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On representations of stochastic processes by
Radon measures on D(0,1)

JOLANTA GRALA-MICHALAK AND ARTUR MICHALAK

ABSTRACT. We provide a necessary and sufficient condition for a sto-
chastic process X = {X; : ¢t € [0,1]}, taking values in a real Banach
space B, for the existence of a probability Radon measure on the space
D((0,1), B) such that the process {e; : t € [0, 1]} consisting of evaluation
functionals is distributed as X. The condition may be easy verified for
Levy processes.

Throughout the paper X = {X; : t € [0,1]} is a stochastic process on a
probability space (€2, X, P) and B is a real Banach space with a norm |- || 5.
We denote by D((0,1), B) the Banach space of all functions f : [0,1] — B
that are right continuous at each point of [0,1) with left-hand limit at each
point of (0,1] equipped with the norm ||f|| = sup{||f(¢)||z : t € [0,1]}. In
the paper we find a necessary and sufficient condition (®) for a stochastic
process X, taking values in a Banach space B, for the existence of a proba-
bility Radon measure on D((0,1), B) such that the process {e; : t € [0,1]}
consisting of evaluation functionals is distributed as X (i.e., has the same
finite dimensional probability laws). The process {e; : t € [0, 1]} is called the
process of evaluation functionals. By the Phillips-Grothendieck theorem this
is the same as to represent X by a probability Radon measure on the space
D((0,1), B) equipped with the weak topology (see [10]). Our condition (®)
is quite technical but it may be easily verified for Levy processes.

For a given subset @ of [0,1] we denote by Dg((0,1), B) the subspace
of D((0,1), B) consisting of all functions continuous at every point of the
set [0,1] \ Q. If @ and R are subsets of [0,1) such that @ N R C {0}, then
Dg((0,1), B)NDg((0,1), B) = C([0,1], B), the Banach space of all B-valued
continuous functions on [0,1]. The evaluation functional e; : D((0,1), B) —
B at a point ¢ € [0, 1] is given by e;(f) = f(t). For every t € [0,1) we define
the function 7; : [0,1] — R by m = xp,1) and m1 = xq13- Then for every
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It is easy to see that the closed linear hull of functions {m; : ¢t € Q} coincides
with Dg((0,1),R) for every dense subset @ of [0, 1]. Consequently, the closed
linear hull of functions {ym; : t € Q,y € B} coincides with Dg((0,1), B) for
every dense subset @ of [0, 1].

A function f : Q — B is strongly measurable if there exists a sequence
(fn) of X-simple B-valued functions such that f = lim, . f;, P-almost
everywhere (we briefly write P-a.e.). If B is finite dimensional, the no-
tion coincides with the notion of random variable. In the present paper we
consider only stochastic processes consisting of strongly measurable func-
tions. The space of all B-valued strongly measurable random variables on
(Q,3, P), equipped with the topology of convergence in probability, is de-
noted by L(B). It is a complete metric space with the metric given by

d(z,z) = fQ % dP for every z,z € L(B). We say that X is contin-
uous in probability if the map ¢ — X; from [0,1] into L(B) is continu-
ous. If the left- and right-hand limits of X in L(B) exist, we denote them
by X;— = limg_;— X and X1 = limg_4 X, respectively. We say that
T = (T),) is a partition of [0, 1] if

1) T, ={0=ton < tin <--- <tn,n =1} is a finite subset of [0, 1] for

every n € N|

2) T,, C T4 for every n € N and

3) limn_)oo maxi <N, tjm — tj—l,n = 0.
For a partition 7' = (T},) we put T = U, T,,. For every integer k > 2 the
partition ({& :j =0,...,k"}) of [0,1] is denoted by T*.

For a given stochastic process X = {X; : t € [0,1]}, a partition T, £ > 0
and m > n we denote
= : — . >

Axrame={w€Q: max  max (X, — Xy, )@)s > e}
where ¢, = tg;m for j = 0,1,...,N,. We say that a stochastic process
{X; : t € [0,1]} with values in B on a probability space (£, %, P) has the
property (®) with respect to a partition T of [0,1] if

a) Xy is a strongly measurable function for every ¢ € [0, 1],~

b) limj,_,o+ X¢+n = X¢ in probability for every t € [0,1) \ T,
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c) for every € >0

lim P< G G Ax T ) = 0.

N—oo
n=N m=n+1

The space D((0,1), B), equipped with the weak topology, is denoted by
(D((0,1), B), weak).

