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Estimation of the sample size required
for obtaining given sample coverage

Mihhail Juhkam and Kalev Pärna

Abstract. We consider sampling from populations with large number
of classes. The problem is to disclose a sufficiently big number of classes,
which represent a dominating part of population (e.g. 99%). In many
applications, e.g. in genetics, disclosure of all classes is not necessary,
since it can require a very large sample and, hence, is too costly. In this
paper we propose a method for estimation of the sample size, necessary
to achieve a given sample coverage. We apply the method to populations
where the class probabilities are the members of a geometric sequence.
A Monte Carlo study demonstrates that the method we propose gives
good results for values if the common ratio of the sequence is not too
close to 1.

1. Introduction

Suppose that a population is divided into mutually exclusive classes, but
the total number of classes is unknown. Sometimes it is necessary to draw
a sample that contains at least one object from each class. For example,
a biologist wishes to discover all species in an area, or a geneticist tries to
identify all genotypes in a population. However, increasing the sample size
and identification of the membership of objects is often costly. Therefore,
we may limit ourselves with discovering a sufficiently big number of classes,
which represent a dominating part of the population.

Let the unknown number of classes be s. Denote the probabilities of
classes by p1 ≥ p2 ≥ . . . ≥ ps > 0,

∑s
i=1 pi = 1. This sequence {pi}si=1 will

be called the class distribution of the population. Assume, for a moment,
the Poisson sampling scheme where the number of objects from the class
i in the sample follows the Poisson process with intensity pi, i = 1, . . . , s,
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and all s processes are independent from each other. The Poisson scheme is
natural sampling model in ecology where biologists count species that they
observe during a fixed time interval [0, ν].

The sample coverage is defined by

Cν :=
s∑
i=1

piI
ν
i ,

where

Iνi =
{

1, if the class i is represented in the sample up to time ν,
0, otherwise.

Since P {Iνi = 1} = 1 − e−νpi , i = 1, . . . , s, the mean value of the sample
coverage equals

ECν =
s∑
i=1

pi(1− e−νpi).

Let the required coverage be 1−η, where η is chosen close to zero. Suppose
that a relatively small sample (of size n) is drawn successively and we wish
to continue until the coverage 1 − η is achieved. One way to do this is to
estimate the sample coverage each time a certain portion of new objects is
drawn into the sample. The other possibility is to estimate the total sample
size n1−η, required to achieve the coverage 1−η, and then increase the initial
sample by n1−η − n units.

Estimation of the sample coverage was first discussed by Good [5] with
application in studies of the literary vocabulary and accident proneness. The
estimator proposed in the article was suggested by D. M. Turing and is called
the Turing estimator. It is given by

ĈTur = 1− t1
n
,

where t1 is the number of classes in the sample, which are represented by one
single object, and n is the sample size. The Turing estimator is derived using
the Bayes’ theorem. Normal limit law for this estimator has been proved by
Mao and Lindsay [7]:

∃δ :
Cν − ĈTur

δ

√
s→ N(0, 1)

as s → ∞. In contrast to the nonparametric approach, S. Engen [4] used
a Gamma distribution to model class probabilities. Engen’s idea was to
estimate first the parameters of the Gamma distribution f(p) and then use
them to estimate the sample coverage. Boender and Rinnooy Kan [2] applied
the Bayesian inference to estimate the sample coverage. Good and Toulmin
[6] discussed the estimation of the increase of the coverage when the sample
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size was increased. A closely related problem of estimation of the number of
undiscovered classes has been treated in [3], [8], and [9].

The main problem, which will be discussed in the present work is the
estimation of the sample size n1−η required to achieve a given coverage 1−η.
Sections 2 and 3 are preparatory — we present and analyze some useful
models of class distributions. It is shown that for large values of s it is
convenient to model the distribution of probabilities pi by a density function.
Also the procedures for deducing pi from a density function f(p) and vice
versa, building the density f(p) that produces given probabilities pi, are
presented. In Section 4 a general method for estimation of required sample
size n1−η is proposed. The method is applied for a special class distribution
in Section 5, where we assume that the class distribution {pi}si=1 is defined
by a decreasing geometric sequence

pi = abi, 0 < b < 1, i = 1, . . . , s. (1)

Such a class distribution (1) will be called the exponentially decreasing class
distribution. After showing an estimator b̂ for b, we will deduce the following
equation to find n1−η:

η =
b̂n1−η − 1

n1−η ln b̂
. (2)

The paper ends with a simulation experiment where the performance of our
method is studied.

