
ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA
Volume 12, 2008

The method of three-parameter Weibull

distribution estimation

Vaida Bartkutė and Leonidas Sakalauskas

Abstract. In this paper we develop Maximum Likelihood (ML) and
Improved Analytical (IA) numerical algorithms to estimate parameters
of the Weibull distribution, namely, location, scale and shape parame-
ters, using order statistics of a noncensored sample. Since ML method
leads to multiextremal numerical problem we establish conditions to lo-
calize extremes of the ML function, which enables us to avoid problems
related with ML estimation failure and to create a simple estimation
procedure by solving one-dimensional equation. IA estimation also has
been developed by solving the equation in one variable. The estimates
proposed are studied by computer modeling and compared with the the-
oretical ones with respect to sample size and number of order statistics
used for estimation. Recommendations for implementation of the esti-
mates are also discussed.

1. Introduction

Weibull distribution (Weibull, 1951) has many applications in engineering
and plays an important role in reliability and maintainability analysis. The
Weibull distribution is one of the extreme-value distributions which is applied
also in optimality testing of Markov type optimization algorithms (Haan
(1981), Zilinskas & Zhigljavsky (1991), Bartkute & Sakalauskas (2004)). Be-
cause of useful applications, its parameters need to be evaluated precisely,
and efficiently. However estimating the parameters of a three-parameter
Weibull distribution has historically been complicated since classical estima-
tion procedures such as ML estimation have become almost too fraught to
implement. Some questions of estimation of the location, scale and shape
parameters of this distribution for both censored and noncensored samples
were considered by several authors (Rockette et al. (1974), Lemon (1975),
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Hirose (1991), etc.). However, iterative computational methods for the esti-
mation are needed in most cases (Hirose (1991), Bartolucci (1999)). In the
paper Bartkute & Sakalauskas (2007) it was proposed an approach for three-
parameter Weibull estimation solving univariate equations. In this paper, we
develop in details two algorithms (ML and IA) for estimating Weibull param-
eters, namely, location, scale and shape parameters, using order statistics of
a noncensored sample and making some simplifications which enable us to
construct reliable and computationally efficient procedures for estimation.

2. Maximum likelihood method

The three-parameter Weibull distribution (Weibull, 1951) has the cumu-
lative distribution function (cdf):

W (x, α, c,A) = 1 − e−c·(x−A)α

, α > 0, x > A, c > 0, (1)

where c,A and α denote the scale, location and shape parameters, respec-
tively.

In this paper we compare analytical and ML methods for the estimation of
these parameters by order statistics of a noncensored sample. The standard
ML method for estimating the parameters of the Weibull model can have
problems since the regularity conditions are not sometimes met, i.e., the
ML estimate does not exist (Blischke (1974), Zanakis & Kyparisis (1986),
Murthy et al. (2004)). The probability of existence of ML estimator is
studied further in more details. Besides, numerical implementation of the
method requires complicated optimization software. To overcome the “non-
regularity” and computational problems just mentioned, we will apply a
modification suggested by Hall (1982).

Let m be the number of order statistics η(1) 6 η(2) 6 . . . 6 η(m) from the
sample of size N from the Weibull distribution. Then likelihood function of
these order statistics can be expressed as follows (Hall (1982), Balakrishnan
& Cohen (1990)):

Φη(1),η(2),...,η(m)
(x1, x2, . . . , xm) =

N !

(N − m)!
·
(

1 − W (xm)
)N−m

·
m
∏

j=1

w(xj),

where

w(x) =
dW (x)

dx
is the density function.

Now we may write down likelihood function for the Weibull distribution
which depends on three parameters c, A, and α. Generally ML equations
are nonlinear in these three parameters and they can be solved only using
nonlinear optimization techniques.

Let us propose a modification to simplify the estimation. From the Taylor
expansion of cdf (1) we have:
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W (x, α, c,A) = c(x − A)α + o
(

(x − A)α
)

. (2)

Note, order statistics are concentrated in the neighbourhood of the mini-
mum point when sample size increases faster than number of order statistics.
Thus the shape of the distribution in the neighborhood of the minimum point
characterizes best the behavior of order statistics. Due to this reason it is
enough to study only the first term of the distribution (2) (Hall (1982)).
Hence consider instead of the asymptotic expansion (2) the main term in it
for x ∈ [A,A + δ]:

c(x − A)α. (3)

Now the likelihood function is of the form:

L(η(0), . . . , η(m);A, c;α) =
N !

