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Infinite Viterbi alignments in the two state

hidden Markov models

Alexey Koloydenko and Jüri Lember

Abstract. Since the early days of digital communication, hidden
Markov models (HMMs) have now been routinely used in speech
recognition, processing of natural languages, images, and in bioinfor-
matics. An HMM (Xi, Yi)i≥1 assumes observations X1, X2, . . . to be con-
ditionally independent given an “explanatary” Markov process Y1, Y2, . . .,
which itself is not observed; moreover, the conditional distribution of
Xi depends solely on Yi. Central to the theory and applications of
HMM is the Viterbi algorithm to find a maximum a posteriori estimate
q1:n = (q1, q2, . . . , qn) of Y1:n given the observed data x1:n. Maximum
a posteriori paths are also called Viterbi paths or alignments. Recently,
attempts have been made to study the behavior of Viterbi alignments of
HMMs with two hidden states when n tends to infinity. It has indeed
been shown that in some special cases a well-defined limiting Viterbi
alignment exists. While innovative, these attempts have relied on rather
strong assumptions. This work proves the existence of infinite Viterbi
alignments for virtually any HMM with two hidden states.

1. Introduction

We consider hidden Markov models (HMM) (Y,X) with two hidden states.
Namely, Y represents the hidden process Y1, Y2, . . . , which is an irreducible
aperiodic Markov chain with state space S = {a, b}. In particular, the transi-
tion probabilities P = (plm), l,m ∈ S, are positive and the stationary distri-
bution π = πP is unique. For technical convenience, Y1 is assumed to follow
π, however, the results of the paper hold for arbitrary initial distributions. To
every state l ∈ S there corresponds an emission distribution Pl on X = R

d.
Given a realization y1:∞ ∈ S∞ of Y , the observations X1:∞ := X1,X2, . . .
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are generated as follows. If Yi = a (resp. Yi = b), then Xi is distributed
according to Pa (resp. Pb) and independently of everything else. We refer to
this model as the (general) 2-state HMM.

In Cappé et al. (2005), HMMs are called “one of the most successful sta-
tistical modelling ideas that have [emerged] in the last forty years”. Since
their classical application to digital communication in 1960s (see further ref-
erences in Cappé et al. (2005)), HMMs have had a defining impact on the
mainstream research in speech recognition Huang et al. (1990); Jelinek (1976,
2001); McDermott and Hazen (2004); Ney et al. (1994); Padmanabhan and
Picheny (2002); Rabiner and Juang (1993); Rabiner et al. (1986); Shu et al.
(2003); Steinbiss et al. (1995); Ström et al. (1999), natural language models
Ji and Bilmes (2006); Och and Ney (2000), and more recently computational
biology Durbin et al. (1998); Eddy (2004); Lomsadze et al. (2005); Krogh
(1998). Thus, for example, DNA regions can be labeled as a, “coding”, or
b, “non-coding”, with Pa and Pb representing the respective distributions on
the {A,C,G, T} alphabet.

Given observations x1:n := x1, . . . , xn, and treating the hidden states
y1:n := y1, . . . , yn as parameters, inference in HMMs typically involves v(x1:n),
a maximum a posteriori (MAP) estimate of Y1:n. It has now been recognized
that “[in] spite of the theoretical and practical importance of the MAP path
estimator, very little is known about its properties” Caliebe (2006). The
same estimates are also known as Viterbi, or forced alignments and can be
efficiently computed by a dynamic programming algorithm also bearing the
name of Viterbi. When substituted for true y1:n in the likelihood function
Λ(y1:n;x1:n, ψ), Viterbi alignments can also be used to estimate ψ, any un-

known free parameters of the model. Starting with an initial guess ψ(0) and
alternating between maximization of the likelihood Λ(y1:n;x1:n, ψ) in y1:n

and ψ is at the core of Viterbi training (VT), or extraction Jelinek (1976),
also known as segmental K-means Juang and Rabiner (1990); Ephraim and

Merhav (2002). Resulting estimates ψ̂VT(x1:n, ψ
(0)) are known to be different

from the maximum likelihood (ML) estimates ψ̂ML(x1:n, ψ
(0)) which in this

case are most commonly delivered by the EM procedure Baum and Petrie
(1966); Ephraim and Merhav (2002); Bilmes (1998). Even if ψ were known,
Viterbi alignments v(x1:n;ψ) would typically differ from true paths y1:n, and
the long-run properties of v(x1:n;ψ) are not obvious Caliebe and Rösler
(2002); Caliebe (2006); Lember and Koloydenko (2007, 2008); Koloydenko
et al. (2007). Furthermore, Lember and Koloydenko (2007, 2008); Koloy-
denko et al. (2007) propose a hybrid of VT and EM which takes into account

