ε

)

=

lim
N→∞

P
(

∞
⋃

n=N

∞
⋃

r=n+1

{f ∈D((0, 1), B) : max
06j<Nn

max
kj<l<kj+1

‖f(tl,r) − f(tj,n)‖B > ε}
)

= lim
N→∞

P
(

∞
⋃

n=N

∞
⋃

r=n+1

{f ∈ D((0, 1), B) : ‖Rr(f) − Rn(f)‖B > ε
}

) = 0
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for each ε > 0, where tj,n = tkj ,r for j = 0, 1, . . . , Nn, r > n. Thus we show
that the process {et : t ∈ [0, 1]} has the property (~) with respect to any

partition T of [0, 1] such that Q ⊂ T̃ . �

Corollary 2. Let X = {Xt : t ∈ [0, 1]} be a stochastic process with values
in B. There exists a probability Radon measure on C([0, 1], B) such that the
process {et : t ∈ [0, 1]} is distributed as X, if

a) X has the property (~) with respect to partitions T and R of [0, 1]
such that T ∩ R = {0, 1} and limh→0+ X1−h = X1 in probability,

or
b) X has the property (~) with respect to a partition T of [0, 1] and

Xt = limh→0+ Xt−h in probability for every t ∈ T̃ \ {0}.
Moreover, for every probability Radon measure on C([0, 1], B) the stochastic
process {et : t ∈ [0, 1]} is continuous in probability and has the property (~)
with respect to any partition T of [0, 1].

Proof. a) For the partitions T and R we get strongly measurable func-
tions FT and FR (see the proof above) taking P -almost all its values in
DT̃∪R̃((0, 1), B) such that et(FT ) = Xt = et(FR) P -a.e. for every t ∈ [0, 1].

Evaluation operators {et : t ∈ T̃ ∪ R̃} separate points of DT̃∪R̃((0, 1), B).
Therefore FT = FR P -a.e.. Hence FT takes P -almost all its values in
DR̃((0, 1), B)∩DT̃ ((0, 1), B). Since P̃ ∩R̃ = {0, 1} and limh→0+ FT (ω)(1−h)
exists for P -almost all ω ∈ Ω and limh→0+ X1−h = X1 in probability, the
function FT takes P -almost all its values in C([0, 1], B).

b) We show in the proof of Theorem 1 that

P
(

⋃

t∈[0,1]\T̃

{ω ∈ Ω : FT (ω) is discontinuous at t}
)

= 0.

Let t ∈ T̃ . Since limh→0+ FT (ω)(t − h) exists for P -almost all ω ∈ Ω and
limh→0+ Xt−h = Xt in probability, P

(

{ω ∈ Ω : lim suph→0+ |Xt−h(ω) −
Xt(ω)| 6= 0}

)

= 0. Therefore

P
(

⋃

t∈[0,1]

{ω ∈ Ω : FT (ω) is discontinuous at t}
)

= 0.

The second part is a straightforward consequence of the fact that
C([0, 1], B) is a subspace of the DQ((0, 1), B) for every dense subset Q of
[0, 1]. �

Corollary 3. Let X = {Xt : t ∈ [0, 1]} be a stochastic process consisting
of strongly measurable functions taking values in B. If X is continuous in
probability, then the following assertions are equivalent:

a) there exists a stochastic process Y = {Yt : t ∈ [0, 1]} on a probability
space (Ω1,Σ1, P1) consisting of strongly measurable functions taking
values in B distributed as X such that the function t → Yt(ω) from
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[0, 1] into B is continuous for P1-almost every ω ∈ Ω1 (= Y has
continuous realizations P1-a.e.),

b) there exists a probability Radon measure on C([0, 1], B) such that the
process {et : t ∈ [0, 1]} is distributed as X,

c) there exists a probability Radon measure on (D((0, 1), B), weak) such
that the process {et : t ∈ [0, 1]} is distributed as X,

d) there exists a partition T of [0, 1] such that X has the property (~)
with respect to T ,

e) X has the property (~) with respect to any partition T of [0, 1].

