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Approximating the integrated tail distribution

Ants Kaasik and Kalev Pärna

Abstract. We propose a natural approximation for the estimation of
the distribution function of an integrated tail distribution of a sub-
exponential distribution and prove that the approximation is almost
surely uniformly convergent. The behaviour of the approximating
error is studied using simulation. Knowing the distribution function of
an integrated tail distribution is useful in the context of GI/G/1 queue
with heavy-tailed service times and in the context of risk process with
heavy-tailed claims.

1. Introduction

We start with two examples. Consider a standard M/G/1 queue process
with service time distribution B. The traffic intensity, denoted by ρ, is
defined as the ratio of mean service time µ and mean interarrival time, both
of which are assumed to be finite. It is natural to assume that ρ < 1. The
integrated tail distribution of B is defined as BI(x) =

∫ x
0 B̄(y)dy/µ, where

B̄ = 1 − B. It is well known that W , the steady-state waiting time of the
queue, has the same distribution as SN = Y1 + . . . + YN , where Yi > 0 are
independent and have distribution BI and N is an independent geometric
random variable with P(N = n) = (1 − ρ)ρn (see [1, p. 237]). But it holds
even for GI/G/1 queue process that

P(W > u) ∼ ρ

1 − ρ
B̄I(u), (1)

whenever BI and B are subexponential (subexponential distributions are a
sub-class of heavy-tailed distributions, see Section 2 for precise definition)
(see [1, p. 296]); we have used the notation a(x) ∼ b(x) for expressing that
limx→∞ a(x)/b(x) = 1. In insurance risk context, the probability of ultimate
ruin of a company with initial reserve u can also be calculated as P(SN > u)

Received October 12, 2007.
2000 Mathematics Subject Classification. 62G30, 60K20.
Key words and phrases. Cramér-Lundberg model, GI/G/1 queue, subexponential dis-

tribution, integrated tail distribution.

79



80 ANTS KAASIK AND KALEV PÄRNA

if we assume the Cramér-Lundberg model. The above approximation can
be used whenever the integrated tail distribution of claims is subexponential
(see [1, p. 399]).

When the distribution B is known, BI can be directly calculated and ei-
ther the approximation (1) or simulation can be used for finding the approx-
imate probability of a waiting time exceeding a large value u or a company
with initial reserve u going bankrupt. In [2] two effective algorithms for sim-
ulating P(SN > u) in case BI has a regularly varying or a Weibull-like tail
are presented. However normally B is not known beforehand and thus one
firstly needs to choose a suitable class of distributions for the service times
or claims and then estimate the parameter(s). There is room for subjective
decisions when it comes to fixing a class of distributions, however. Thus it
would seem more natural to avoid fixing a specific class and try to approxi-
mate the distribution function of BI directly. This paper is concerned with
providing and examining such an approximation.

The paper is organized as follows. In Section 2 we first present an approx-
imation and then prove that our approximation is uniformly convergent. In
Section 3 we study the convergence rate of the approximation numerically
(and find out that the rate is dependent on the tail of B). Finally, in Section
4 we present a brief discussion.

2. Main result

We start this section by making precise the definition of subexponentiality.

Definition 2.1. A positive random variable X with distribution function
B is called subexponential if for all n ∈ N it holds that

lim
x→∞

B∗n(x)

B̄(x)
= n, (2)

where B∗n denotes the n-fold convolution of B.

Remark 2.1. For most practical cases B is subexponential when BI is
and vice versa, thus it is usally enough to assume that the service time
distribution is subexponential to be able to use the approximation (1); good
reference for subexponential distributions is [4, pp. 36–57].

Consider the integrated tail distribution BI(x) =
∫ x
0 B̄(y)dy/µ as before.

The idea is to replace µ with the sample mean and B(y) with the empirical
distribution function. The following theorem shows that such an approxi-
mation has good theoretical properties.
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Theorem 2.1. Let Xn be a sequence of independent identically distributed
(IID) positive random variables with a finite mean µ and cumulative distri-
bution function B with Bn its empirical counterpart. Denote the sample
mean by µn = (X1 + . . . + Xn)/n. Then

P

(

sup
x

∣

∣

∣

∣

∫ x
0 B̄n(y)dy

µn
−

∫ x
0 B̄(y)dy

µ

∣

∣

∣

∣

n−→ 0

)

= 1. (3)

Proof. Strong law of large numbers (SLLN) and Glivenko-Cantelli theo-
rem hold simultaneously on a set which has probability one. Fix an ω from
that set and also fix an ε > 0. Because µ is finite there exists a K > 0 such
that