2. Specifying the class distribution

Following the parametric approach, we assume that the class distribution
of the population is given by a parametric family of functions. We describe
two ways of determining class distributions: (1) the direct method, (2) the
method based on density functions.

2.1. Direct specification of the class distribution. Suppose we wish
to define a class distribution for the population with s classes. It can be
done as follows. Let ρ be a positive monotonically decreasing function on
the interval [1, s]. Introduce the normalizing coefficient

ρ0 =
s∑
i=1

ρ(i)

and let π(x) = ρ(x)/ρ0. Then

pi = π(i), i = 1, . . . , s,

form a class distribution satisfying

p1 ≥ p2 ≥ . . . ≥ ps > 0,
∑

pi = 1.

Examples are:
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(1) A constant function ρ(x) = c, c > 0 defines the class distribution with
equal class probabilities pi = 1/s, i = 1, . . . , s,

(2) A linearly decreasing function ρ(x, a, b) = b− ax, a > 0, b > as, defines
the class probabilities, which form an arithmetic sequence,

(3) An exponentially decreasing function ρ(x, b) = bx, 0 < b < 1, defines the
class probabilities, which are the terms of a geometric sequence.

2.2. Defining the class distribution by a density function. Except
for some simple parametric cases as those described above, for a very large
number of classes the direct method of specification of the class distribution
{pi} becomes cumbersome. Then a natural idea is to model the distribution
of probabilities pi by a suitable density function. This approach has been
earlier used in [4]. Let f(p) be a density function satisfying
(a) f(p) = 0 for p ≤ 0,
(b)

∫∞
0

f(p)
p dp <∞.

An algorithm, which uniquely defines a class distribution, is:
(1) Start with density f satisfying (a) and (b). Denote g(p) = f(p)/p, p > 0.
(2) Find the points 0 = ξs < ξs−1 < . . . < ξ1 < ξ0 =∞ such that∫ ξi−1

ξi

g(p)dp = 1, i = 1, . . . , s− 1, 0 <
∫ ξs−1

ξs

g(p)dp ≤ 1.

(3) Finally, define the class probabilities by

pi =
∫ ξi−1

ξi

f(p)dp, i = 1, . . . , s.

Since
s∑
i=1

pi =
s∑
i=1

∫ ξi−1

ξi

f(p)dp =
∫ ∞

0
f(p)dp = 1,

the obtained decreasing sequence {pi}si=1 is a valid class distribution, and is
uniquely given by the density function f . Although ξ0 =∞, but ξ1 < 1, as

1 =
∫ ξ0

ξ1

g(p)dp =
∫ ξ0

ξ1

f(p)
p
dp <

∫ ξ0

ξ1

f(p)
ξ1

dp <
1
ξ1
.

In the Figure 1 an example is shown where the class distribution is defined
by a Gamma density.

3. Finding a density that produces given class distribution

Here our aim is to show how to construct a density function f which
produces the same class distribution {pi}si=1 as that produced directly by a
function ρ (see Section 2.1). We will assume here that ρ is strictly decreasing
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Figure 1. Building the class distribution {p1, . . . , ps} by a
Gamma density. The five areas under the curve of g(p) are
equal to 1 (except for the leftmost one).

which also mean that strict inequalities p1 > p2 > . . . > ps > 0 hold. Hence,
the inverse function ρ−1 exists on the interval [ρ(s), ρ(1)].

3.1. General case. Let the class distribution {pi}si=1 be directly given by
a function ρ, i.e.

pi =
ρ(i)
ρ0

= π(i), i = 1, . . . , s.

We use the notation and relationships given in Section 2.2. Let f(p) be a
density which produces the class distribution {pi}si=1 and let g(p) = f(p)/p.
Then g must satisfy ∫ ξi−1

ξi

g(p)dp = 1, i = 1, . . . , s− 1

for a sequence {ξi}si=0 where ξi < pi < ξi−1. For simplicity, we also assume
that ∫ ξs−1

ξs

g(p)dp = 1.

Observe that for a large number of classes the difference between the three
quantities, ξi, ξi−1 and pi, is negligible and we can take ξi ≈ pi. If we define

G(p) =

∫ p
0 g(t)dt
s

, (3)

then for i = 1, . . . , s

G(pi) ≈ G(ξi) =
s− i
s

= 1− i

s
= 1− ρ−1(ρ0pi)

s
. (4)



94 MIHHAIL JUHKAM AND KALEV PÄRNA

The approximation (4) can be extended to the whole interval p ∈ [ξs, ξ0]

G(p) ≈ 1− ρ−1(ρ0p)
s

, p ∈ [ξs, ξ0].

