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Free-lunch learning and directional distributions

in artificial neural networks

P.E. Jupp and J.V. Stone

Abstract. Free-lunch learning (FLL) is a phenomenon in which re-
learning partially-forgotten mental associations induces recovery of other
associations. FLL occurs also in artificial neural networks (ANN’s). Two
models for forgetting in ANN’s are presented which involve uniform dis-
tributions on spheres and Grassmann manifolds. It is shown that these
models differ markedly in their amounts of FLL.

1. Introduction

Most people who have learned a foreign language have experienced the
following sequence of events:

(i) one learns two sets of vocabulary, A1 and A2, in the foreign language;
(ii) one forgets (possibly partially) A1 ∪ A2;
(iii) one relearns only A2 — and then finds that knowledge of A1 is (to

some extent) recovered.

This phenomenon, in which restoration of A1 comes “free” with the relearn-
ing of A2 is called free-lunch learning (FLL). (The popular aphorism “There’s
no such thing as a free lunch” seems not to apply in learning theory.)

Free-lunch learning occurs in contexts other than language. Stone et al.
(2001) demonstrated FLL using a task in which participants learned the
positions of letters on a non-standard computer keyboard. After a period
of forgetting, participants relearned a proportion of these positions. It was
found that this relearning induced recovery of the positions that had not
been relearned. Stone (2007) has shown that FLL accelerates evolution of
adaptive behaviours.

Stone and Jupp (2007, 2008) showed that FLL can occur also in
artificial neural networks (ANN’s), and investigated its behaviour under two
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contrasting models of the forgetting process. The aims of this paper are
(i) to draw the attention of statisticians to the role of directional statistics in
artificial neural networks, (ii) to extend the results of Stone and Jupp (2007,
2008) on FLL by weakening the distributional assumptions made there.

Section 2 describes FLL in ANN’s and introduces a measure of FLL.
Section 3 considers a model of forgetting in ANN’s in which forgetting is due
to perturbation of the weight vector. It is shown that for large networks,
under appropriate isotropy conditions, FLL is very probable. Section 4
considers a model in which forgetting is due to the weight vector “fading”
towards the origin. Under appropriate isotropy conditions on large networks,
the probability of FLL is almost zero.

2. Free-lunch learning in artificial neural networks

A very simple mathematical model for the activity of a human brain is
given by an elementary artificial neural network. This is a directed graph
with nodes (vertices) corresponding to the neurons of the brain and directed
edges corresponding to the synapses. The state of any node is is a real num-
ber which models the firing rate of the corresponding neuron. (Background
on ANN’s can be found in e.g. Bishop, 1995, Müller and Reinhardt, 1990,
and Titterington, 1999.) It is enough here to consider linear ANN’s with n
input nodes and a single output node; the ANN transforms an input vector
x in R

n into the output wTx, where the weight vector w in R
n represents

the state of the ANN. (This linear one-layer model is almostly certainly too
simple to represent adequately the complexity of a human brain. Neverthe-
less, it will be shown in Section 3 that even this simple model can display
FLL with high probability.)

For input vectors x1, . . . ,xc and desired outputs d1, . . . , dc the squared
error is defined as

c
∑

i=1

(

wTxi − di

)2
= ‖Xw − d‖2,

where

X = (x1, . . . ,xc)
T , d = (d1, . . . , dc)

T .

Teaching the ANN to associate inputs x1, . . . ,xc with respective outputs
d1, . . . , dc puts the weight vector w into the affine subspace {w : Xw = d}
of R

n.
The description of FLL in language-learning that was given in the Intro-

duction can be translated into the following version for ANN’s:

(i) the ANN learns two sets of associations, A1 and A2, that associate
to inputs x11, . . . ,x1n1

the outputs d11, . . . , d1n1
and associate to in-

puts x21, . . . ,x2n2
the outputs d21, . . . , d2n2

, respectively. Denote the
weight vector after learning A1 and A2 by w0;
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(ii) the ANN forgets (possibly partially) A1∪A2. This moves the weight
vector to w1, say. The squared error on A1 is then ‖X1w1 − d1‖

2;
(iii) the ANN relearns only A2. This moves the weight vector to w2,

the orthogonal projection of w1 onto the affine subspace {w : X1w

= d1}. The squared error on A1 is then ‖X1w2 − d1‖
2.

