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Linear models with measurement errors

arising from mixture distributions

Gerd Ronning

Abstract. The paper considers the linear model with multiplicative
measurement errors. In particular, errors arising from mixture distribu-
tions will be analyzed. Such a model has to be used if the micro data
have been protected by multiplicative noise. If all (continuous) variables
are anonymized jointly by this approach, measurement errors will be
correlated which is of special concern if the dependent variable is mea-
sured with error, too. The paper presents results for the biased naive
least-squares estimator both in case of cross-section data and panel data.
Moreover, derivation of consistent estimators is shortly discussed.

1. Introduction

Empirical research in economics has for a long time suffered from the un-
availability of individual micro data and has forced econometricians to use
(aggregate) time series data in order to estimate, for example, a consumption
function. On the contrary other disciplines like psychology, sociology and,
last not least, biometry have analyzed micro data already for decades. The
software for microeconometric models has created growing demand for mi-
cro data in economic research, in particular data describing firm behaviour.
However, such data are not easily available when collected by the Statistical
Office because of confidentiality.

On the other hand these data would be very useful for testing microeco-
nomic models. Therefore, the German Statistical Office initiated research
on the question whether it is possible to produce files for scientific use from
these data. The files have to be anonymized in a way that re-identification
is almost impossible and, at the same time, distributional properties of the
data do not change too much. In particular, data from enterprises have been
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considered in this project. Results have been published quite recently (see
Ronning et al. (2005)). Most known anonymization procedures have been
rated both with regard to data protection and to informational content left
after perturbation. In particular, micro-aggregation or addition of stochas-
tic noise has been found convenient for continuous variables whereas “Post
Randomization” (PRAM) can be recommended with some reservations for
discrete variables.1

In case of anonymization by stochastic noise we have the situation of “er-
rors in variables”. In particular, errors in the regressor variables of a linear
model will lead to biased estimation of parameters. Usually, additive mea-
surement errors are considered whereas in our project we favor perturbation
by multiplicative noise. More formally, the anonymized random variable Xa

is obtained from

Xa = X · U , (1.1)

where X is the “original” variable and U an error with E[U ] = 1. We
consider this approach as superior to addition of noise since larger values
are much better protected. For example, if two firms with sales of 1 million
and 100 million Euro will be anonymized multiplicatively, both will receive
an error of, say, ± 10 % whereas in the additive case an error of, say, ±
10,000 Euro ist added to both sales. Of course, the larger sale will be almost
unaffected by this error.

In this paper we consider only stochastic noise generated from a mixture
distribution which has been first suggested by Roque (2000). In particular,
a bimodal mixture distribution will move anonymized values away from
the original values with high probability.2 If this method is applied to a
set of variables then a multivariate (bimodal) mixture distribution will be
involved. It will be shown below that such a distribution will imply correla-
tion of measurement errors. This is of special concern if linear (or nonlinear)
models are estimated from data anonymized in this way. Note that usually
measurement errors are assumed to be independent across variables. As we
will see, in particular the measurement error of the dependent variable no
longer can be considered as harmless to estimation.

First we consider estimation from anonymized cross-section data, secondly
the case of panel data is examined. For both cases we present results with
regard to estimation of linear models. Moreover, we consider the possibility
of constructing corrected unbiased estimators. All results in this paper are
presented with proofs in Ronning (2007a).

1Additionally, most recently multiple imputation has been suggested by Donald Rubin
for data protection.

2The idea has been suggested also by Massell, Zayatz und Funk (2006) although the
authors do not explicitly refer to a mixture distribution.
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The paper is organized as follows: In Section 2 we present an error factor
model which has the attractive property of preserving proportionality among
variables and which can be shown to be equivalent to anonymization by a
multivariate mixture distribution. Section 3 reports results of estimating
linear models from anonymized cross-section data and Section 4 presents
modifications when panel data are used. The Appendix contains some results
regarding mixture distributions for easier reference.