From (3) we see that
g(p) = sG′(p),

providing
g(p) ≈ −

(
ρ−1(ρ0p)

)′
, p ∈ [ξs, ξ0]. (5)

Finally, by using relationship f(p) = pg(p), we get an approximate density
f that produces the class distribution {pi}si=1:

f(p) ≈ −p
(
ρ−1(ρ0p)

)′
, p ∈ [ξs, ξ0]. (6)

The bounds ξs and ξ0 in (6) are calculated from the following system of
equations: 

∫ ξ0
ξs
f(p)dp = 1,

∫ ξ0
ξs
g(p)dp = s.

(7)

3.2. Producing exponentially decreasing classdistribution. Here we
reveal the density which produces exponentially decreasing class distribution
defined by

ρ(x) = bx, 0 < b < 1. (8)

The inverse function ρ−1 is

ρ−1(p) =
ln p
ln b

.

The functions g and f are obtained from (5) and (6):

g(p) = −
(
ρ−1(ρ0p)

)′ = −( ln ρ0p

ln b

)′
= − 1

p ln b
, p ∈ [ξs, ξ0],

f(p) = pg(p) = − 1
ln b

, p ∈ [ξs, ξ0].

By solving the system (7) we obtain the values for ξs and ξ0:

ξs = − b
s ln b

1− bs
, ξ0 = − ln b

1− bs
. (9)

Therefore, the exponentially decreasing class distribution (8) is produced by
the uniform density

f(p) =
{
− 1

ln b , p ∈ [− bs ln b
1−bs ,−

ln b
1−bs ],

0, otherwise.
(10)
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4. Estimating the required sample size

In this section a novel method for estimation of the sample size n1−η,
required to achieve the sample coverage 1 − η, is proposed. The method is
applied to the exponentially decreasing class distribution and its goodness
is studied by a simulation experiment.

4.1. A general method for estimation of the required sample size.
Suppose that the class distribution is given by a parametric density f(p, ~θ).
The first step is to estimate the vector of parameters ~θ. For that we use the
sample values tk of so called size indices Tk, k = 1, 2, . . .. The size index Tk
is the number of the classes which are represented in the sample by exactly
k objects. Under the Poisson sampling scheme the mean value of the size
index during the time ν is equal to

E(Tk) =
s∑
i=1

(νpi)k

k!
e−νpi . (11)

For large number of classes, each summand in (11) can be approximated by

(νpi)k

k!
e−νpi ≈

∫ ξi−1

ξi

(νp)k

k!
e−νpg(p, ~θ)dp,

where g(p, ~θ) = f(p, ~θ)/p. Thus, the mean of the size index can be approxi-
mated by

E(Tk) ≈
∫ ∞

0

(νp)k

k!
e−νpg(p, ~θ)dp.

By replacing the first m mean size indices E(Tk) by their realizations tk, we
obtain the system of equations∫ ∞

0

(νp)k

k!
e−νpg(p, ~θ)dp = tk, k = 1, . . . ,m. (12)

The system (12) can be solved for ~θ using e.g. the method of least squares.
Let θ̂ be the least squares estimator of the parameter vector ~θ. Further, we
approximate the sample coverage by integral as follows:

ECν =
s∑
i=1

pi(1− e−νpi) ≈
s∑
i=1

∫ ξi−1

ξi

p(1− e−νp)g(p, ~θ)dp

=
∫ ∞

0
p(1− e−νp)g(p, ~θ)dp = 1−

∫ ∞
0

e−νpf(p, ~θ)dp.

Under the assumption of Poisson sampling scheme, the size n of the sample
drawn during time ν is a random variable with mean ν. In practice, however,
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the sample size is recorded more often than the sampling time. Thus, we
replace ν by n to obtain

E(Cn) ≈ 1−
∫ ∞

0
e−npf(p, ~θ)dp.

For n = n1−η, the required sample size, we have

E(Cn1−η) ≈ 1−
∫ ∞

0
e−n1−ηpf(p, ~θ)dp.

Here the mean coverage E(Cn1−η) can be approximated by 1−η, since Cn1−η

is the coverage at the moment when the event “the coverage is greater than
or equal to 1 − η” occurs. Now we replace the parameter ~θ by its estimate
θ̂. Therefore, an estimator of the required sample size is obtained by solving
(for n1−η) the equation

η =
∫ ∞

0
e−n1−ηpf(p, θ̂)dp. (13)

Next we apply the method to the exponentially decreasing class distribution.