Theorem 1. If X = {X; : t € [0,1]} is a stochastic process with values
in B with the property (®) with respect to a partition T of [0,1], then there
exists a probability Radon measure on D7((0,1), B) such that the process of
evaluation functionals {e; : t € [0,1]} is distributed as X.

For every probability Radon measure on (D((0,1), B), weak) there exists
a countable dense subset QQ of [0,1] such that the stochastic process {e; : t €
[0,1]} has the property (®) with respect to any partition T of [0,1] such that
QcCT.

Proof. For every finite subset R = {tg,t1,...,t,} of [0,1] with 0 = ¢y <
t1 < -+ <ty =1 we define the map fr:Q — D((0,1), B) by
n
fr= Z(th = Xy )me;
j=1
It is clear that for every finite subset R the function fg is strongly measurable

(it is a linear combination of strongly measurable functions) and takes its
values in Dg((0,1), B). Moreover, ey(fr) = 0 and for every 1 < k < n

n k
€ty (fR) = Z(th - thﬂ)ﬂtj (tk) = Z(th - thﬂ) = th — Xo.
j=1 j=1
Let T = (T,) = ({0 = to, < tipn < -+ < tn,n = 1}) be the partition.

For m > n we put tj, = ty,m for j = 0,1,..., N,. Since Zizz;-i-l(Xti,m -

Xt 1) = Xtj1, — Xy, forevery j=1,..., Ny, we have
w) — w)|| = max max || X w—X,wH
(@) = Fr)l = o max [Xi,, () = X, )]

for every w € Q. It is clear that

Axrnme ={w € Q1 ||fr, (W) = fr,(W)]B = €}.
By the property (®) the set Dy = {w € Q: fr, (w) does not converges} =
Urei NN =1 Unen Un—na AX 1nm,2 has measure zero in (2,3,P). We
define fr(w) = lim,— f7, (w) for every w € Q\ Dp. Since (fr,) is a
sequence of strongly measurable functions taking values in D4((0,1), B),
the function fr is strongly measurable (by the Pettis measurability theorem,
see [10, Thm. 3-1-3]) and takes its values in D7((0,1),B). It is clear that
et(fr(w)) = Xi(w) — Xo(w) for every t € T and for every w € Q\ Dp. For
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every t € [0,1) \ T there exists a decreasing sequence (t,) C T such that
t = lim, oo t,. Since fr(w) is a right continuous function on [0,1] \ T,
e(fr(w)) = im0 €, (fr(w)) = limy,—00 X4, (w) — Xo(w) for every w €
Q\ Dr. Since (Xy,) converges to X; in probability, e;(fr) = Xy — Xo P-
a.e.. Let Fpr = fr + Xomg. It is clear that Fr is strongly measurable and
er(Fr) = Xy — Xo + X9 = X; P-ae. for every t € [0,1]. By the Pettis
measurability theorem there exist a closed separable subspace By of B and
a subset E of Q with P(E) = 0 such that Fr(w) € D;((0,1), By) for every
we Q\ (DrUE). Let P; be the Borel measure on the space Dz((0,1), B)
given by the formula P;(A) = P(FT_l(A N D4((0,1), By)) for every Borel
subset A of D((0,1), B). Since D4((0,1), By) is a separable Banach space
the measure P is Radon and the process {e; : t € [0,1]} on the probability
space (D#((0,1), B), the Borel o-algebra of D((0,1),B), Py) is distributed
as X.

Due to the Phillips-Grothendieck theorem (see [10, Thm. 2-3-4]) for every
probability Radon measure P on (D((0, 1), B), weak) there exists a separable
subspace Dy of D((0,1), B) such that P(A) = P(AN Dy). Therefore, there
exists a countable dense subset () and a separable closed subspace By of B
such that Dy C Dg((0,1), By). Hence for every ¢t € [0,1] the function e;
takes P-almost all its values in By. By the Pettis measurability theorem
e; is strongly measurable for every ¢ € [0,1]. Since Dg((0,1), By) consists
of right continuous functions on [0,1) \ @, the process E = {e; : t € [0, 1]}
satisfies the condition b) of the property (®). Let T = ({0 = to, < ti1n <

