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Estimating main characteristics of processes

with non-regular observations

Tatiana Varatnitskaya

Abstract. In this paper the amplitude modulated version of a random

process is investigated. Two cases have been taken into consideration.

When the irregularities in observations are defined as a Poisson sequence,

the estimators of the covariance function and the spectral density have

been constructed. When the irregularities in observations are defined

as a stationary random process in the wide sense, the estimators of the

mean and the covariance function have been constructed. Statistical

properties of the estimators have been studied.

In different practical applications we frequently deal with stationary pro-
cesses with non-regular observations. Estimates of main characteristics of
processes give common information about studied phenomenon. Asymptotic
methods of time series analysis allow us to find asymptotic distribution of
the estimates when the number of observations tends to infinity.

Parzen (1963) introduced a sequence

Y (t) = X(t)d(t), t ∈ Z, (1)

which is called an amplitude modulated version of X(t). It is supposed that
the processes {X(t) : t ∈ Z} and {d(t) : t ∈ Z} are independent.

A number of examples of d(t) has been considered in the literature (Jiang,
Hui (2004), Lee (2004) etc.). Many investigations are dedicated to the case
where d(t) is a sequence of independent Bernoulli trials.

Definition 1. The moment of n-th order of the random process {X(t) :
t ∈ Z} is a function

mn(t1, ..., tn) = EX(t1)...X(tn),

tj ∈ Z, j = 1, 2, ..., n.
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It is possible to determine moments of n-th order by using formula

mn(t1, ..., tn) = i−n ∂nHn(α1, ..., αn; t1, ..., tn)

∂α1...∂αn

∣∣∣∣
α1=...=αn=0

,

where Hn(α1, ..., αn; t1, ..., tn) = Eexp

{

i
n∑

j=1
αjX(tj)

}

is the characteristic

function, tj ∈ Z, j = 1, 2, ..., n and (α1, ..., αn) is a real non-zero vector.

Definition 2. The cumulant of n-th order of the random process {X(t) :
t ∈ Z} is a function

cn(t1, ..., tn) = i−n ∂nlnHn(α1, ..., αn; t1, ..., tn)

∂α1...∂αn

∣∣∣∣
α1=...=αn=0

,

tj ∈ Z, j = 1, 2, ..., n.

There are relations between moments and cumulants of n-th order
(Žurbenko, 1987)

mn(I) =
∑

I1∪...∪Iq=I

q∏

k=1

clk(Ik),

cn(I) =
∑

I1∪...∪Iq=I

(−1)q−1(q − 1)!

q∏

k=1

mlk(Ik),

where I = {1, 2, ..., n}, Ik ⊆ I, Ik = {i1, ..., ilk}, 1 ≤ k ≤ q, Ik ∩ Im =
∅ for k 6= m, mn(I) = mn(t1, ..., tn), cn(I) = cn(t1, ..., tn), mlk(Ik) =
mlk(ti1 , ..., tilk ), clk(Ik) = clk(ti1, ..., tilk ), and

∑
I1∪...∪Iq=I

is a sum over all

primitive partitions of the set I.

Definition 3. The function

fn(λ1, ..., λn) =
1

(2π)n

∞∑

t1,...,tn=−∞

cn(t1, ..., tn)e
−i

n∑
j=1

λjtj
,

λj ∈ R, j = 1, 2, ..., n, is called the semi-invariant spectral density of n-th
order of a random process if the series converges absolutely.

These functions are discussed by Brillinger (1975) and Leonov, Širjaev
(1959).

Let {X(t) : t ∈ Z} be a stationary random process in the wide sense.
This process has the mean mX , the covariance functions RX(τ), τ ∈ Z, the
spectral density fX(λ), λ ∈ Π = [−π, π], the semi-invariant spectral density
of the fourth order fX

4 (λ1, λ2, λ3), λi ∈ Π, i = 1, 2, 3, the 4-th moment
mX

4 (t1, t2, t3), ti ∈ Z, i = 1, 2, 3, and the cumulant of the fourth order
cX
4 (τ1, τ2, τ3), τi ∈ Z, i = 1, 2, 3. Let the irregularities in observations {d(t) :

t ∈ Z} be given as Poisson sequences. The parameter of the distribution is
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α > 0. Note that d(t) is a sequence of independent random variables. We
assume in this part that mX = 0.

Let

Y (0), Y (1), ..., Y (T − 1) (2)

be T consecutive in equal time period observations of the process Y (t), t ∈ Z.
The relation between processes X(t) and Y (t) is given by (1).