Proof. The implication b)⇒c) is obvious. The implication c)⇒d) is a part
of Theorem 1. The implication d)⇒e) follows from Corollary 2 b) and c).
The implication d)⇒b) follows from Corollary 2 a). The implication b)⇒a)
is obvious. We only need to show that a)⇒b).

Let Q be a countable dense subset of [0, 1]. By the Pettis measurability
theorem (see [10, Thm. 3-1-3]) for every t ∈ Q there exists a separable
subset Bt of B such that P (Y −1

t (Bt)) = 1. Let C be a closed linear hull of
the set

⋃

t∈Q Bt in B. It is clear that C is a separable subspace of B. For

P -almost all ω ∈ ⋂

t∈Q Y −1
t (Bt) the function t → Yt(ω) from [0, 1] into B is

continuous and {Yt(ω) : t ∈ Q} ⊂ C. It shows that this function takes its
values in C. Hence the map Ψ : Ω → C([0, 1], C) given by Ψ(ω)(t) = Yt(ω) is
strongly measurable. Therefore the measure P1 given by P1(A) = P (Ψ−1(A∩
C([0, 1], C)) for every Borel subset A of C([0, 1], B) is a probability Radon
measure on C([0, 1], B). �

A strongly measurable function f : Ω → B is Bochner integrable if
∫

Ω ‖f‖ dP < ∞. The reader may find more information about Bochner
integrable functions and martingales in Banach spaces in [3].

Corollary 4. Let X = {Xt : t ∈ [0, 1]} be a continuous in probability
martingale consisting of Bochner integrable functions with values in B. If

lim
n→∞

∫

Ω
max

16j6kn
‖X j+1

kn
− X j

kn
‖ dP = 0,

for some integer k > 2, then X has the property (~) with respect to any
partition T of [0, 1].

Proof. Let Mn,m,l : Ω → Bkn
be given by Mn,m,l = (X j

kn + l
km

−X j
kn

)k
n−1

j=0 .

We equip Bkn
with the norm ‖(y1, . . . , ykn)‖ = max16j6kn ‖yj‖B . Then

{‖Mn,m,l‖ : l = 1, . . . , km−n} is a submartingale. By the Doob inequality
(see [9, p. 493]) for every ε > 0 and m > n we get

P (AX,T k,n,m,ε) 6
1

ε

∫

Ω
‖Mn,m,km−n‖dP =

1

ε

∫

Ω
max

16j6kn
‖X j+1

kn
− X j

kn
‖ dP.



ON REPRESENTATIONS OF STOCHASTIC PROCESSES 37

This shows that P (
⋃∞

m=n+1 AX,T k,n,m,ε) 6 1
ε

∫

Ω max16j6kn ‖X j+1
kn

−X j
kn
‖ dP .

Let (ln) be a sequence of integers such that
∑∞

n=1

∫

Ω max16j6kln ‖X j+1

kln

−
X j

kln

‖ dP < ∞. Then X has the property (~) with respect to the partition

T = ({ j

kln
: j = 0, . . . , kln}) of [0, 1]. An appeal to Corollary 3 completes

the proof. �

The proof of our next result is based on the following modification of the
vector valued Ottaviani inequality.

Proposition 5. If {Xj,k : 1 6 j 6 n, 1 6 k 6 Nj} are independent
strongly measurable random variables with values in B, then for every ε > 0

P ({ max
16j6n

max
16l6Nj

∥

∥

∥

l
∑

k=1

Xj,k

∥

∥

∥
> 2ε})(1 − max

16j6n
max

16l<Nj

{P (
∥

∥

Nj
∑

k=l+1

Xj,k

∥

∥ > ε)})

6 2P ( max
16j6n

∥

∥

∥

Nj
∑

k=1

Xj,k

∥

∥

∥
> ε).