- < ty,n = 1}) be a partition of [0,1] such that Q ¢ T. Let R, :
D((0,1),B) — Dg((0,1), B) be the projection given by R, (f) = f(1)m1 +
Zi]i"o_l Jf(tin) (Tt 0, — Tt,.,,). 1t is clear that |[R,|| <1 for every n € N and
lim,, o Ry (ym) = ymy for every y € By and ¢ € T. Therefore lim,, R,.(f) =
f for every f € Dg((0,1), By). Consequently, (R,(f)) is a Cauchy sequence
in D((0,1), B) for every f € Dg((0,1),By). Hence

j=1 N=1n=N r=n+1

Therefore

o0 [eS)
lim P(|J |J Azznre) =
N—oo

n=N r=n+1
[ [

NI@OOP(U U {r eD((0,1),B) s max  max |[f(t,) = f(tin)lB > e})

n=N r=n+1 I<Nn kj<l<kjt1

oo o0

= lim P(|J |J {f€D((0,1),B):|R(f) = Ru(f)llz =c}) =0

N—oo
n=N r=n-+1
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for each € > 0, where ¢;, =y, , for j =0,1,..., Ny, 7 > n. Thus we show
that the process {e; : t € [0,1]} has the property (®) with respect to any
partition T" of [0, 1] such that Q C T. d

Corollary 2. Let X = {X; :t € [0,1]} be a stochastic process with values
in B. There exists a probability Radon measure on C([0,1], B) such that the
process {e; : t € [0,1]} is distributed as X, if

a) X has the property (®) with respect to partitions T and R of [0, 1]
such that TN R ={0,1} and limy,_,o+ X1_, = X3 in probability,
or
b) X has the property (®) with respect to a partition T of [0,1] and
X, = limy,_,o+ Xy_p in probability for every t € T \ {0}.
Moreover, for every probability Radon measure on C([0,1], B) the stochastic
process {e; : t € [0,1]} is continuous in probability and has the property (®)
with respect to any partition T of [0,1].

Proof. a) For the partitions 7' and R we get strongly measurable func-
tions Fp and Fg (see the proof above) taking P-almost all its values in
D7,((0,1), B) such that e;(Fr) = Xy = e;(Fr) P-a.e. for every t € [0,1].
Evaluation operators {e; : t € T'U R} separate points of Dz z((0,1), B).
Therefore Fr = Fr P-a.e.. Hence Fr takes P-almost all its values in
Dy((0,1), B)ND4((0,1), B). Since PNR = {0, 1} and limy, o+ Fr(w)(1—h)
exists for P-almost all w € © and lim,_,o+ X1_p = X; in probability, the
function Fr takes P-almost all its values in C(]0, 1], B).

b) We show in the proof of Theorem 1 that

P( U {w € Q: Fr(w) is discontinuous at ¢}) = 0.
te[0,1\T
Let t € T. Since limy,_,o+ Fr(w)(t — h) exists for P-almost all w € Q and

limy, o+ X;—p = X; in probability, P({w € Q : limsup,_o+ |[Xi—n(w) —
Xi(w)| # 0}) = 0. Therefore

P( U {w € Q: Pr(w) is discontinuous at t}) = 0.
te(0,1]
The second part is a straightforward consequence of the fact that
C([0,1], B) is a subspace of the Dg((0,1), B) for every dense subset @ of
[0, 1]. O

Corollary 3. Let X = {X; : t € [0,1]} be a stochastic process consisting
of strongly measurable functions taking values in B. If X is continuous in
probability, then the following assertions are equivalent:

a) there exists a stochastic process Y = {Y; : t € [0,1]} on a probability
space (21,31, Py) consisting of strongly measurable functions taking
values in B distributed as X such that the function t — Yy(w) from
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[0,1] into B is continuous for Py-almost every w € Q1 (=Y has
continuous realizations Pi-a.e.),

b) there exists a probability Radon measure on C([0,1], B) such that the
process {e; : t € [0,1]} is distributed as X,

c) there exists a probability Radon measure on (D((0,1), B),weak) such
that the process {e; : t € [0,1]} is distributed as X,

d) there exists a partition T of [0,1] such that X has the property (®)
with respect to T,

e) X has the property (®) with respect to any partition T of [0, 1].

Proof. The implication b)=-c) is obvious. The implication ¢)=-d) is a part
of Theorem 1. The implication d)=-¢) follows from Corollary 2 b) and c).
The implication d)=b) follows from Corollary 2 a). The implication b)=-a)
is obvious. We only need to show that a)=b).