Using observations (2) the estimator of the covariance function of the
process X(t) can be constructed as the statistic

R̂X(τ) =
1

(T − τ)Cd
τ

T−τ−1∑

t=0

Y (t + τ)Y (t), for τ = 0, 1, ..., T − 1, (3)

where

Cd
τ =

{
α2, τ 6= 0,
α + α2, τ = 0,

(4)

R̂X(τ) = R̂X(−τ), R̂X(τ) = 0, for |τ | > T.

Theorem 1. Let {X(t) : t ∈ Z} and {d(t) : t ∈ Z} be defined as

above. Then the estimator R̂X of the covariance function of the process
X(t), given in (3), is an asymptotically unbiased estimator. Moreover, if

∞∑
u=−∞

(
RX(u)

)2
< ∞ and

∞∑
u=−∞

cX
4 (u + τ, u, τ) < ∞, for all τ ∈ Z, then it

is mean-square consistent.

Proof. Using independence between X(t) and d(t) it is easy to show the
unbiasedness of the estimator:

ER̂X(τ) =
1

(T − τ)Cd
τ

T−τ−1∑

t=0

RX(τ)Ed(t + τ)d(t) = RX(τ).

Further, taking into account the relations between moments and cumulants,
it is proved that the variance of the estimator, given in (3), has the following
property:

lim
T→∞

(T − τ)V arR̂X(τ) =

(
(α + α2)2

α4
− 1

)

×
(
cX
4 (τ, 0, τ) + 2

(
RX(τ)

)2
+
(
RX(0)

)2)
+

∞∑

u=−∞

J(u, τ),

where

J(u, τ) = cX
4 (u + τ, u, τ) + 2

(
RX(u)

)2
+ RX(u − τ)RX(u + τ).

Under conditions of the theorem it is clear that the variance vanishes if the
number of observations tends to infinity. �
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Next the problem of construction of an estimator of the spectral density
is investigated. It is proposed to consider the following statistic:

IT (λ) =
1

2πT

T−1∑

t=0

T−1∑

s=0

Y (t)Y (s)

Cd
t−s

e−iλ(t−s) for λ ∈ Π , (5)

where Cd
t−s is defined in (4).

As a result the following theorem is formulated and proved.

Theorem 2. Let the semi-invariant spectral density of the fourth order
fX
4 (λ1, λ2, λ3) be continuous on Π3 and the spectral density fX(λ) be con-

tinuous on Π. Then the statistic defined in (5) is an asymptotically unbiased
estimator for fX(λ) and

cov
{
IT (λ1), I

T (λ2)
}

−→
T→∞

{
0, λ1 ± λ2 6= 0(mod2π),

fX(λ1)f
X(λ2), λ1 ± λ2 = 0(mod2π).

Proof. Using representation of the spectral density and the semi-invariant
spectral density of the fourth order through the covariance function and the
cumulant of the fourth order it is obtained that

EIT (λ) =
1

2πT

[
T−1∑

t=0

EX2(t)Ed2(t)

α2 + α

+
T−1∑

t=0

T−1∑

s=0,s 6=t

EX(t)X(s)Ed(t)d(s)

α2
e−iλ(t−s)





=
1

2πT

∫

Π

fX(z)

T−1∑

t=0

T−1∑

s=0

ei(t−s)(z−λ)dz =

∫

Π

fX(z + λ)ΦT (z)dz,

where ΦT (z) = 1
2πT sin2 Tz

2 sin−2 z
2 is the Fejer kernel (Anderson (1971)).

Taking into account continuity of the spectral density and properties of the
Fejer kernel the asymptotic unbiasedness is proved.

Using the definition of covariance and independence between X(t) and
d(t), the following expression is obtained:

cov
{
IT (λ1), I

T (λ2)
}

= EIT (λ1)IT (λ2) − EIT (λ1)EIT (λ2)

=
1

(2πT )2

T−1∑

t,s,j,k=0

e−iλ1(t−s)+iλ2(j−k)

×

[
E(X(t)X(s)X(j)X(k))E(d(t)d(s)d(j)d(k))

Cd
t−sC

d
j−k

−E(X(t)X(s))E(X(j)X(k))] .
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It is easy to show that

E(d(t)d(s)d(j)d(k)) =






α4 + 6α3 + 7α2 + α, t = s = j = k,

α4, t 6= s 6= j 6= k,

(α + α2)α2, t = s 6= j 6= k,

(α + α2)2, t = s 6= j = k,

α(α3 + 3α2 + α), t 6= s = j = k.