(N − m)!
· (c · α)m

(

1 − c · (η(m) − A)α
)N−m

·
m
∏

j=1

(η(j) − A)α−1.

(4)

Derivatives of the log-likelihood function lnL = ln
(

L
(

η(1), . . . , η(m);
A, c;α)) are:

∂ ln L

∂α
=

m

α
− (N − m) ·

c(η(m) − A)α · ln(η(m) − A)

1 − c(η(m) − A)α
+

m
∑

j=1

ln(η(j) − A);

∂ ln L

∂c
=

m

c
− (N − m) ·

(η(m) − A)α

1 − c(η(m) − A)α
;

∂ ln L

∂A
= (N − m) ·

c · α(η(m) − A)α−1

1 − c(η(m) − A)α
− (α − 1) ·

m
∑

j=1

1

η(j) − A
.

Setting the partial derivatives equal to 0, we get estimates α̂, ĉ:

α̂ =
m

∑m−1
j=1 ln(1 + βj(Â))

, (5)

ĉ =
m

N(η(m) − Â)α
, (6)

where βj(Â) =
η(m)−η(j)

η(j)−Â
and Â, Â < η(1), is the solution of the equation:

1
∑m−1

j=1 ln(1 + β
j
(Â))

−
1

∑m−1
j=1 βj(Â)

=
1

m
. (7)

Denote

y =
η(m) − η(1)

η(1) − Â
, zj =

η(m) − η(j)

η(m) − η(1) + y · (η(j) − η(1))
, j = 1, . . . ,m − 1. (8)
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Define the function F (y) as

F (y) =
1

∑m−1
j=1 ln(1 + y · zj)

−
1

∑m−1
j=1 y · zj

−
1

m
, (9)

Note, due to absolute continuity of the distribution (1), the assumption
η(i) 6= η(j), i 6= j, i, j = 1, . . . ,m, holds with probability 1.

It is easy to show that the derivative of the ML function with respect to
A, expressed through y by (5), (6), and function (9) are of opposite sign and
equal to zero at the same points. Solution y∗ of equation F (y) = 0 can be
finite or not. If the solution exists, the ML estimator is obtained for y∗ such
that the function F (y) changes sign at F (y∗).

In order to examine the existence of the solution we need to explore be-
havior of the function (9) and its first order derivative in neighborhood of
zero and infinity. Differentiation of (9) gives us:

F ′(y) =
1 + (η(m) − η(1)) ·

∑m−1
j=2

(zj)
2

η(m)−η(j)

y2 ·
(

1 +
∑m−1

j=2 zj

)2

−

1
1+y

·
(

1 +
∑m−1

j=2 zj

)

(

ln(1 + y) +
∑m−1

j=2 ln(1 + y · zj)
)2 .

(10)

Straightforwardly

lim
y→∞

F (y) = −
1

m
(11)

and

lim
y→∞

F ′(y) = 0. (12)

Taking into account corresponding limits we obtain

lim
y→0

F (y) =
1

2
·

∑m−1
j=1 (η(m) − η(j))

2

(
∑m−1

j=1 (η(m) − η(j))
)2 −

1

m
(13)

and

lim
y→0

F ′(y) =
2
3 ·
∑m−1

j=1 (η(m) − η(j)) ·
∑m−1

j=1 (η(m) − η(j))
3

(
∑m−1

j=1 (η(m) − η(j))
)3

· (η(m) − η(1))

−
3
4 ·
(
∑m−1

j=1 (η(m) − η(j))
2
)2

(
∑m−1

j=1 (η(m) − η(j))
)3

· (η(m) − η(1))
.