Let @ be a countable dense subset of [0,1]. By the Pettis measurability
theorem (see [10, Thm. 3-1-3]) for every ¢ € @ there exists a separable
subset B; of B such that P(Y, *(B;)) = 1. Let C be a closed linear hull of
the set UteQ B; in B. It is clear that C is a separable subspace of B. For
P-almost all w € ;g Y, }(By) the function t — Y;(w) from [0,1] into B is
continuous and {Y;(w) : ¢t € Q} C C. It shows that this function takes its
values in C. Hence the map ¥ : Q — C([0,1],C) given by ¥U(w)(t) = Yi(w) is
strongly measurable. Therefore the measure P; given by P (A) = P(¥~1 (AN
C([0,1],C)) for every Borel subset A of C([0, 1], B) is a probability Radon
measure on C([0,1], B). O

A strongly measurable function f : @ — B is Bochner integrable if
JollfIldP < oco. The reader may find more information about Bochner
integrable functions and martingales in Banach spaces in [3].

Corollary 4. Let X = {X; : t € [0,1]} be a continuous in probability
martingale consisting of Bochner integrable functions with values in B. If

lim max || X;+1 — X 4 [[dP =0,
n kN

n—oo Jo 1<i<kn %

for some integer k > 2, then X has the property (®) with respect to any
partition T of [0, 1].

Proof. Let My, : Q — B*" be given by My = (XLJFL -X; );ﬁal
k-n k’”L k’fl
We equip B¥" with the norm ||(y1,...,yxn)| = maxigjckn ly;l|z. Then

{|Mpmyll : 1 =1,...,E™ "} is a submartingale. By the Doob inequality
(see [9, p. 493]) for every € > 0 and m > n we get

1 1
P(AX,T’“,n,m,E) < E /Q ”Mn,m,km*"HdP = E /Q lg}i}én HXJkLnl - X}%ﬂ” dp.
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This shows that P(|J,-_ 1 AXTknme < %fQ mMaxi <j<kn HX%}—XLHCZP.

k’fl
Let (I,) be a sequence of integers such that > 0", [ Max; < <kln ||X]li -
kin

X 4 ||dP < oo. Then X has the property (®) with respect to the partition
ktn

= ({k% :j=0,...,k™}) of [0,1]. An appeal to Corollary 3 completes
the proof. O

The proof of our next result is based on the following modification of the
vector valued Ottaviani inequality.

Proposition 5. If {X;, : 1 < j < n,1 < k < N;} are independent
strongly measurable random variables with values in B, then for every e > 0

P({ max max
1<j<n 1<IKN;

Z E 26}“—1%&5”12%{13@ ull >

k=l+1
ZXJ’@H

Proof. For n = 1 the inequality follows from the Ottaviani inequality
(see [11, Thm. 11.3.1]). Let A; = {max;g<; ||Zk 1 Xkl = 2} and

N,
= {1321 Xl > e} Let f:[0,1]* — [0,1] be given by f(z,y) =
x +y — xy. The function f is increasing in each variable separately and
strictly increasing in each variable separately on [0,1)2. Suppose that ¢! =

maX
l<_7 <n

1 — maxigjgp Max] LN, {P( sz S MH } # 0. Otherwise there is
nothing to prove. We need to show that P(AjU---UA,) <2cP(B1U---U
By,). By the Ottaviani inequality P(A4;) < cP(Bj) for every j = 1,...,n.
Moreover, functions xa,,...,xa4, as well as xp,,...,Xxn, are stochastically
independent.

If c =1, then

P(A1U 43) = f(P(A1), P(A3)) < f(P(B1), P(B2)) = P(Bi U By).

It is clear that for n > 2 functions x 4,0u4,, X435 - - -, X4, as well as XB,UB,, X Bs»
.., XB, are stochastically independent. We repeat n—1 times the procedure
above to get the inequality P(A; U---UA,) < P(B1U---UDBy,).
Assume now that ¢ > 1. Without loss of generality we may assume that
there exists 1 < k < nsuch that P(B;) < P(A;) for every j < kand P(A;) <
P(By) for every j > k. Suppose that k > 2. Let 0 < d; = % <1

and e; = %A;(M < 0 for j = 1,2. Applying the fact 0 < P(4;)d; < 1
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for j = 1,2 we get
c¢P(ByUBsy) — P(A1 U Ay)
= c(P(B1) + P(B2) — P(B1)P(B2)) — P(A1) — P(A2) + P(A1)P(A2)
= (e = DF(P(A1)d1, P(A2)dp) + ——=P(A1)P(As)eres > 0.