the asymptotic discrepancy between ψ̂ML(x1:n, ψ
(0)) and ψ̂VT(x1:n, ψ

(0)) in
order to increase computational and statistical efficiencies of estimation of ψ
for n large. Thus or otherwise, an important question is how to find the as-
ymptotic properties of Viterbi alignments, given that (n+1)th observation can
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in principle change the previous alignment entirely, i.e. v(x1:n+1)i 6= v(x1:n)i,
1 ≤ i ≤ n? Do the Viterbi alignments then admit well-defined extensions?
We answer this question positively in Lember and Koloydenko (2008) for
general HMMs (in particular, allowing more than two hidden states) by con-
structing proper infinite Viterbi alignments. Generalizing and clarifying re-
lated results of Caliebe and Rösler (2002); Caliebe (2006), the approach in
Lember and Koloydenko (2008) is to extend alignments piecewise, separat-
ing individual pieces by nodes (see §2 below). Although the construction is
natural, a detailed formal proof of its correctness for general HMMs is rather
long and requires certain mild technical assumptions. This paper, on the
other hand, shows that in the special case of two state HMMs, the existence
of infinite Viterbi alignments needs no special assumptions and can be proven
considerably more easily. The results of this paper essentially complete and
generalize those of Caliebe and Rösler (2002); Caliebe (2006).

2. Preliminaries

Let λ be a suitable σ-finite reference measure on R
d so that Pa and Pb

have densities with respect to λ. For example, λ can be a Lebesgue measure,
or, as in the case of discrete observations, a counting measure. Thus, let fa

and fb be the densities of Pa and Pb, respectively. Throughout the rest of
the paper, we assume that Pa 6= Pb or, equivalently,

λ{x ∈ X : fa(x) 6= fb(x)} > 0. (1)

Assumption (1) is natural since there would be no need to model the obser-
vation process by an HMM should the emission distributions coincide. Note
also that unlike in the general case, the positivity of the transition prob-
abilities is also a natural assumption for the two state HMMs. No more
assumption on the HMM is made in this paper. In particular, unlike Caliebe
(2006); Caliebe and Rösler (2002), we do not assume the square integrability
of log(fa/fb), or equality of the supports of Pa and Pb. However, the latter
condition is not very restrictive, since for the two state HMMs with unequal
supports the existence of infinite Viterbi alignments follows rather trivially
(Corollary 2.1).

Thus, for any n ≥ 1 and any x1:n ∈ X n and y1:n ∈ Sn, the likelihood
Λπ(y1:n;x1:n) is given by

P(Y1:n = y1:n)

n
∏

i=1

fyi
(xi), where P(Y1:n = y1:n) = πy1

n
∏

i=2

pyi−1yi
.

Since estimation of ψ is not a goal of this paper, the dependence on ψ
is suppressed. Decomposition (2) and recursion (3) below provide a basis for
the Viterbi algorithm to compute alignments. Namely, for all u ∈ {1, 2, . . . ,



112 ALEXEY KOLOYDENKO AND JÜRI LEMBER

n− 1},

max
y1:n∈Sn

Λπ(y1:n;x1:n) = max
l∈S

[

δu(l) × max
yu+1:n∈Sn−u

Λ(pl·)(yu+1:n;xu+1:n)

]

, (2)

where (pl·) is the transition distribution given state l ∈ S, and the scores

δu(l) := max
y1:u−1∈Su−1

Λ((y1:u−1, l);x1:u), l = a, b,

are defined for all u ≥ 1, and x1:u ∈ X u. Thus, δu(l) is the maximum of the
likelihood of the paths terminating at u in state l. Note that δ1(l) = πlfl(x1)
and δu(l) depends on x1:u. Further,

δu+1(a) = max{δu(a)paa, δu(b)pba}fa(xu+1), (3)

δu+1(b) = max{δu(a)pab, δu(b)pbb}fb(xu+1), u ≥ 1.

Example 2.1. Let X1,X2, . . . be i.i.d. following a mixture distribution
πaPa+πbPb with density πafa(x; θa)+πbfb(x; θb) and mixing weights πa, πb >
0. Such a sequence is an HMM with the transition probabilities πa = paa =
pba, πb = pbb = pab. In this special case the alignment is easy to exhibit.
Indeed, in this case recursion (3) writes for any u ≥ 1 as

δu+1(a) = cπafa(xu+1), δu+1(b) = cπbfb(xu+1), (4)

where c = max{δu(a), δu(b)}. Hence, the alignment v(x1:n) can be obtained
pointwise as follows:

v(x1:n) = (v(x1), . . . , v(xn)),where v(x) = arg max{πafa(x), πbfb(x)}.