2. A factor model of measurement errors

We start by considering one single error variable Uj which is generated
from the following model:

Uj = 1 + δ Dj + εj ,

where δ is a parameter and Dj a random variable satisfying

Dj =

{
+1 with probability γ
−1 with probability 1 − γ

and εj is a continuous random variable with

E[εj ] = 0 , V [εj ] = σ2
ε .

Since Uj in (1.1) is applied multiplicatively, the parameter δ determines a
relative increase or decrease. For example, δ = 0.12 means a change of ±
12 % for variable x. The error term ε adds some additional noise. In the
following we set γ = 0.5 which implies E[Uj ] = 1.

Let us now assume that the data set contains r different (continuous)
variables which have to be anonymized. Following an idea first mentioned
by Jörg Höhne the different Uj are generated by

Uj = 1 + δ D + εj , j = 1, . . . , r , (2.1)

that is, the same D is used for all variables in order to preserve proportion-
ality of the variables at least approximately. For the ratio Z = X/Y of the
two variables X and Y the following should hold:

E[Z] = E

[
X

Y

]
≈ E[Za] = E

[
X · (1 + δD + εX)

Y · (1 + δD + εY )

]
.

Ronning (2007b) shows that this is true indeed. However, already E[Z] differs
notably from the much more relevant ratio E[X]/E[Y ] if correlation between
X and Y is low or – even worse – negative.

Note that the variable D can be seen as a “common factor” which implies
(positive) correlation between the two error variables Uj and Uk. This result
also follows from the fact that the above error factor model (2.1) is equivalent
to the statement that the vector U = (U1, . . . , Ur) has a multivariate mixture
distribution (for a definition see Appendix). From (3A) in the Appendix it
is evident that the covariance matrix can only be diagonal if the mean vector



58 GERD RONNING

equals the null vector! Therefore, in general any two of its elements will be
correlated.

We now prove the statement that the factor model (1.1) is equivalent to
a multivariate mixture distribution. First note that the probability density
of D in (2.1) is given by

h(d) = γ
1+d

2 (1 − γ)
1−d

2 (2.2)

for d ∈ {+1 , −1}. For convenience we also assume normality for the vector
ε which we write as

ε ∼ N(0 , σ2
εI) . (2.3)

Notation (2.1) is used also for the density of ε. The conditional density of
U given D = d is given by3

U|(D = d) ∼ N((1 + δ d) ι , σ2
εI)

and for the joint density of U and D we obtain

g(u, d) = h(d) · N((1 + δ d) ι , σ2
εI) .

The marginal density of U then is given by

f(u) =
∑

d ε {+1 ,−1} α
1+d

2 (1 − α)
1−d

2 N((1 + δ d) ι , σ2
εI)

= α N((1 + δ)ι , σ2
εI) + (1 − α) N((1 − δ)ι , σ2

εI) .

This density has the form (2.1) of a multivariate mixture distribution with
k = 2.

3. Estimation of linear models

We consider the linear model

y = β0 ι + Xβ + η (3.1)

where X is an (n × K) matrix, that is, we have n observations and K
regressors. For η we assume:

E[η] = 0 and cov[η] = σ2
η I. (3.2)

The least squares estimator of β is given by

β̂ =
(
X′MιX

)−1
X′Mιy = β +

(
X′MιX

)−1
X′Mιη (3.3)

with
Mι = In − (1/n) ιι′ .

In the following we assume that only anonymized variables ya and Xa are
available from

ya = y � uy and Xa = X � Ux , (3.4)

3The symbol ι denotes a vector of ones.
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where � denotes the Hadamard product. More exactly, the vector ya and
the matrix Xa are given by

(ya)′ = (y〈1〉 · uy〈1〉, y〈2〉 · uy〈2〉, . . . , y〈n − 1〉 · uy〈n − 1〉, y〈n〉 · uy〈n〉)

(3.5)