It is clear that for k > 2 functions x a,u4,, X 43, - - - > X4, as well as X B,uB,, X B »
.., XB, are stochastically independent. Moreover,

P(A1U Ag) = f(P(A1), P(A2)) > f(P(B1), P(Bz)) = P(B1U By).

We repeat k — 1 times the procedure above to get the inequality P(A; U
--UAg) < cP(ByU---UBy). It follows from the considerations above that
P(Ag1U---UA,) < P(Bgy1U---UBy,). After gathering together the above
inequalities we get

P(A U---UA,) <2max{P(A1U---UAg),P(Ap1U---UA,)}
<2max{cP(BiU---UBy), P(Bxy1U---UBy)} <2cP(B1U---UBy).
U

Let 74 = Xjo,q and 7, = X|o,) for t € (0,1] and 79 = X0y We denote by
L the set {mx : t € (0,1]} U {70} equipped with the pointwise convergence
topology. The space L is a Hausdorff, compact, sequentially compact, first
countable, nonmetrizable space. It is a modification of the two arrows space.
The reader may find more information about topological properties of this
space in [4, p. 270] and [6]. If the left- and right-hand limits of X in L(B)
exist and X; = Xy P-a.e. for every t € [0,1], then the map 7, — X, from
L to L(B) is continuous. Consequently, the set {t € [0,1] : d(Xy, Xy—) > €}
is finite for every € > 0. Therefore {t € [0,1] : d(Xy, Xy—) > 0} is countable.
For a given stochastic process X = {X; : t € [0,1]}, a partition T, € > 0 and
n we put
Extne = {w € : max
0

|
7 n

(Xtji10 — Xi;,)(W)]IB = 6} and
(th+1,n_ - th,n)(w)”B 2 E}-

A process X = {X; : t € [0,1]} has independent increaments if for every
0 <ty <<ty <1 the random variables X;,, Xz, — Xy, ..., Xy, — X+,
are independent.

B pne = {w € Q1 max |

Corollary 6. Let X = {X; : t € [0,1]} be a stochastic process consisting
of strongly measurable functions with values in B with independent increa-
ments.

a) If X is continuous in probability, then X has has the property (®) with
respect to a partition T of [0,1] if and only if

lim P(EX,TQ,n,s) =0
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for every e > 0.

b) Suppose that X has left- and right-hand limits in L(B) for every t €
[0,1] and X; = Xy P-a.e. for every t € [0,1). If T is a partition of [0,1]
such that {t : d(X;, X;—) > 0} C T, then X has the property (®) with respect
to T if and only if

lim P(E)_(,T,n,a) =0

n—~o0

for every e > 0.

Proof. a) Suppose that X has the property (®) with respect to a partition
T of [0,1]. According to Corollary 3 the process X has the property (®)
with respect to T2. Let n € N and € > 0. Applying the facts that for
every j = 1,...,2", there exists an increasing sequence (s 1) C T2 such that
limg o0 851 = 2% and limg—00 X5, = XZ% P-a.e. we get

(@)
P(Ex12n.) < P( U AX T2 0,m,2)-

m=n+1

Therefore lim, oo P(Ex 72, ) = 0 for every € > 0.
Assume now that lim, oo P(Ex 12,,5) = 0 for every § > 0. Let (Ix) be
an increasing sequence of integers such that » 7> P(Ey 12 (! ) < oco. Let

T= ({2% :j=0,...,2%}). Let € > 0. Since the topology of convergence in

probability is metric, there exists § > 0 such that P(]|X; — X,|| > £)) < 3 for

every |t —s| < 0. Applying Proposition 5 for {Y;, =X ; _ &« —X j s :
’ oin + olm oln + olm

0<j <2~ 1,1 <k <2} we get P(Axme) < 4P(Ex 2y, <) for
every n such that 27 < §. Since Ax Tnme C AxTnre for every 1 > m,
P(Um—ni1 AX,Tnme) < 4P(EX7T2717“%) for every n such that 27 < 6.
Since EX,TZ,ln,% - EX7T27I7“% for almost all n, X has the property (®) with
respect to T'.

The proof of part b) is similar. O

A stochastic process X = {X; : ¢t € [0,1]} is said to be a Levy process if
it has the following properties:

1) Xo=0,
2) X has independent increaments,

3) for every 0 < s < t < 1 the random variable X; — X, has the same
distribution as X;_,.