Using relations between moments and cumulants, the representation of the
spectral density and the semi-invariant spectral density of the fourth order
through the covariance function and the cumulant of the fourth order and
the kernel function ΦT (y1, y2, y3) (Bentkus (1972)), it is possible to write
that

cov
{
IT (λ1), I

T (λ2)
}

=
2π

T

∫∫∫

Π3

fX
4 (y1 + λ1, y2 − λ1, y3 − λ2)ΦT (y1, y2, y3)dy1dy2dy3

+

∫

Π

fX(x1)ΦT (x1 − λ1, x1 − λ2)dx1

∫

Π

fX(x2)ΦT (x2 + λ1, x2 + λ2)dx2

+

∫

Π

fX(x1)ΦT (x1 − λ1, x1 + λ2)dx1

∫

Π

fX(x2)ΦT (x2 + λ1, x2 − λ2)dx2

+
1

(2π)2T

(
α4 + 6α3 + 7α2 + α

(α2 + α)2
− 1

)

×

(∫∫∫

Π3

fX
4 (x1, x2, x3)dx1dx2dx3 + 3

(∫

Π

fX(x1)dx1

)2
)

+
1

πT

(
α3 + 3α2 + α

(α2 + α)α2
− 1

)(

3

∫

Π

fX(x1)dx1

∫

Π

fX(x2)ΦT (x2 + λ2)dx2

+

∫∫∫

Π3

fX
4 (x1, x2, x3)ΦT (x1 + x2 + x3 + λ2)dx1dx2dx3

)

+
1

πT

(
α3 + 3α2 + α

(α2 + α)α2
− 1)

)(
3

∫

Π

fX(x1)dx1

∫

Π

fX(x2)ΦT (x2 − λ1)dx2

+

∫∫∫

Π3

fX
4 (x1, x2, x3)ΦT (x1 + x2 + x3 − λ1)dx1dx2dx3

)

+
3

T

(
(α2 + α)α2

α4
− 1

)(∫

Π

fX(x1)dx1

∫

Π

fX(x2)ΦT (x2 + λ1;−x2 − λ2)dx2
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+

∫∫∫

Π3

fX
4 (x1, x2, x3)ΦT (x1 + x2 − λ1 + λ2;x3 + λ1)dx1dx2dx3

+2

∫∫

Π2

fX(x1)f
X(x2)ΦT (x1 − λ1 + λ2;−x1 + x2 + λ1)dx1dx2

)
.

Taking into account continuity of the spectral density fX(λ) on Π, continuity
of the semi-invariant spectral density fX

4 (λ1, λ2, λ3) of the fourth order on
Π3 and properties of the kernel function ΦT (y1, y2, y3) the statement of the
theorem is obtained. �

To get a consistent estimator of the spectral density of the process X(t)
it is necessary to smooth this estimator by using spectral windows ϕT (k):

f̂T (λs) =

[T
2
]∑

k=−[T
2
]+1

ϕT (k)IT (λs+k) , (6)

λs = 2πs
T , −

[
T
2

]
+ 1 ≤ s ≤

[
T
2

]
,
[

T
2

]
is the integer part of number T

2 .

Theorem 3. If the semi-invariant spectral density of the fourth order
fX
4 (λ1, λ2, λ3) is continuous on Π3, the spectral density fX(λ) is continuous

on Π and

[T
2
]∑

k=−[T
2
]+1

[
ϕT (k)

]2
−→

T→∞
0,

then the statistic defined as (6) is a mean-square consistent estimator.

The proof is based on the previous theorem.
Let us consider now the case when irregularities in observations d(t) are

defined as a stationary random process. This process has mean md 6= 0,
the covariance functions Rd(τ), τ ∈ Z, the spectral density fd(λ), λ ∈ Π =
[−π, π], the semi-invariant spectral density of the fourth order fd

4 (λ1, λ2, λ3),
λi ∈ Π, i = 1, 2, 3, the 4-th moment md

4(t1, t2, t3), ti ∈ Z, i = 1, 2, 3, and the
cumulant of the fourth order cd

4(τ1, τ2, τ3), τi ∈ Z, i = 1, 2, 3.
Using observations (2) of the process Y (t) the estimator of the mean of

the process X(t) may be constructed as a statistic defined by

m̂X =
1

Tmd

T−1∑

t=0

Y (t). (7)

For this estimator the theorem given below holds (Troush, Iliukevich (2003)).
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Theorem 4. In the assumptions above, the statistic given in (7) is an
asymptotically unbiased estimator. The limiting variance of the estimator,
given in (7), is

lim
T→∞

T V ar m̂X(τ) = 2π



 1

(md)2

∫

Π

fX(µ)fd(µ)dµ

+fX(0) +

(
mX

md

)2

fd(0)

]

if the spectral density of the process X(t) is bounded in Π and continuous at
λ = 0 and the spectral density of the process d(t) is continuous at λ = 0.