A useful measure of the amount of FLL is

δ(w1,w2;X1,d1) = ‖X1w1 − d1‖
2 − ‖X1w2 − d1‖

2.

Free-lunch learning has occurred if δ(w1,w2;X1,d1) > 0.
For i = 1, 2 the ni × n matrix Xi can be written as

Xi = TiZi

for ni × ni and ni × n matrices Ti and Zi such that Ti is lower
triangular with positive diagonal elements and ZiZ

T
i = Ini

. If Xi has rank ni

then Ti and Zi are unique. The matrix ZT
i Zi represents the operator which

projects onto the image of XT
i Xi. Thus, if Xi has rank ni, ZT

i Zi is an ele-
ment of the Grassmann manifold Gni

(Rn) of (orthogonal projections onto)
ni-dimensional subspaces of R

n.
Algebraic manipulation shows that if (X1,d1) and (X2,d2) are consistent

(i.e. there is a w0 satisfying Xiw0 = di for i = 1, 2) then

δ(w1,w2;X1,d1) = vT ZT
2 Z2X

T
1 X1

(

2In − ZT
2 Z2

)

v, (2.1)

where v is the “forgetting vector”

v = w1 −w0.

From now on (X1,d1), (X2,d2) and v will be random and the assumptions

(A1) n1 + n2 ≤ n,
(A2) (X1,d1) and (X2,d2) have continuous distributions (i.e. have densi-

ties with respect to Lebesgue measure)

will be made. These assumptions ensure that, with probability 1, Xi has
rank ni for i = 1, 2 and (2.1) holds.

The results in Sections 3 and 4 are based on the following concepts of
isotropy:

(i) v has an isotropic distribution on R
n if v has the same distribution

as Uv for all orthogonal n×n matrices U, i.e. the corresponding unit
vector ‖v‖−1v has the uniform distribution on Sn−1 (see §9.3.1 of
Mardia and Jupp, 2000);

(ii) ZT
i Zi is uniformly distributed on the Grassmann manifold Gni

(Rn)
if ZT

i Zi has the same distribution as WT ZT
i ZiW for all orthogonal

ni × ni matrices W (see §13.3 of Mardia and Jupp, 2000).
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3. Synaptic drift

A plausible model for the process of forgetting is the simple synaptic drift

model introduced in Stone and Jupp (2007), in which the forgetting vector
v is isotropic and independent of the weight vector w0 achieved by learning
A1 and A2. It is useful here to extend the definition by using the term
synaptic drift model to mean a model in which either v| (X1,Z2) is isotropic
or X1| (Z2,v) has identically-distributed isotropic rows.

The main properties of FLL in the synaptic drift model are given in the
following theorems. The proof of Theorem 1 is analogous to that in §A.5.1
of Appendix A of Stone and Jupp (2007). Proofs of Theorems 2 and 3 are
given in the Appendix.

Theorem 1. If v| (X1,d1,Z2,d2) is isotropic then

median (δ(w1,w2;X1,d1)|X1,d1,X2,d2) > 0.

Theorem 2. The following is true:

(i) If v| (X1,Z2) is isotropic then

E [δ (w1,w2;X1,d1)|X1,Z2] =
E

[

‖v‖2
∣

∣X1,Z2

]

n
tr

(

(

Z2X
T
1

)T (

Z2X
T
1

)

)

,

and so

E [δ (w1,w2;X1,d1)] ≥ 0.

(ii) If X1| (Z2,v) has identically-distributed isotropic rows then

E [δ (w1,w2;X1,d1)|Z2,v] =
n1E

[

‖x‖2
∣

∣Z2,v
]

n
‖Z2v‖

2,

where x is any column of XT
1 , and so

E [δ (w1,w2;X1,d1)] ≥ 0.