(14)

Denote the maximum point ymax = arg max06y<∞ F (y).
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Proposition 1. Let η(1) < η(2) < . . . < η(m). If F (ymax) > 0, 0 < ymax <

∞, and

1

2
·

m−1
∑

j=1

(η(m) − η(j))
2 ·
(

m−1
∑

j=1

(η(m) − η(j))
)

−2
6

1

m
, (15)

then equation F (y) = 0 has a solution, y∗ > 0, and the function F (y)
changes its sign at F (y∗). If F (ymax) > 0, 0 < ymax < ∞, and

8

9
·

m−1
∑

j=1

(η(m) − η(j)) ·
m−1
∑

j=1

(η(m) − η(j))
3 −

(

m−1
∑

j=1

(η(m) − η(j))
2
)2

6 0, (16)

then the function F (y) has the minimum point 0 < y∗ < ∞.

Proposition 1 follows from formulas (11)–(14).

We established, in fact, that function F (y) has one maximum point, 0 <

ymax < ∞. This together with Proposition 1 helps us to localize the interval
of the solution of the equation F (y) = 0. Extremal points as well as the
solution of equation (7) can be found by dichotomy or Newton methods using
expressions (9) of function F (y) and its derivative (10) and Proposition 1. If
we use Newton method with initial value y0 = 0, and apply (9), (13), (14),
then we obtain

y1 =
4

3
(η(m)−η(1)) ·

m−1
∑

j=1

(η(m)−η(j))
3

·
1
2 ·
∑m−1

j=1 (η(m)−η(j))
2 ·
(
∑m−1

j=1 (η(m)−η(j))
)

−2
− 1

m
(
∑m−1

j=1 (η(m)−η(j))2
)2
− 8

9 ·
∑m−1

j=1 (η(m)−η(j)) ·
∑m−1

j=1 (η(m)−η(j))3

(17)
which is used as an initial value for numerical solving of (7).

After substituting y∗ into (8), parameters α̂, ĉ and Â can be expressed as

Â = η(1) −
η(m) − η(1)

y∗
, (18)

α̂ =
m

∑m−1
j=1 ln

(

1 +
y∗(η(m)−η(j))

(η(m)−η(1))+y∗(η(j)−η(1))

)

, (19)

ĉ =
m

N · (η(m) − η(1))α̂ ·
(

1 + 1
y∗

)α̂
. (20)

Equation (7) has no solution if maximum of F (y) is negative and 0 6

y∗ < ∞. In the last case we propose to take Â = η(1), y∗ = ∞ and α = 0.
If condition (15) does not hold then equation (7) has a solution at the

point in which the likelihood function obtains minimum. Then likelihood
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function has no maximum in the interval 0 < y < ∞. In this case we
propose to take Â = −∞, y∗ = 0 ir α = ∞.

Computer modeling results for the ML approach are given in Section 4.

3. Analytical estimation

A simple analytical estimate of the shape parameter was proposed by
Haan (1981):

α̂ = ln
(m

q

)

·

(

ln
(η(m) − η(1)

η(q) − η(1)

)

)

−1

, (21)

where N → ∞, m2

N
→ 0, m → ∞, q

m
→ τ , 0 < τ < 1. Haan (1981) and

Zhigljavsky (1985) recommend to take τ = 0.2.
Computer simulation shows that the estimator (21) is biased and this

bias increases when α increases. Better results are obtained when η(1) is
changed by a linear estimate of the location parameter (Balakrishnan &
Cohen (1990)):

Am,N = η(1) − c(α,m) · (η(m) − η1), (22)

where c(α,m) =
m!·Γ

(

1+ 1
α

)

Γ
(

1+m+ 1
α

)

−m!·Γ
(

1+ 1
α

) .

After simplification we obtain

c(α,m) =

( m
∏

j=1

(

1 +
1

j · α

)

− 1

)

−1

.

We can assume again η(i) 6= η(j), i 6= j, i, j = 1, . . . ,m, with probability 1
due to absolute continuity of measure (1).

Thus better estimate is given by the solution α∗ of the equation

α∗ = ln
(m

q

)

·

(

ln
(

m
q

)

α̂
+ ln

(1 + c(α∗,m)

1 + c(α∗, q)

)

)

−1

= ln
(m

q

)

·

(

ln
(η(m) − η(1)

η(q) − η(1)

)

+ ln
(1 + c(α∗,m)

1 + c(α∗, q)

)

)

−1

,

where α̂ is taken from (21).
To study this equation we denote

f(z, α) =
ln
(

m
q

)

ln(z) + ω
(

1
α

) , (23)
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where

z =
η(m) − η(1)

η(q) − η(1)
,

ω(x) = ln

(

1 −

( q
∏

j=1

(

1 +
x

j

)

)

−1)

− ln

(

1 −

( m
∏

j=1

(

1 +
x

j

)

)

−1)

,

x =
1

α
.