Note that from the above theorem it follows that the statistic (7) is mean-
square consistent.

The statistic

R̂X(τ) =
1

(T − τ)(Rd(τ) + (md)2)

T−τ−1∑

t=0

Y (t + τ)Y (t), for τ = 0, 1, ..., T − 1,

(8)

R̂X(τ) = R̂X(−τ), R̂X(τ) = 0, for |τ | > T,

is considered as an estimator of the covariance function of the process X(t)
(Iliukevich (2005)).

Theorem 5. The estimator of the covariance function of the process

X(t) given in (8) is asymptotically unbiased. If
∞∑

u=−∞

(
RX(u)

)2
< ∞,

∞∑
u=−∞

cX
4 (u + τ, u, τ) < ∞ and

(Rd(u))2

(T − τ)(1/2) (Rd(τ) + (md)2)
2 −→

T→∞
0,

cd
4(u + τ, u, τ)

(T − τ)(1/2) (Rd(τ) + (md)2)
2 −→

T→∞
0,

u = −(T − τ − 1),−(T − τ − 2), ..., (T − τ − 1) and τ = 0, 1, ..., T − 1, the
estimator is mean-square consistent.

Proof. The unbiasedness of the estimator is obvious. Further it is sup-
posed that the means of processes equal to zero. We assume that to simplify
the calculations. The variance of the estimator (7) is

V ar R̂X(τ) =
1

(T − τ)2 (Rd(τ))
2

[
T−τ−1∑

t1=0

T−τ−1∑

t2=0

mX
4 (t1 + τ, t1, t2 + τ, τ)



52 TATIANA VARATNITSKAYA

×md
4(t1 + τ, t1, t2 + τ, τ) − (T − τ)2

(
Rd(τ)

)2 (
RX(τ)

)2
]

.

Using stationarity of the processes X(t) and d(t), known relation between
moments and cumulants of the fourth order and changing variables t = t1,
u = t1 − t2, it is possible to write the expression for variance as

V ar R̂X(τ) =
1

(T − τ)2




−1∑

u=−(T−τ−1)

u+T−τ−1∑

t=0

J(u, τ) +

T−τ−1∑

t=0

J(0, τ)

+

T−τ−1∑

u=1

T−τ−1−u∑

t=u

J(u, τ)

]

,

where

J(u, τ) =
cX
4 (u + τ, u, τ)cd

4(u + τ, u, τ)

(Rd(τ))
2 +

(RX(τ))2cd
4(u + τ, u, τ)

(Rd(τ))
2

+
(RX(u))2cd

4(u + τ, u, τ)

(Rd(τ))
2 +

RX(u + τ)RX(u − τ)cd
4(u + τ, u, τ)

(Rd(τ))
2

+cX
4 (u + τ, u, τ) + (RX(u))2 + RX(u + τ)RX(u − τ)

+
cX
4 (u + τ, u, τ)

(
Rd(u)

)2

(Rd(τ))
2 +

(RX(τ))2
(
Rd(u)

)2

(Rd(τ))
2

+
(RX(u))2

(
Rd(u)

)2

(Rd(τ))
2 +

RX(u + τ)RX(u − τ)
(
Rd(u)

)2

(Rd(τ))
2

+
cX
4 (u + τ, u, τ)Rd(u + τ)Rd(u − τ)

(Rd(τ))
2 +

(RX(τ))2Rd(u + τ)Rd(u − τ)

(Rd(τ))
2

+
(RX(u))2Rd(u + τ)Rd(u − τ)

(Rd(τ))
2 +

RX(u + τ)RX(u − τ)Rd(u + τ)Rd(u − τ)

(Rd(τ))
2 .

Thus

V ar R̂X(τ) =
1

(T − τ)

T−τ−1∑

u=−(T−τ−1)

J(u, τ)+
1

(T − τ)

−1∑

u=−(T−τ−1)

u

T − τ
J(u, τ)

+
1

(T − τ)

T−τ−1∑

u=1

u

T − τ
J(u, τ).

If the assumptions of the theorem hold, then the variance tends to zero when
T tends to infinity. �
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