Theorem 3. One has:

(i) If v| (X1,Z2) is isotropic then

P (δ(w1,w2;X1,d1) < 0) ≤
4

n2

.

(ii) If X1, Z2 and v are independent, X1 has independent identically-

distributed isotropic rows, and Z2
TZ2 is uniform then

P (δ(w1,w2;X1,d1) ≤ 0) ≤
a0(n, n1, n2) + a1(n, n2)γ(n)

n1n2(n + 2)2
,
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where

a0(n, n1, n2) = 2(2n3 − n2n2 + 3n2 − 2nn2 − 2n2)

a1(n, n2) = n2(4n − n2 + 6)

γ(n) =
var

(

‖x‖2
)

E [‖x‖2]2
,

with the n-vector x denoting any column of XT
1 . If, further, n1/n,

n2/n and γ(n)/n are bounded away from zero as n → ∞ then

P (δ(w1,w2;X1,d1) > 0) → 1, n → ∞.

Thus, under synaptic drift, if there are many nodes then the probability
of free-lunch learning is very high.

4. Synaptic fading

A reasonable alternative to the synaptic drift model is the synaptic fading

model introduced in Stone and Jupp (2008), in which the weight vector w1

after forgetting is given by
w1 = rw0, (4.1)

for some (random) scalar r. Thus the “forgetting vector” v is given by

v = (1 − r)w0.

The interpretation of (4.1) is that forgetting consists of shrinking the weight
vector w0 by a factor r towards the “dead state” 0. Algebraic manipulation
shows that

δ(w1,w2;X1,d1) = (1 − r)2
{

2
(

T2
−1d2

)T
Z2X

T
1 d1

−
(

T2
−1d2

)T
Z2X1

TX1Z
T
2 T2

−1d2

}

.
(4.2)

The main properties of FLL in the synaptic fading model are given in the
following theorems. Proofs of Theorems 4 and 5 are given in the Appendix.

Theorem 4. If d1| (X1,X2,d2, r) and −d1| (X1,X2,d2, r) have the same

distribution then

E [δ(w1,w2;X1,d1) |X1,X2,d2, r ] = −(1 − r)2‖X1Z
T
2 T−1

2 d2‖
2, (4.3)

and so

E [δ (w1,w2;X1,d1)] ≤ 0.

Theorem 5. If

(a) X1, d1, X2, d2 and r are independent,

(b) d1 and d2 are isotropic,

(c) X1 has independent identically-distributed isotropic rows and their

density is bounded,
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(d) X2 has identically-distributed rows

then

P (δ(w1,w2;X1,d1) > 0) ≤
12KE

[

‖d1‖
2
]

E
[

‖x̃‖2
]

E
[

‖d2‖
−2

]

n1(n1 − 3)E [‖x‖2]
, (4.4)

where x and x̃ denote arbitrary columns of XT
1 and XT

2 , respectively, and

K = E

[

1

t21 + t22 + t23

]

with

ti =
1

√

E [‖xi‖2]
xi

Tu for i = 1, 2, 3,

u being any unit vector in R
n.

Corollary. If the conditions of Theorem 5 hold and

d1 ∼ N(0, σ2In1
), d2 ∼ N(0, σ2In2

),

xi, x̃j ∼ N(0, σ2In) for i = 1, . . . , n1, j = 1, . . . , n2

then

P (δ(w1,w2;X1,d1) > 0) ≤
12n2

(n1 − 3)(n2 − 2)
.

Thus, under synaptic fading, if there are many nodes and the assumptions
of the Corollary hold then the probability of free-lunch learning is very low
— in marked contrast to the behaviour under synaptic drift.

Appendix: Proofs of theorems

The main tool is the result that if u is uniformly distributed on Sn−1 and
A is an n × n matrix then

E
[

uTAu
]

=
tr (A)

n
(A.1)

var
(

uTAu
)

=
ntr

(

A2
)

+ ntr
(

AAT
)

− 2tr (A)2

n2(n + 2)
. (A.2)

See (9.6.1)–(9.6.2) of Mardia and Jupp (2000).