Equivalently (ignoring possible ties), using a generalized Voronoi partition
X = Xa ∪ Xb with

Xa = {x ∈ X : πafa(x) ≥ πbfb(x)}, Xb = {x ∈ X : πbfb(x) > πafa(x)},

v(x) = a if and only if x ∈ Xa, and otherwise (i.e. x ∈ Xb) v(x) = b.

Generally, it follows from (3) that, if

δu(a)paa > δu(b)pba, δu(a)pab > δu(b)pbb, (5)

for some u, 1 ≤ u, and some x1:u ∈ X u, then for any n > u and for any
extension xu+1:n ∈ X n−u, the Viterbi alignment goes through state a at time
u. Namely, truncation v(x1:n)1:u coincides with the Viterbi alignment v(x1:u)
(indeed, (5) implies δu(a) > δu(b)). Thus, under condition (5), maximization
of Λπ((y1:n, l);x1:n) can be reset at time u by clearing x1:u from the memory,
retaining v1:u, and replacing the initial distribution π by (pa·) for further
maximization of Λ(pa·)(yu+1:n;xu+1:n). Following Lember and Koloydenko
(2008), if condition (5) holds, then xu is called a strong a-node (of realization
x1:n, n > u), where “strong” refers to the inequalities in (5) being strict.

Suppose x1:∞ contains infinitely many strong a-nodes at times u1 < u2 <
. . .. Let v1 = v(x1:u1

), and let vk maximize Λ(pa·)(yuk−1+1:uk
;xuk−1+1:uk

), for
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all k ≥ 2. Then, concatenation (v1, v2, v3, . . .) is naturally called the infinite
piecewise Viterbi alignment Lember and Koloydenko (2008). Apparently, the
almost sure existence of our infinite alignments directly dependends on the
existence of infinitely many (strong) nodes. At the same time, whether or
not xu is a node depends on x1:u and hence is difficult to verify directly.
Fortunately, in many cases xu is guaranteed to be a node based on several
preceding observations xu−m:u, 1 ≤ m < u, ignoring the rest. Specifically,
suppose for example that x ∈ X is such that

piafa(x)paj > pibfb(x)pbj , ∀i, j ∈ S. (6)

It is easy to check that for any u ≥ 2, xu = x is a strong a-node for any
x1:u−1. Hence, if x1:∞ contains infinitely many observations satisfying (6),
then x1:∞ also contains infinitely many strong nodes. This previous condition
in its turn is met provided

λ ({x ∈ X : piafa(x)paj > pibfb(x)pbj , ∀i, j ∈ S}) > 0. (7)

Indeed, since our underlying Markov chain Y is ergodic, it is rather easy to
see that X is ergodic as well Ephraim and Merhav (2002); Genon-Catalot
et al. (2000); Leroux (1992). Also, (7) implies that

Pa ({x ∈ X : piafa(x)paj > pibfb(x)pbj , ∀i, j ∈ S}) > 0.

Thus, it follows from ergodicity of X that almost every realization of X
has infinitely many elements satisfying (6) and, hence infinitely many strong
nodes. We have thus proved the following lemma.

Lemma 2.1. Assume that (7) holds. Then almost every sequence of ob-
servations x1:∞ has infinitely many strong a-nodes.

(Clearly, interchanging a and b gives the same results in terms of b-nodes.)
Lemma 2.1 is essentially Theorem 1 in Caliebe and Rösler (2002) (disregard-
ing a misprint in the statement). Condition (7) holds for many two-state
HMMs including the so-called additive Gaussian noise model Caliebe (2006),
where the emission distributions are Gaussian. Another trivial example is
the model with unequal supports of Pa and Pb. Indeed, in that case (7) holds
(at least up to swapping a and b). Hence, we have the following corollary.

Corollary 2.1. If the supports of Pa and Pb are not equal, then almost
every sequence of observations has infinitely many strong nodes.

The goal of this work is essentially to remove condition (7) from Lemma
2.1.

To this end, following Lember and Koloydenko (2008), we call an obser-
vation satisfying (6) an a-barrier of length 1. More generally, a block of
observations z1:k ∈ X k is called a (strong) barrier of length k ≥ 1 if for
every m ≥ 0 and x1:m ∈ Xm, z1:k contains a (strong) node of realization
(x1:m, z1:k). In Lember and Koloydenko (2008), we prove the existence of
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infinitely many barriers for a very general class of HMMs. For the two-state
HMMs, the conditions of our result in Lember and Koloydenko (2008) are
given by (8) and (9) below:

Pa ({x ∈ X : fa(x)max{paa, pba} > fb(x)max{pbb, pab}}) > 0, (8)

Pb ({x ∈ X : fb(x)max{pbb, pab} > fa(x)max{paa, pba}}) > 0. (9)

To achieve our goal, we will first prove the same result for the two-state HMM
under the relaxed assumption that (8) or (9) holds. As we shall see below
(Lemma 3.1), in our two-state HMM one of these conditions is automatically
satisfied and, moreover, all barriers are strong. Hence, occurrence of infinitely
many strong barriers in this case will be shown (Theorem 4.1) to require no
additional assumptions.