Thus, the improved estimate must satisfy the equality:

α∗ = f(z, α∗). (24)

The solution of (24) is obtained by a simple iteration method:

αt+1 = f(z, αt), (25)

where α0 is the initial value.

Lemma 1. Equation (24) has solution if z >
(
∑m

j=1
1
j

)

·
(
∑q

j=1
1
j

)

−1
.

The proof is given in Appendix.

Lemma 2. The derivative of f(z, α) in (23) is bounded at α = α∗,

f ′(z, α∗) 6
1

2
·

∑m
j=q+1

1
j
−
∑m

j=1
1
j2 ·
(
∑m

j=1
1
j

)

−1

ln(m) − ln(q)

+

∑q
j=1

1
j2 ·
(
∑q

j=1
1
j

)

−1

ln(m) − ln(q)
6

1

2
.

(26)

The proof is given in Appendix.

Theorem 1. Assume z >
∑m

j=1 j−1 ·
(
∑q

j=1 j−1
)

−1
. Then for any 1

2 <

ν < 1 there exists ε > 0 such that the sequence (25) converges to the solution
of (24) with linear rate: |αt − α∗| = O(vt) if |α0 − α ∗ | 6 ε.

The proof is given in Appendix.

Initial value for the equation (24) is recommended to take of the form:

α0 = ln
(m

q

)

·

(

ln(z) + ln
(

q
∑

j=1

j−1
)

− ln
(

m
∑

j=1

j−1
)

)

−1

. (27)

4. Computer simulation

We investigate the methods developed by simulation. Samples from
Weibull distribution (c = 1, A = 0) have been simulated and parameters
have been estimated for each sample. Number of repetitions M = 100.

Fig. 1 presents dependence of the frequency of nonexistence of ML esti-
mate from number of iterations and number of order statistics (k = 10, 20, 30).
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Figure 1. Frequency of nonexistence of ML estimate (α = 5.0).

Figure 2. Histogram of ML estimators of α (α = 2.5, 100 trials).

Thus, the frequency of nonexistence of ML estimate decreases to zero when
k increases. In Figs. 2, 3 and 4 histograms of the ML estimator and IA
estimator are depicted. From these figures we can see that the variance of
estimators decreases when number of order statistics increases. Averages of
estimates of α, A, c are also presented in the Table 1 for different sample
size N and different numbers of order statistics m and q.

It follows from simulation that ML and IA estimators enable us to evalu-
ate three parameters of Weibull distribution with tolerable accuracy, when
number of order statistics increases. If number of order statistics is taken
small (m < 40, α 6 5), ML estimator may not exist. In order to obtain
reliable estimates of Weibull distribution when shape parameter α increases,
sample size and number of order statistics should increase too. Say, when
α = 2.5, it is enough to take only m = 100, q = 20. When α = 5.0, more
order statistics are needed for the three-parameter Weibull distribution es-
timation, e.g. m = 500, q = 100. The average variance of ML estimates
is less than variance of analytical estimates that is in correspondence with
theoretical properties of ML estimators.
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Table 1. Monte-Carlo averages of estimates of α (100 tri-
als) (MLE – maximum likelihood estimator, AE – analytical
estimator, IAE – improved analytical estimator)