Proof of Theorem 2. (i). Taking the conditional expectation of (2.1) over v

and using (A.1) gives the result.

(ii). The proof is a simple extension of that of (A.26) of Stone and Jupp
(2007). �
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Proof of Theorem 3. (i). Taking the conditional expectation and variance of
(2.1) over ‖v‖−1v and using (A.1) and (A.2) gives

E [δ(w1,w2;X1,d1) |X1,Z2, ‖v‖ ] =
‖v‖2tr

(

Z2X
T
1 X1Z

T
2

)

n
(A.3)

and

var (δ(w1,w2;X1,d1) |X1,Z2, ‖v‖ ) =
‖v‖4

n(n + 2)

{

4tr
(

Z2X
T
1 X1X

T
1 X1Z

T
2

)

− 2tr
(

Z2X
T
1 X1Z

T
2 Z2X

T
1 X1Z

T
2

)

−
2

n

[

tr
(

Z2X
T
1 X1Z

T
2

)]2
}

.

Then Chebyshev’s inequality gives

P (δ(w1,w2;X1,d1) < 0 |X1,Z2, ‖v‖)

≤
4tr

(

ZT
2 Z2X

T
1 X1X

T
1 X1Z

T
2 Z2

)

[

tr
(

Z2X
T
1 X1Z

T
2

)]2
.

(A.4)

Since (a) ZT
2 Z2 is a projection operator of rank n2 and (b) for any positive-

definite p × p matrix A and any p × p projection matrix Π of rank r,

tr
(

ΠA2Π
)

≤
[tr (ΠAΠ)]2

r
,

(A.4) gives

P (δ(w1,w2;X1,d1) < 0 |X1,Z2, ‖v‖ ) ≤
4

n2

,

from which the result follows.

(ii). The proof is a simple extension of that in §A.5.2 of Stone and Jupp
(2007). �

Proof of Theorem 4. Taking the conditional expectation of (4.2) over d1

gives (4.3). �

Proof of Theorem 5. Taking the conditional variance of (4.2) over d1 and
using (A.2) gives

var (δ(w1,w2;X1,d1) |X1,X2,d2, r )

= 4(1 − r)4
E

[

‖d1‖
2
]

n1

‖X1Z
T
2 T−1

2 d2‖
2.

(A.5)

Chebyshev’s inequality, (4.3) and (A.5) yield

P (δ(w1,w2;X1,d1) > 0|X1,X2,d2, r) ≤
4E

[

‖d1‖
2
]

n1‖X1a2‖2
, (A.6)

where
a2 = ZT

2 T−1
2 d2.
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Since ‖X1a2‖
2 =

∑n1

i=1 v2
i , where vi = xi

Ta2 for i = 1, . . . , n1 and x1, . . . ,xn1

are the columns of XT
1 , application of Jensen’s inequality to the convex

function x 7→ x−1 yields

‖X1a2‖
−2 ≤

1

m2

m
∑

j=1

1

v2
3j−2 + v2

3j−1 + v2
3j

,

where m = [n1/3], and so

E
[

‖X1a2‖
−2

∣

∣ a2

]

≤
K

‖a2‖2mE [‖xi‖2]
. (A.7)

Since the density of xi is bounded above, comparison of K with E
[

U−1
]

,

where U ∼ χ2
3, shows that K is finite.

Using the facts that Z2Z
T
2 = In2

, T2T
T
2 = X2X

T
2 =

∑n2

i=1 x̃ix̃
T
i , where

x̃1, . . . , x̃n2
are the columns of X2

T , and
(

xTAx
) (

xTA−1x
)

≥ ‖x‖4 for any
vector x and any positive-definite symmetric matrix A yields

E
[

‖a2‖
−2

]

≤ E
[

‖x̃i‖
2
]

E
[

‖d2‖
−2

]

. (A.8)

Combining (A.6)–(A.8) gives (4.4). �
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