Proof. For n = 1 the inequality follows from the Ottaviani inequality

(see [11, Thm. 11.3.1]). Let Aj = {max16l6Nj
‖∑l

k=1 Xj,k‖ > 2ε} and

Bj = {‖∑Nj

k=1 Xj,k‖ > ε}. Let f : [0, 1]2 → [0, 1] be given by f(x, y) =
x + y − xy. The function f is increasing in each variable separately and
strictly increasing in each variable separately on [0, 1)2. Suppose that c−1 =

1 − max16j6n max16l6Nj
{P (

∥

∥

∑Nj

k=l+1 Xj,k

∥

∥ > ε)} 6= 0. Otherwise there is
nothing to prove. We need to show that P (A1 ∪ · · · ∪ An) 6 2cP (B1 ∪ · · · ∪
Bn). By the Ottaviani inequality P (Aj) 6 cP (Bj) for every j = 1, . . . , n.
Moreover, functions χA1 , . . . , χAn as well as χB1 , . . . , χBn are stochastically
independent.

If c = 1, then

P (A1 ∪ A2) = f(P (A1), P (A2)) 6 f(P (B1), P (B2)) = P (B1 ∪ B2).

It is clear that for n > 2 functions χA1∪A2 , χA3 , . . . , χAn as well as χB1∪B2 , χB3 ,

. . . , χBn are stochastically independent. We repeat n−1 times the procedure
above to get the inequality P (A1 ∪ · · · ∪ An) 6 P (B1 ∪ · · · ∪ Bn).

Assume now that c > 1. Without loss of generality we may assume that
there exists 1 6 k 6 n such that P (Bj) < P (Aj) for every j 6 k and P (Aj) 6

P (Bj) for every j > k. Suppose that k > 2. Let 0 6 dj =
cP (Bj)−P (Aj)

(c−1)P (Aj)
< 1

and ej =
P (Bj)−P (Aj)

P (Aj)
< 0 for j = 1, 2. Applying the fact 0 6 P (Aj)dj < 1
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for j = 1, 2 we get

cP (B1 ∪ B2) − P (A1 ∪ A2)

= c(P (B1) + P (B2) − P (B1)P (B2)) − P (A1) − P (A2) + P (A1)P (A2)

= (c − 1)f(P (A1)d1, P (A2)d2) +
c

c − 1
P (A1)P (A2)e1e2 > 0.

It is clear that for k > 2 functions χA1∪A2, χA3 , . . . , χAk
as well as χB1∪B2 , χB3 ,

. . . , χBk
are stochastically independent. Moreover,

P (A1 ∪ A2) = f(P (A1), P (A2)) > f(P (B1), P (B2)) = P (B1 ∪ B2).

We repeat k − 1 times the procedure above to get the inequality P (A1 ∪
· · · ∪Ak) 6 cP (B1 ∪ · · · ∪Bk). It follows from the considerations above that
P (Ak+1∪· · ·∪An) 6 P (Bk+1∪· · ·∪Bn). After gathering together the above
inequalities we get

P (A1 ∪ · · · ∪ An) 6 2max{P (A1 ∪ · · · ∪ Ak), P (Ak+1 ∪ · · · ∪ An)}
6 2max{cP (B1 ∪ · · · ∪ Bk), P (Bk+1 ∪ · · · ∪ Bn)} 6 2cP (B1 ∪ · · · ∪ Bn).

�

Let τt+ = χ[0,t] and τt− = χ[0,t) for t ∈ (0, 1] and τ0 = χ{0}. We denote by
L the set {τt± : t ∈ (0, 1]} ∪ {τ0} equipped with the pointwise convergence
topology. The space L is a Hausdorff, compact, sequentially compact, first
countable, nonmetrizable space. It is a modification of the two arrows space.
The reader may find more information about topological properties of this
space in [4, p. 270] and [6]. If the left- and right-hand limits of X in L(B)
exist and Xt = Xt+ P -a.e. for every t ∈ [0, 1], then the map τs → Xs from
L to L(B) is continuous. Consequently, the set {t ∈ [0, 1] : d(Xt,Xt−) > ε}
is finite for every ε > 0. Therefore {t ∈ [0, 1] : d(Xt,Xt−) > 0} is countable.
For a given stochastic process X = {Xt : t ∈ [0, 1]}, a partition T , ε > 0 and
n we put

EX,T,n,ε =
{

ω ∈ Ω : max
06j<Nn

‖(Xtj+1,n
− Xtj,n

)(ω)‖B > ε
}

and

E−
X,P,n,ε =

{

ω ∈ Ω : max
06j<Nn

‖(Xtj+1,n− − Xtj,n
)(ω)‖B > ε

}

.