∫ ∞

K
B̄(y)dy <

εµ

6
. (4)

Due to SLLN we have n1, n2 and n3 such that when n > n1

|µn − µ| < min

{

εµ

6
, µ

−1 +
√

1 + 2ε/3

2

}

, (5)

when n > n2

|B̄n(K) − B̄(K)| <
εµ

12K
, (6)

and when n > n3

∣

∣

∣

∣

∫ ∞

K
ydB̄n(y) −

∫ ∞

K
ydB̄(y)

∣

∣

∣

∣

<
εµ

12
. (7)

Due to Glivenko-Cantelli theorem, there exists n4 such that when n > n4

sup
y

|B̄n(y) − B̄(y)| <
εµ

6K
. (8)
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Thus when n > max{n1, n2, n3, n4} we have
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as required. �

Remark 2.2. Theorem 2.1 is general and does not require the data to
come from any specific class of distributions, only the finiteness of mean is
necessary. However for the approximation (1) to work, the subexponentiality
requirements, as mentioned in Section 1, must be satisfied.

The empirical approximation BI
n(x) =

∫ x
0 B̄n(y)dy/µn is not an empirical

distribution function in the traditional sense: while being a proper distri-
bution function and piecewise linear it does not possess any discontinuity
points like empirical distribution functions do, however the distribution BI

n

does have finite support (the largest member of the sample is the right end-
point). This is the main reason why the supremum absolute error rather
than the supremum relative error is considered in the next section.
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3. Behaviour of the approximation error

First consider a cumulative distribution function F (x) and its empirical
counterpart Fn(x) based on IID random sample of size n, and denote the
supremum absolute error An = supx |F (x) − Fn(x)|. The Dvoretzky-Kiefer-
Wolfowitz inequality (given in [3]) states that we can estimate P(An > ε) 6

Ce−2nε2. The inequality can be used to construct a “confidence interval”
for F (x). Roughly speaking it states that the half-width of the confidence
interval converges to zero with rate 1/

√
n. Also due to the same inequality

(strengthened by [5]),

EAn 6

∫ 1

0
2e−2nx2

dx =

√

π

2n
(2Φ(2

√
n) − 1) <

√

π

2n
,

meaning that the bound for the mean supremum absolute error of an em-
pirical cumulative distribution function converges to zero with rate 1/

√
n.

In our case the Dvoretzky-Kiefer-Wolfowitz inequality obviously cannot
be used and we will use simulation to study the convergence rates of the
half-width of the confidence interval and mean of the supremum absolute
error. In the role of B we will use the finite-mean Pareto distribution
where B̄(x) = (1 + x)−α and α > 1, the heavy-tailed Weibull distribu-

tion where B̄(x) = e−xβ

and 0 < β < 1, and the log-normal distribution
where B̄(x) = Φ̄((ln x)/σ) where σ > 0, three the most prominent members
of the subexponential distributions.

For the Pareto distribution with parameter α, the integrated tail distribu-
tion is also Pareto but with parameter α− 1. First we simulated differently-
sized samples from the Pareto distribution with parameter 2 and 3 and
estimated the εn for which P(sup |BI

n(x)−BI(x)| > εn) = 0.05 (this is basi-
cally an estimation of the 0.95-quantile). The point estimates (produced by
20000 replicates) given in Table 1 seem to confirm Theorem 2.1 but show
that the approximation needs a huge sample size to give meaningful results.

Table 1. Half-width of the 95%-confidence interval for the
Pareto case

n α=2 α=3
100 0.2564 0.1769
1000 0.1192 0.0636
10000 0.0470 0.0212
100000 0.0181 0.0068

To gain insight into the rate of convergence of the half-width of the con-
fidence interval we simulate the ratio ε2n/εn. This ratio is 1/

√
2 = 0.7071

if the rate of convergence is 1/
√

n, bigger than that if the convergence is
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slower, and smaller otherwise. The results are complemented with confi-
dence intervals and presented in Table 2. One point estimate is based on
100000 total simulations. The conclusion from Table 2 is that the conver-
gence accelerates with the increase of the sample size but the rate does not
exceed 1/

√
n. Also the heavier the tail, the slower the rate of convergence

is. Further simulations (not presented here) show that for α ≈ 1 the rate of
convergence can be arbitrarily slow at first, and for large parameter values,
on the contrary, the rate of convergence approaches 1/

√
n extremely fast.