(Xa)′ = (xa〈1〉, . . . ,xa〈K〉) = (x〈1〉 � ux〈1〉, . . . ,x〈n〉 � ux〈n〉) ,

where x〈i〉 is K-dimensional and contains the elements of the i-th row of the
matrix X. Correspondingly, the vector ux〈i〉 contains the elements from the
i-th row of U. For each observation i, i = 1, . . . , n , now the error factor
model (2.1) holds:

uy〈i〉 = 1 + δ D〈i〉 + εy〈i〉 ,

ux〈i〉 = (1 + δ D〈i〉) ι + εx〈i〉 . (3.6)

If we use the “naive” least squares estimator

β̂
a

=
(
Xa′MιX

a
)−1

Xa′Mιy
a

and assume that Q from

plim
1

n
X′MιX ≡ Q (3.7)

is nonsingular, then we obtain (see Ronning (2007a) for details)

plim β̂
a

= S−1



 Qβ + {β0 µx + (Q + µxµ′
x)β} � cov[ux, uy]



 (3.8)

with

S = cov[ux] �
{
Q + µx µ′

x

}
+ Q

where µx is the mean vector of the K regressors, cov[ux] is the (n × n)
covariance matrix of ux and cov[ux, uy] denotes the n-dimensional vector of
covariances of ux with uy. Consistency will only be obtained if the two just
mentioned expressions regarding covariances are equal to zero. For the error
factor model (2.1) these two expressions are given by

cov[ux] = σ2
εI + δ2 ιι′ , cov[ux, uy] = δ2 ι .

Therefore, consistency will be obtained if both δ and σ2
ε are zero. If only

the vector cov[ux, uy] is zero, then we have the result for the special case
when only the regressors are anonymized. Note that in the multiplicative
case considered here also the parameter β0 from (3.1) influences the bias of
the “naive” estimator.
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4. Estimation of linear panel models

We now consider the linear panel model with individual random effects
which we write as

yit = β0 +

K∑

k=1

βk xitk + τi + ηit , i = 1, . . . , n , t = 1, . . . T , (4.1)

or more compactly

y = β0 ι + Xβ + τ + η (4.2)

with

X =




X〈1〉
X〈2〉
...
X〈n − 1〉
X〈n〉




, y =




y〈1〉
y〈2〉
...
y〈n − 1〉
y〈n〉




,

X〈i〉 =
(

x1〈i〉 x2〈i〉 . . . xK−1〈i〉 xK〈i〉
)

, i = 1, . . . , n ,

x′
k〈i〉 = (xi1k, xi2k, . . . , xi,T−1,k, xiTk) , k = 1, . . . ,K ,

y′〈i〉 = (yi1, yi2, . . . , yi,T−1, yiT ) .

Moreover, the random vector of individual effects has the following form:

τ =




τ 〈1〉

τ 〈2〉

...
τ 〈n − 1〉

τ 〈n〉




and τ 〈i〉 = τi ιT .

We estimate the vector β from (4.2) by the so-called “within”-estimator

β̂W = (X′ MW X)−1 X′ MW y , (4.3)

where the symmetric idempotent matrix MW is given by

MW = InT − W (W′ W)−1 W′ = In ⊗

(
IT −

1

T
ιT ι′T

)

with
W = In ⊗ ιT .

If only anonymized variables are available, we use the “naive” estimator
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β̂
a

W = (Xa′ MW Xa)−1 Xa′ MW ya , (4.4)

which has the same structure as (4.3).
Again we apply the error factor model which however now has to be

specified for each period t. Since proportionality should also be preserved
over periods (compare the discussion in Section 2), the following specification
is used for anonymization:

xa
itk = xitk (1 + δDi + εitk) , k = 1, . . . ,K,

ya
it = yit (1 + δDi + εity) .

Note that the same random variable Di is used for all x’s as well as for y in
all T periods!

In Ronning (2007a) it is shown that the probability limit (for n → ∞) of
the (naive) “within” estimator (4.4) is given by

plim β̂
a

W =


cov[x] + σ2

ε

(1+δ2)




σ2
1 + µ2

1
. . .

σ2
K + µ2

K







−1

cov[x]β ,

(4.5)
where cov[x] contains the second moments of the K regressors, that is,

cov[x] =




σ2
1 σ12 . . . σ1K

σ21 σ2
2 . . . σ2K

...
...