A process X = {Xt : t ∈ [0, 1]} has independent increaments if for every
0 < t1 < · · · < tn 6 1 the random variables Xt1 ,Xt2 − Xt1 , . . . ,Xtn − Xtn−1

are independent.

Corollary 6. Let X = {Xt : t ∈ [0, 1]} be a stochastic process consisting
of strongly measurable functions with values in B with independent increa-
ments.

a) If X is continuous in probability, then X has has the property (~) with
respect to a partition T of [0, 1] if and only if

lim
n→∞

P (EX,T 2,n,ε) = 0
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for every ε > 0.
b) Suppose that X has left- and right-hand limits in L(B) for every t ∈

[0, 1] and Xt = Xt+ P -a.e. for every t ∈ [0, 1). If T is a partition of [0, 1]

such that {t : d(Xt,Xt−) > 0} ⊂ T̃ , then X has the property (~) with respect
to T if and only if

lim
n→∞

P (E−
X,T,n,ε) = 0

for every ε > 0.

Proof. a) Suppose that X has the property (~) with respect to a partition
T of [0, 1]. According to Corollary 3 the process X has the property (~)
with respect to T 2. Let n ∈ N and ε > 0. Applying the facts that for

every j = 1, . . . , 2n, there exists an increasing sequence (sj,k) ⊂ T̃ 2 such that

limk→∞ sj,k = j
2n and limk→∞ Xsj,k

= X j
2n

P -a.e. we get

P (EX,T 2,n,ε) 6 P (

∞
⋃

m=n+1

AX,T 2,n,m, ε
2
).

Therefore limn→∞ P (EX,T 2,n,ε) = 0 for every ε > 0.
Assume now that limn→∞ P (EX,T 2,n,δ) = 0 for every δ > 0. Let (lk) be

an increasing sequence of integers such that
∑∞

k=1 P (EX,T 2,lk, 1
k
) < ∞. Let

T = ({ j

2lk
: j = 0, . . . , 2lk}). Let ε > 0. Since the topology of convergence in

probability is metric, there exists δ > 0 such that P (‖Xt−Xs‖ > ε
2 )) 6 1

2 for
every |t− s| < δ. Applying Proposition 5 for {Yj,k = X j

2ln
+ k

2lm

−X j

2ln
+ k−1

2lm

:

0 6 j 6 2ln − 1, 1 6 k 6 2lm−ln} we get P (AX,T,n,m,ε) 6 4P (EX,T 2,ln, ε
2
) for

every n such that 2−ln < δ. Since AX,T,n,m,ε ⊂ AX,T,n,r,ε for every r > m,

P (
⋃∞

m=n+1 AX,T,n,m,ε) 6 4P (EX,T 2,ln, ε
2
) for every n such that 2−ln < δ.

Since EX,T 2,ln, ε
2
⊂ EX,T 2,ln, 1

n
for almost all n, X has the property (~) with

respect to T .
The proof of part b) is similar. �

A stochastic process X = {Xt : t ∈ [0, 1]} is said to be a Levy process if
it has the following properties:

1) X0 = 0,
2) X has independent increaments,
3) for every 0 6 s < t 6 1 the random variable Xt − Xs has the same

distribution as Xt−s.

For a real Levy process X = {Xt : t ∈ [0, 1]} the random variable X1 has an
infinite divisible distribution. The reader may find more information about
this family of distributions in [5].
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A stochastic process N(c, Y ) = {Xt : t ∈ [0, 1]} is said to be a compound
Poisson process if it can be represented for t > 0 by

Xt =

Nt
∑

k=0

Yk

where {Nt : t ∈ [0, 1]} is a Poisson process with the mean rate c > 0,
Y0 = 0 and (Yn) is a sequence of independent random variables identically
distributed as the random variable Y . Moreover, the process {Nt : t ∈ [0, 1]}
and the sequence (Yn) are assumed to be independent. If Y = 1, then
N(c, 1) = {Nt : t ∈ [0, 1]} is Poisson process with the mean rate c. For any
random variable Y and c > 0 the process N(c, Y ) is a Levy process. The
characteristic function of N(c, Y )t is given by

ϕN(c,Y )t
(u) = ect(ϕY (u)−1).