For a real Levy process X = {X; : t € [0,1]} the random variable X; has an
infinite divisible distribution. The reader may find more information about
this family of distributions in [5].
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A stochastic process N(c,Y) = {X; : t € [0,1]} is said to be a compound
Poisson process if it can be represented for ¢ > 0 by

N
X, = Z Yy

k=0
where {N; : t € [0,1]} is a Poisson process with the mean rate ¢ > 0,
Yy = 0 and (Y},) is a sequence of independent random variables identically
distributed as the random variable Y. Moreover, the process {N; : t € [0,1]}
and the sequence (Y,) are assumed to be independent. If Y = 1, then
N(e,1) = {Ny : t € 0,1]} is Poisson process with the mean rate c. For any

random variable Y and ¢ > 0 the process N(c¢,Y) is a Levy process. The
characteristic function of N(c¢,Y); is given by

ON(e,Y): (u) = eCt(SDY (u)—1) .

The reader may find more information about compound Poisson processes
in [7].

Theorem 7. A Levy process X = {X; : t € [0,1]} taking values in R™
has the property (®) with respect to a partition T of [0,1] if and only if it is
Gaussian.

Proof. Suppose first that n = 1. By the Levy-Khintchine representation
theorem the characteristic function of X; has the following form

) o ; 14a?
zua—l—‘/R(ewx—l—lf—;g) 5 du

$X1 (u) =€
for some constant a € R and a positive Borel measure p on R where the
function under the integral sign is equal to —% at the point x = 0 (see [5,
Thm. 5.5.1], [8, Thm. 1.16]). If x = 0, then the above theorem is obvious. We
assume that u(R) > 0. Let Y7 be a random variable with the characteristic
function -

v, (1) = eJa(e D,

It is clear that there exists a random variable V' such that Y7 = N (u(R), V);.
According to the Kolmogorov representation theorem (see [5, Thm. 5.5.3],
[1, Thm. 28.1]) there exists a random variable Z; with the characteristic

function

.otuT
() = el S

Then Y; and Z; are infinite divisible. Let Y = {Y; : t € [0,1]} and Z = {Z; :
t € [0,1]} be the Levy processes generated by Y; and Zj, respectively. We
assume that Y and Z are independent. Then the process X = {X; +Y; :
t € ]0,1]} is distributed as X. It is easy to check that {Y; : ¢ € [0,1]} is the
Poisson compound process N(u(R), V). Suppose that V' # 0. Let (V},) be
a sequence of independent random variables distributed as V on (2, %, P).

Let Ag, = Q and A, = {w € Q: |Ef:1VJ| < n}. Let € > 0 be such
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(®)
that 1,3¢) < 1. It is easy to check that limy_. euzk -1+ 55 _
hat P(A 1 Tt i heck that Ii ok 14 BB (q
P(Al 35)) = ,U(R)(P(Al 35)). Hence

) o (R) P(Aj5c) \2*
hglsolipP(]Y1 | < 35) = hgls;ip( ]ZZ:O T)
—u(®) 1 n(R) o~ L(R)T N2
<™ lim (14 0Pl + 3 Sy
j=2
. BE®) R 2"
— ¢ MR kh_)n;()(e 2k — ,u;k ) (1- P(A1,35)>
— e HR)(A=P(A13:)) 1
For t € [0, 1] such that e~ #®* > + we have
P(|Y: + Zi| < ¢) U{\Y} ke| < 2e,ke < Zy < (k+ 1)}
keZ
=Y P({[Ys — ke| < 2e})P({ke < Z < (k + 1)e})
kEZ
SupP({|Yt ke| < 2¢3) > P({ke < Zy < (k+1)e})
keZ
P{|Yi| < 3e}).
Hence
limsup(1-P(Ex 12 1.)) = 11msupP(]Y1 +Z 2 | < E)
k—oo k—oo
< limsup P({[Y 1 | < 3} < e HBII-P(ALse) 1,
k—o0

The process X is continuous in probability and does not have the property
(®) with respect to T2 if V' # 0. According to Corollary 6 the process X does
not have the property (®) with respect to any partition 7" of [0,1] if V' # 0.
If V=0, then p = p(R)dp, where Jp is the Dirac measure concentrated at
0. Then the random variable X7 has the following characteristic function