. . .
...

σK1 σK2 . . . σ2
K


 .

If only the regressors are anonymized, the probability limit is

plim β̂
a

W = 1
1+δ2


cov[x] + σ2

ε

(1+δ2)




σ2
1 + µ2

1
. . .

σ2
K + µ2

K







−1

cov[x]β

(4.6)
and therefore differs only by the factor 1/(1 + δ2) < 1 from the result in
(4.5).

Note that both probability limits have the form

(A + B)−1 Aβ

with both A and B being positive definite so that the bias has the well-
known “shrinkage property” of the standard errors-in variables model with
additive measurement errors whereas for cross-section data even the sign of
the (asymptotic) bias cannot be assured (see (3.8)). Moreover consistency
of the naive estimator (4.4) is obtained in both cases for any value of δ if
the variance σ2

ε is equal to zero.
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5. Concluding remarks

Since for anonymized data the parameters of the anonymization method
will be known, it is straightforward – at least in linear models – to derive
bias-corrected (and therefore consistent) estimators from the above results.
We will illustrate this for the estimation from panel data discussed in Section
4.

From (4.5) we have immediately the following consistent estimator for the
case of all variables being jointly anonymized:

β̂
a,corr

W = cov[x]−1


cov[x] +

σ2
ε

1 + δ2




σ2
1 + µ2

1
. . .

σ2
K + µ2

K





 β̂

a

W .

(5.1)
Although δ and σ2

ε are known, this estimator cannot be used directly since
cov[x] and µx are unknown. However employing the method of moments we
obtain from

̂cov[Xa] =
(
σ2

εI + δ2ιι′
)
�
(
ĉov[x] + µ̂xµ̂x

′
)

+ ĉov[x] (5.2)

=
(
σ2

εI + δ2ιι′ + ιι′
)
� ĉov[x] +

(
σ2

εI + δ2ιι′
)
� µ̂xµ̂x

′

the following estimator for cov[x]:

ĉov[x] =
{

̂cov[Xa] −
(
σ2

εI + δ2 ιι′
)
� µ̂xµ̂x

′
}

÷
(
σ2

εI + (1 + δ2) ιι′
)

,

(5.3)

where ÷ denote element-wise division (Hadamard division) and ̂ indicate
estimates. Additionally, it should be exploited that the mean of the “origi-
nal” regressors and the anonymized regressors are equal and therefore

µ̂x = µ̂a
x .

Substituting these estimates for the unknown moments in (5.1) leads to an
operational form of the consistent estimator of β in (4.2).

Note that such explicit solutions are only possible in case of linear models.
For nonlinear models the SIMEX procedure first proposed by Cook and
Stefanski (1994) (see also Carroll et al. (2006)) could be applied. However,
in case of correlated errors some modifications are necessary since in the
simulation step the correlation between errors of different variables should
be taken into account. This has been examined in Ronning and Rosemann
(2008).
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Appendix. Mixture distributions

For an arbitrary number k of random variables Wi with density function
fi(w) the density of a mixture of these random variables is given by

g(u) =

k∑

i=1

αi fi(u) , 0 < αi < 1 ,
∑

i

αi = 1 ,

with expectation

E[U ] =
k∑

i=1

αi µi ,

and variance

V [U ] =
k∑

i=1

αi (σ2
i + µ2

i ) +

(
∑

i

αi µi

)2

.

In the multivariate case the r-dimensional random vector U follows a
(multivariate) mixture distribution if its joint density is given by

g(u1, u2, . . . ur) =

k∑

i=1

αi fi(u1, u2, . . . , ur) (1A)

with expectation

E[U] =
k∑

i=1

αi µi (2A)

and covariance matrix

cov[U] =
k∑

i=1

αi

(
Σi + µi µi

′
)
−

(
k∑

i=1

αi µi

) (
k∑

i=1

αi µi

)′

(3A)

where µi and Σi denote the expectation and the covariance matrix, respec-
tively, of the i-th random vector Wi , i = 1, . . . , k.
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