The reader may find more information about compound Poisson processes
in [7].

Theorem 7. A Levy process X = {Xt : t ∈ [0, 1]} taking values in R
n

has the property (~) with respect to a partition T of [0, 1] if and only if it is
Gaussian.

Proof. Suppose first that n = 1. By the Levy-Khintchine representation
theorem the characteristic function of X1 has the following form

ϕX1(u) = e
iua+

∫

R
(eiux−1− iux

1+x2 ) 1+x2

x2 dµ

for some constant a ∈ R and a positive Borel measure µ on R where the

function under the integral sign is equal to −u2

2 at the point x = 0 (see [5,
Thm. 5.5.1], [8, Thm. 1.16]). If µ = 0, then the above theorem is obvious. We
assume that µ(R) > 0. Let Y1 be a random variable with the characteristic
function

ϕY1(u) = e
∫

R
(eiux−1) dµ.

It is clear that there exists a random variable V such that Y1 = N(µ(R), V )1.
According to the Kolmogorov representation theorem (see [5, Thm. 5.5.3],
[1, Thm. 28.1]) there exists a random variable Z1 with the characteristic
function

ϕZ1(u) = e
iua+

∫

R

eiux−1−iux

x2 dµ
.

Then Y1 and Z1 are infinite divisible. Let Y = {Yt : t ∈ [0, 1]} and Z = {Zt :
t ∈ [0, 1]} be the Levy processes generated by Y1 and Z1, respectively. We
assume that Y and Z are independent. Then the process X̄ = {Xt + Yt :
t ∈ [0, 1]} is distributed as X. It is easy to check that {Yt : t ∈ [0, 1]} is the
Poisson compound process N(µ(R), V ). Suppose that V 6= 0. Let (Vn) be
a sequence of independent random variables distributed as V on (Ω,Σ, P ).

Let A0,η = Ω and Ak,η = {ω ∈ Ω : |∑k
j=1 Vj | < η}. Let ε > 0 be such
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that P (A1,3ε) < 1. It is easy to check that limk→∞ 2k(e
µ(R)

2k − 1 + µ(R)
2k (1 −

P (A1,3ε)) = µ(R)(P (A1,3ε)). Hence

lim sup
k→∞

P (|Y 1

2k
| < 3ε)2

k

= lim sup
k→∞

(

e
−

µ(R)

2k

∞
∑

j=0

µ(R)jP (Aj,3ε)

2jkj!

)2k

6 e−µ(R) lim
k→∞

(

1 +
µ(R)

2k
P (A1,3ε) +

∞
∑

j=2

µ(R)j

2jkj!

)2k

= e−µ(R) lim
k→∞

(

e
µ(R)

2k − µ(R)

2k
(1 − P (A1,3ε)

)2k

= e−µ(R)(1−P (A1,3ε)) < 1.

For t ∈ [0, 1] such that e−µ(R)t > 1
2 we have

P (|Yt + Zt| < ε) 6 P (
⋃

k∈Z

{|Yt − kε| < 2ε, kε 6 Zt < (k + 1)ε}

=
∑

k∈Z

P ({|Yt − kε| < 2ε})P ({kε 6 Zt < (k + 1)ε})

6 sup
k∈Z

P ({|Yt − kε| < 2ε})
∑

k∈Z

P ({kε 6 Zt < (k + 1)ε})

6 P ({|Yt| < 3ε}).
Hence

lim sup
k→∞

(

1−P (EX,T 2,k,ε)
)

= lim sup
k→∞

P (|Y 1

2k
+ Z 1

2k
| < ε)2

k

6 lim sup
k→∞

P ({|Y 1

2k
| < 3ε})2k

6 e−µ(R)(1−P (A1,3ε)) < 1.