m = 100, q = 20, α = 2.5, c = 1, A = 0

α Variance of α A c

N = 1000

MLE 2.4254 0.2776 0.0144 1.032
AE 2.0302 0.0904 0.0195 1.2072
IAE 2.6107 0.4560 − 0.0090 1.0346
N = 10000

MLE 2.4342 0.3747 0.0038 1.1917
AE 2.0462 0.1507 0.0063 1.6540
IAE 2.7188 1.1151 -0.0077 1.1673
N = 20000

MLE 2.3774 0.4143 0.0046 1.4267
AE 1.9687 0.1063 0.0072 1.9706
IAE 2.4981 0.5099 − 0.0007 1.3352
N = 50000

MLE 2.3979 0.5743 0.0030 1.3964
AE 1.9538 0.0961 0.0052 2.2493
IAE 2.4581 0.4129 0.0001 1.4110

m = 500, q = 100, α = 5.0, c = 1, A = 0

α Variance of α A c

N = 1000

MLE 4.9313 0.7662 0.0129 0.9881
AE 3.4307 0.1428 0.1157 0.9241
IAE 5.1715 1.7762 -0.0272 1.0286
N = 10000

MLE 5.0345 0.9592 -0.0035 1.0141
AE 3.4632 0.1715 0.0676 1.1513
IAE 5.2958 1.8477 -0.0284 1.0373
N = 20000

MLE 5.0011 1.2829 0.00006 1.0190
AE 3.4105 0.1493 0.0667 1.2233
IAE 5.1052 1.5999 -0.0089 1.0278
N = 50000

MLE 5.0931 1.0688 -0.0036 1.0156
AE 3.4121 0.1515 0.0564 1.3350
IAE 5.1278 1.9152 -0.0074 1.0335
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Figure 3. Histogram of ML estimators of parameter α, de-
pending on number of order statistics (α = 5, 100 trials).

Figure 4. Histogram of IA estimators of parameter α, de-
pending on number of order statistics (α = 5, 100 trials).

5. Conclusions

In this paper we present and compare the ML method and the IA esti-
mation method to estimate parameters of the Weibull distribution, namely,
location, scale and shape parameters, using order statistics of a noncen-
sored sample. In general, the ML method fails for three-parameter Weibull
distribution. We establish conditions to localize extremes of ML function
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that enables us to avoid problems related with ML estimation failure and to
create a simple estimation procedure by solving one-dimensional equation.
IA estimation also has been developed by solving equation in one variable.
Computer simulation confirmed that ML and IA methods allow us to esti-
mate Weibull distribution parameters for practical purposes with acceptable
accuracy.

We recommend ML and IA methods for three-parameter Weibull distri-
bution estimation. The practical recommendation is to increase numbers
of order statistics m and q to obtain reliable estimates. When estimated α

increases, the number of order statistics should increase too.

Appendix

Proof of Lemma 1. The derivative of the function ω(x) is

ω′(x) =

q
∑

j=1

( 1

x + j

)

·

( q
∏

j=1

(

1 +
x

j

)

− 1

)

−1

−
m
∑

j=1

( 1

x + j

)

·

( m
∏

j=1

(

1 +
x

j

)

− 1

)

−1

.

(1A)

Now prove that
∑q

j=1

(

1
x+j

)

·
(
∏q

j=1

(

1 + x
j

)

− 1
)

−1
increases when q

increases.
Upon differentiating we have:

Sq(x) =

( q
∏

j=1

(

1 +
x

j

)

)

′

=

q
∑

j=1

( 1

x + j

)

·

q
∏

j=1

(

1 +
x

j

)

> 0,

S′

q(x) =

q
∏

j=1

(

1 +
x

j

)

(

( q
∑

j=1

1

x + j

)2

−

q
∑

j=1

( 1

x + j

)2
)

> 0. (2A)

Further,
∑q+1

j=1

(

1
x+j

)

∏q+1
j=1

(

1 + x
j

)

− 1

=

(

∏q
j=1

(

1 + x
j

)

− 1
)

· 1
x+q+1 − x

q+1 ·
∑q

j=1

(

1
x+j

)

·
∏q

j=1

(

1 + x
j

)

(

∏q
j=1

(

1 + x
j

)

·
(

1 + x
q+1

)

− 1
)(

∏q
j=1

(

1 + x
j

)

− 1
)

+

∑q
j=1

(

1
x+j

)

∏q
j=1

(

1 + x
j

)

− 1

6

∑q
j=1

(

1
x+j

)

∏q
j=1

(

1 + x
j

)

− 1

(3A)
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by virtue of the Lagrange formula and

( q
∏

j=1

(

1 +
x

j

)

− 1

)

= x · Sq(ξ) 6 x · Sq(x)

= x ·

q
∑

j=1

( 1

x + j

)

·

q
∏

j=1

(

1 +
x

j

)

, 0 6 ξ 6 x.