Table 2. Quantile ratio with 95%-confidence intervals for
the Pareto case

n α=2 α=3
100 0.7970 (0.7835;0.8094) 0.7459 (0.7342;0.7570)
1000 0.7593 (0.7424;0.7752) 0.7265 (0.7158;0.7373)
10000 0.7541 (0.7382;0.7706) 0.7092 (0.6995;0.7183)
100000 0.7350 (0.7201;0.7476) 0.7131 (0.7039;0.7222)

Finally we take a look at the average supremum error, which can be
regarded as a typical supremum error when using the aproximation. The
results in Table 3 show that it is roughly half of the 0.95-quantile. The
heaviness of the tail, once again, plays an important part in the size of the
error.

Table 3. Mean supremum absolute error for the Pareto case

n α=2 α=3
100 0.1319 0.0855
1000 0.0572 0.0306
10000 0.0230 0.0103
100000 0.0087 0.0033

We carried out similar simulations (in terms of replications and princi-
ples) for the Weibull distribution with parameter 1/3 and 1/2. In those

cases BI(x) = 1 − e−
3
√

x( 3
√

x +
3
√

x2/2 + 1) and BI(x) = 1 − e−
√

x(
√

x + 1),
respectively. The results are similar to the ones obtained in the Pareto case.
Table 4 shows that for small β the approximation can be rather inaccurate
when the sample size is not extremely large. The rate of convergence is de-
pendent on the tail of the distribution and with the increase of the sample
size it approaches but does not exceed 1/

√
n. The average supremum error

depends on the tail of B and is roughly the 0.95-quantile divided by 2.
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Table 4. Half-width of the 95%-confidence interval for the
Weibull case

n β=1/3 β=1/2
100 0.3675 0.2135
1000 0.1463 0.0704
10000 0.0481 0.0224
100000 0.0154 0.0071

Table 5. Quantile ratio with 95%-confidence intervals for
the Weibull case

n β=1/3 β=1/2
100 0.7688 (0.7612;0.7774) 0.7259 (0.7168;0.7351)
1000 0.7305 (0.7212;0.7399) 0.7046 (0.6952;0.7132)
10000 0.7100 (0.7017;0.7183) 0.7115 (0.7033;0.7195)
100000 0.7128 (0.7039;0.7215) 0.7009 (0.6922;0.7101)

Table 6. Mean supremum absolute error for the Weibull case

n β=1/3 β=1/2
100 0.1885 0.1027
1000 0.0700 0.0342
10000 0.0236 0.0110
100000 0.0076 0.0035

Finally, we simulated the log-normal case for the log-normal distribution

BI(x) = xe−σ2/2Φ̄[(log x)/σ] + Φ[(log x)/σ − σ] (the number of simulations
was left unchanged). The results are similar to the previous cases. Table 7
shows that when σ gets bigger (the tail of the original and the integrated
tail distribution gets heavier) the accuracy of the approximation decreases.

Table 7. Half-width of the 95%-confidence interval for the
log-normal case

n σ=1 σ=2
100 0.1431 0.4172
1000 0.0479 0.2118
10000 0.0152 0.0900
100000 0.0048 0.0326

The rate of convergence is also dependent on the tail of the distribution and
with the increase of the sample size it approaches but does not exceed 1/

√
n.
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The average supremum error is again roughly the 0.95-quantile divided by
2 as can be seen from Table 9.

Table 8. Quantile ratio with 95%-confidence intervals for
the log-normal case

n σ=1 σ=2
100 0.7309 (0.7210;0.7414) 0.8201 (0.8121;0.8274)
1000 0.7086 (0.7001;0.7179) 0.7888 (0.7759;0.8025)
10000 0.7082 (0.6995;0.7169) 0.7407 (0.7290;0.7542)
100000 0.7064 (0.6980;0.7147) 0.7220 (0.7082;0.7331)

Table 9. Mean supremum absolute error for the log-normal case

n σ=1 σ=2
100 0.0692 0.2367
1000 0.0231 0.1069
10000 0.0074 0.0429
100000 0.0023 0.0155

4. Conclusion

The approximation for the integrated tail distribution proposed in this
paper can be made to work in practice, but when the tail of the original
distribution is too heavy, the approximation falls apart in a sense that the
required sample size for an acceptable approximating error becomes very
large. Thus if size of the sample is under our control, the decision of how
large a sample to use still remains subjective. However, the main result of
the paper at least guarantees that the approximation is uniformly convergent
whenever the sample is made up of IID random variables with finite mean.
Simulations show that the convergence rate does not exceed 1/

√
n, but it is

reached with relatively small sample size when the random variables are not
too heavy-tailed. The rate of convergence can be arbitrarily slow, at first,
when the mean of the random variables “approaches infinity”.
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