;. cu2

Ox, (u) — ezua—i-T
Suppose now that n > 1. Let p; : R® — R be the projection given by
pi((z1,...,2,)) = x; for each j = 1,...,n. For every a1,...,a, € R the

process {3_7_ja;jp; o Xy : t € [0,1]} is a Levy process. It is clear that if
X has the property (®) with respect a partition to T of [0, 1], then also
the process {>7_; a;jpj o Xy : t € [0,1]} has the property (®) with respect
to T. According to the first part of the proof if X has the property (®)
with respect to any partition 7" of [0,1] then for every ¢ € [0,1] and for
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every ai,...,a, € R the random variable 2?21 a;pj o X; has a Gaussian
distribution. Therefore X is Gaussian (see [9, p. 301]).

It is a well-known fact that if X is a Gaussian Levy process, then there
exists a stochastic process Y = {Y; : ¢ € [0,1]} on a probability space
(Q1,%4, Pp) distributed as X with continuous realizations Pj-a.e. (see [2]).
But the fact we also get by applying Corollary 6. Since X is Gaussian, there
exist ¢ € R™ and a selfadjoint linear operator A : R” — R” such that the
joint characteristic function of X; is given by

it (eu)— HACAC)

PX¢ (’LL) =€

for every u € R™. Moreover, for every t € [0,1] the random variable X; has
the same distribution as the random variable w — tc-/tA(Up (w),. .., Uy (w))
where Uy, . .., U, are independent normal A/(0, 1) random variables. Suppose
that A # 0. Otherwise there is nothing to prove. Let F,, = {x € R" : ||z|| <
n}. Let € > 0. Then

1> lim 1= P(Exgey.) = lim P(IX || < )"

k—o0

hm (P weQ:c27% 427 2A(U1( ), Un(w)) € Fe}))zk

n 2@ 2k
= hm< / e_<27>d)\n(x)>
k—o0 A-1(25 F—2- 5 ¢)

T, 2k
/ e_%d)\n(:n))
A-L(F 4 )

_k
25 05|

> hm < %/ e~ d)\n(x)>2k

IAII 1(225 2" 2IICII)

l\.’)

MI:

> hm<

k—o0

k
2557277\\0\\ 255727§||c|| P
. 1 VAl Al VAlAT _z24y? n2
> lim ( — ko _k ke _k e 2 dxdy
k—oo\27m J_22e—2"2c|| [ 22e—2"2|c|
\/_HAH V| All
275 2 7 [c]|
L 2t
> hm 2 rdrdt)
k—o0 271'
(28 e—2™ 5 el)? | k-1
: T oA
= lim <1 —e 2n| Al ) =1,
k—o0
where A, is the Lebesgue measure on R" O

Corollary 8. If a Levy process X = {X; : t € [0,1]} with values in a
Banach space B has continuous realizations P-a.e., then for any continuous
linear operator A : B — R™ the process {Ao Xy : t € [0,1]} is Gaussian.



ON REPRESENTATIONS OF STOCHASTIC PROCESSES 43

References

[1] Billingsley, P. (1979), Probability and Measure, John Wiley & Sons, Inc., New York.
[2] Ciesielski, Z. (1961), Holder conditions for realizations of Gaussian processes, Trans.

Amer. Math. Soc. 99, 403-413.

[3] Diestel, J. and Uhl, J. (1977), Vector Measures, American Mathematical Society,

Providence, R.I.

[4] Engelking, R. (1977), General Topology, PWN - Polish Scientific Publishers,

Warszawa.
| Lukacs, E. (1970), Characteristic Functions, Griffin, London.
Michalak, A. (2003), On continuous linear operators on D(0,1) with nonseparable
ranges, Comment. Math. 43, 221-248.
| Parzen, E. (1962), Stochastic Processes, Holden-Day, Inc., San Francisco.
] Petrov, V. V. (1995), Limit Theorem of Probability Theory, Clarendon Press, Oxford.
| Shiryaev, A.N. (1996), Probability, Springer-Verlag, New York.
| Talagrand, M. (1984), Pettis Integral and Measure Theory, Memoirs Amer. Math.
Soc. 307, American Mathematical Society, Providence, R. L.

[11] Zabczyk, J. (2004), Topics in Stochastic Processes, Quaderni, Scuola Normale Supe-

riore, Pisa.

A. MickIEWICZ UNIVERSITY, POzZNAN, POLAND
E-mail address: grala@amu.edu.pl
FE-mail address: michalak@amu.edu.pl