The process X is continuous in probability and does not have the property
(~) with respect to T 2 if V 6= 0. According to Corollary 6 the process X does
not have the property (~) with respect to any partition T of [0, 1] if V 6= 0.
If V = 0, then µ = µ(R)δ0, where δ0 is the Dirac measure concentrated at
0. Then the random variable X1 has the following characteristic function

ϕX1(u) = eiua+ cu2

2 .

Suppose now that n > 1. Let pj : R
n → R be the projection given by

pj((x1, . . . , xn)) = xj for each j = 1, . . . , n. For every a1, . . . , an ∈ R the
process {∑n

j=1 ajpj ◦ Xt : t ∈ [0, 1]} is a Levy process. It is clear that if

X has the property (~) with respect a partition to T of [0, 1], then also
the process {∑n

j=1 ajpj ◦ Xt : t ∈ [0, 1]} has the property (~) with respect

to T . According to the first part of the proof if X has the property (~)
with respect to any partition T of [0, 1] then for every t ∈ [0, 1] and for
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every a1, . . . , an ∈ R the random variable
∑n

j=1 ajpj ◦ Xt has a Gaussian

distribution. Therefore X is Gaussian (see [9, p. 301]).
It is a well-known fact that if X is a Gaussian Levy process, then there

exists a stochastic process Y = {Yt : t ∈ [0, 1]} on a probability space
(Ω1,Σ1, P1) distributed as X with continuous realizations P1-a.e. (see [2]).
But the fact we also get by applying Corollary 6. Since X is Gaussian, there
exist c ∈ R

n and a selfadjoint linear operator A : R
n → R

n such that the
joint characteristic function of Xt is given by

ϕXt(u) = eit〈c,u〉−
t〈A(u),A(u)〉

2

for every u ∈ R
n. Moreover, for every t ∈ [0, 1] the random variable Xt has

the same distribution as the random variable ω → tc+
√

tA(U1(ω), . . . , Un(ω))
where U1, . . . , Un are independent normal N (0, 1) random variables. Suppose
that A 6= 0. Otherwise there is nothing to prove. Let Fη = {x ∈ R

n : ‖x‖ <

η}. Let ε > 0. Then

1 > lim
k→∞

1 − P (EX,T 2,k,ε) = lim
k→∞

P (‖X 1

2k
‖ < ε)2

k

= lim
k→∞

(

P ({ω ∈ Ω : c2−k + 2−
k
2 A(U1(ω), . . . , Un(ω)) ∈ Fε})

)2k

= lim
k→∞

(

(2π)−
n
2

∫

A−1(2
k
2 Fε−2−

k
2 c)

e−
〈x,x〉

2 dλn(x)
)2k

> lim
k→∞

(

(2π)−
n
2

∫

A−1(F
2

k
2 ε−2

− k
2 ‖c‖

)
e−

〈x,x〉
2 dλn(x)

)2k

> lim
k→∞

(

(2π)−
n
2

∫

F
‖A‖−1(2

k
2 ε−2

− k
2 ‖c‖)

e−
〈x,x〉

2 dλn(x)
)2k

> lim
k→∞

( 1

2π

∫
2

k
2 ε−2

− k
2 ‖c‖√

n‖A‖

− 2
k
2 ε−2

− k
2 ‖c‖√

n‖A‖

∫
2

k
2 ε−2

− k
2 ‖c‖√

n‖A‖

− 2
k
2 ε−2

− k
2 ‖c‖√

n‖A‖

e−
x2+y2

2 dxdy
)n2k−1

> lim
k→∞

( 1

2π

∫ π

−π

∫
2

k
2 ε−2

− k
2 ‖c‖√

n‖A‖

0
e−

r2

2 r drdt
)n2k−1

= lim
k→∞

(

1 − e
−

(2
k
2 ε−2

− k
2 ‖c‖)2

2n‖A‖2
)n2k−1

= 1,

where λn is the Lebesgue measure on R
n �

Corollary 8. If a Levy process X = {Xt : t ∈ [0, 1]} with values in a
Banach space B has continuous realizations P -a.e., then for any continuous
linear operator A : B → R

n the process {A ◦ Xt : t ∈ [0, 1]} is Gaussian.
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