4.2. Application to exponentially decreasing class distribution. We
know that the exponentially decreasing class distribution can be produced
by the uniform density (10). First simplify the expression of E(Tk):

E(Tk) ≈
∫ ξ0

ξs

(νp)k

k!
e−νpg(p, b)dp = − νk

k! ln b

∫ ξ0

ξs

pk−1e−νpdp, (14)

where ξs and ξ0 are defined by (9). Substituting t = νp into the integral
(14) we get

E(Tk) ≈ −
1

k! ln b

∫ νξ0

νξs

tk−1e−tdt. (15)

The latter integral can be expressed as∫ νξ0

νξs

tk−1e−tdt = Γ(k, νξs)− Γ(k, νξ0),

where Γ(k, c) is incomplete gamma function

Γ(k, c) =
∫ ∞
c

tk−1e−tdt,

which for integer values of k equals (see [1])

Γ(k, c) = (k − 1)!e−c
k−1∑
j=0

cj

j!
.
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Hence

E(Tk) ≈ −
1

k ln b

e−νξs k−1∑
j=0

(νξs)j

j!
− e−νξ0

k−1∑
j=0

(νξ0)j

j!

 .

Each term in parentheses is a sum of k first Poisson probabilities, one with
a small expectation (νξs) and the other with a large expectation (νξ0). Fur-
thermore, it can be shown that if s→∞, ν →∞ and νbs → 0, then1

E(Tk)→ −
1

k ln b
.

If the realizations tk of size indices Tk are available, then the following system
of equations is obtained:

tk = − 1
k ln b

, k = 1, 2 . . . . (16)

The system (16) provides us the least-squares (LS) estimate of ln b, by min-
imizing the sum

∞∑
k=1

(
tk +

1

kl̂n b

)2

.

The required LS estimate is

l̂n b = −
∑∞

k=1
1
k2∑∞

k=1
tk
k

= − π2

6
∑∞

k=1
tk
k

.

Let m be the size of the largest class represented in the sample. Then tk = 0,
k = m+ 1,m+ 2, . . . and we can write

l̂n b = − π2

6
∑m

k=1
tk
k

.

The estimator of the required sample size is obtained by substituting the
density

f(p) = − 1

l̂n b
into (13). This gives

η = − 1

l̂n b

∫ ξ0

ξs

e−n1−ηpdp.

After integration and replacing ξs by 0 the equation transforms to

η =
exp (−n1−ηξ0)− 1

n1−η l̂n b
.

1The same result can be drawn formally from (15) by replacing νξs ≈ 0, and νξ0 ≈ ∞,
and using Γ(k) = (k − 1)!.
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Provided that s → ∞, ξ0 can be replaced by −l̂n b. Thus the equation for
calculation of the required sample size n1−η takes the form

η =
exp

(
n1−η l̂n b

)
− 1

n1−η l̂n b

which is equivalent to (2) where b̂ = exp(l̂n b).

4.3. A simulation study. To study the performance of the proposed
method of estimation of the required sample size, a simulation experiment
was carried out. We simulated 100 multinomial samples, each of size n = 500,
from a population with s = 500 classes and exponentially decreasing class
distribution with b = 0.95, 0.97, 0.98 and 0.99. The required sample sizes
n̂0.99, n̂0.995 and n̂0.999 were estimated using the method proposed above.
The actual required sample sizes n0.99, n0.995 and n0.999 were also obtained
by continuing simulation until the required coverage was achieved. The mean
relative error E was used to measure the error of estimation. To calculate E,
the absolute values of relative errors of estimates were obtained and averaged
over 100 samples as follows

E = AV G

(∣∣∣∣ n̂1−η − n1−η
n1−η

∣∣∣∣) .
In the Figure 2, the relative errors of required sample size are shown.

We can see that E is in range 0.1– 0.2 for values of b in [0.94, 0.985]. However,
for b = 0.99 relative errors become unacceptably large, especially for the
smallest values of η. As the limiting class distribution in the case b→ 1 is
the uniform class distribution pi = 1/s, i = 1, . . . , s, we can conclude that
the method proposed does not perform well for class distributions which
are close to the uniform class distribution. Nevertheless, the method gives
satisfactory results when the class distribution differs significantly from the
uniform one.

5. Summary

A method for estimation of the sample size which is necessary to achieve
a given sample coverage was proposed. The method works well under the
assumption that the population consists of a large number of classes and
for at least exponentially decreasing class probabilities if the common ratio
is not too close to 1. A further research is needed to elaborate (and test)
similar estimation methods for other families of class distributions.
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Figure 2. Results of the simulation experiment: average rel-
ative error of the estimated sample size.
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