Thus ω′(x) > 0 because q < m. It follows that function ω(x) increases
monotonically from the limit

lim
x→0

ω(x) = ln
(

q
∑

j=1

1

j

)

− ln
(

m
∑

j=1

1

j

)

, (4A)

obtained by L’Hôpital’s Rule, to limx→∞ ω(x) = 0. The function f(z, α)

monotonically increases from limα→0 f(z, α) =
ln
(

m
q

)

ln z
to limα→∞ f(z, α) =

ln
(

m
q

)

−
(

ln z + ln
(
∑q

j=1
1
j

)

− ln
(
∑m

j=1
1
j

)

)

, when α increases.

It follows from this that the curve f(z, α) has an intersection with line up

α, if z >
∑m

j=1
1
j
·
(
∑q

j=1
1
j

)

−1
. �

Proof of Lemma 2. We have

f ′(z, α) = ln
(m

q

)

·
1

α2
·

(

ln(z) + ω
( 1

α

)

)

−2

· ω′

( 1

α

)

.

Let us make sure that

lim
x→0

ω′(x) = lim
x→0





q
∑

j=1

( 1

x + j

)

·

( q
∏

j=1

(

1 +
x

j

)

− 1

)

−1

−

m
∑

j=1

( 1

x + j

)

·

( m
∏

j=1

(

1 +
x

j

)

− 1

)

−1




=
1

2
·

(

m
∑

j=1+q

1

j
+

q
∑

j=1

1

j2
·

( q
∑

j=1

1

j

)

−1

−
m
∑

j=1

1

j2
·

( m
∑

j=1

1

j

)

−1
)

.

(5A)

Now prove that ω′(x) is a monotonically decreasing function. This follows
from the inequality:

ω′′(x) = W (m,x) − W (q, x) 6 0,
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where

W (i, x) =

∑i
j=1

1
(x+j)2

·
(
∏i

j=1

(

1 + x
j

)

− 1
)

(
∏i

j=1

(

1 + x
j

)

− 1
)2

+

∏i
j=1

(

1 + x
j

)

·
(
∑i

j=1
1

x+j

)2

(
∏i

j=1

(

1 + x
j

)

− 1
)2 , i = 1, 2, 3, . . . .

However it is enough to prove that W (i, x) is decreasing in i, namely
W (i + 1, x) < W (i, x). This follows from the inequality

i
∑

j=1

1

x+j
6 x ·





( i
∑

j=1

1

x+j

)2

·

( i
∏

j=1

(

1 +
x

j

)

− 1

)

−1

+
1

2
·

( i
∑

j=1

1

(x+j)2
+

( i
∑

j=1

1

x+j

)2)




(6A)

after simple but rather cumbersome manipulation.
Since ω′(x) decreases monotonically from

lim
x→0

ω′(x) =
1

2
·





m
∑

j=q+1

1

j
+

m
∑

j=1

1

j2
·

( m
∑

j=1

1

j

)

−1

−

q
∑

j=1

1

j2
·

( q
∑

j=1

1

j

)

−1




6
1

2
· ln
(m

q

)

(7A)

to limx→∞ ω′(x) = 0, it follows that

f ′(z, α) 6
1

2
· ln2

(m

q

)

·
1

α2
·

(

ln(z) + ω
( 1

α

)

)

−2

. (8A)

This and equation (24) imply the Lemma. �

Proof of Theorem 1. The solution of equation (24) α∗ exists due to as-
sumptions and Lemma 1. By virtue of Lemma 2 we have that for any
1
2 < ν < 1 there exists ε > 0 such, that |f ′(α)| 6 ν, if |α − α ∗ | 6 ε. Thus,
according to Lagrange theorem and (24), (25) we have:

|αt − α∗| 6

∣

∣

∣f ′
(

z, α∗ + τ(αt−1 − α∗)
)

∣

∣

∣ · |αt−1 − α∗|

6 q · |αt−1 − α∗| 6 qt · |α0 − α∗|,

because |f ′(z, α∗ + τ(αt−1 − α∗))| 6 q, t = 1, 2, . . .. �
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