Finally, if a node is not strong and v(x1:n) is not unique, an alignment
might exist that does not go through this node. Such type of pathologies
cause technical inconveniences in defining an infinite Viterbi alignment and
are treated in Lember and Koloydenko (2008). Fortunately, unlike in the
general case, in the case of two-state HMMs almost every realization has in-
finitely many strong nodes (Theorem 4.1). This allows for a simple resolution
of the non-uniqueness in the case of two-state HMMs.

3. Main results

3.1. Three types of the two-state HMM. The following three cases
exhaust all the possibilities:

(1) paa > pba (⇔ pbb > pab);
(2) paa < pba (⇔ pbb < pab);
(3) paa = pba (⇔ pbb = pab).

From the definition of nodes, it follows that xu is not a node only in one of
the following two cases:

(A)

{

δu(a)paa > δu(b)pba

δu(b)pbb > δu(a)pab
or (B)

{

δu(b)pba > δu(a)paa

δu(a)pab > δu(b)pbb

Case (A) is equivalent to

pbb

pab

>
δu(a)

δu(b)
>
pba

paa

(10)

and case (B) is equivalent to

pbb

pab

<
δu(a)

δu(b)
<
pba

paa

. (11)

Thus, in case (A), we have δu+1(a) = δu(a)paafa(xu+1) and δu+1(b) =
δu(b)pbbfb(xu+1), so that for any n > u, the Viterbi alignment v(x1:n) must
satisfy v(x1:n)u = v(x1:n)u+1. Similarly, in case (B), we have δu+1(a) =
δu(b)pbafa(xu+1) and δu+1(b) = δu(a)pabfb(xu+1), i.e. v(x1:n)u 6= v(x1:n)u+1.
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Evidently, case 1 and case (B) are mutually exclusive, and so are case 2 and
case (A). Therefore, if the transition matrix satisfies the conditions of case 1,
then xu is not a node if and only if conditions (A) are fulfilled. This implies
that in case 1, nodes are the only possibility for v(x1:n) to change state. On
the other hand, if the transition matrix satisfies the conditions of case 2,
then xu is not a node if and only if (B) holds. Hence, in case 2 nodes are the
only possibility for v(x1:n) to remain in one state. Case 3 corresponds to the
mixture model (see Example 2.1 above). Apparently (4), every observation
is a node in this case (see also Figure 1 below).
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Figure 1. Distinct patterns of the Viterbi alignment in the
two-state HMM: Top: Case 1, state can possibly change only
at nodes (larger circles). Middle: Case 2, states always al-
ternate, except possibly at nodes. Bottom: Case 3, every
observation is a node.

Let us now examine conditions (8) and (9). From equation (1), it follows
that

λ ({x ∈ X : fa(x) > fb(x)}) > 0, λ ({x ∈ X : fa(x) < fb(x)}) > 0 (12)
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and, for any α > β > 0,

λ ({x ∈ X : αfa(x) > βfb(x)}) > 0

⇔ Pa ({x ∈ X : αfa(x) > βfb(x)}) > 0,
(13)

λ ({x ∈ X : αfb(x) > βfb(x)}) > 0

⇔ Pb ({x ∈ X : αfb(y) > βfb(y)}) > 0.
(14)

Therefore, we have the following lemma.

Lemma 3.1. Any two state HMM satisfies at least one of the conditions
(8) and (9).

Proof. In case 1, (8) and (9) are equivalent to

Pa ({x ∈ X : fa(x)paa > fb(x)pbb})

= Pa

({

x ∈ X :
fb(x)pbb

fa(x)paa

< 1

})

> 0,
(15)

Pb ({x ∈ X : fb(x)pbb > fa(x)paa})

= Pb

({

x ∈ X :
fa(x)paa

fb(x)pbb

< 1

})

> 0,
(16)

respectively. If paa = pbb, then (12) implies that both (15) and (16) are
satisfied, and hence both (8) and (9) hold. If paa > pbb, then (15), and
subsequently (8), follow from (13). If paa < pbb, then (16), and subsequently
(9), follow from (14). Hence, at least one of the assumptions (8), (9) is always
guaranteed to hold.

In case 2, (8) and (9) are equivalent to

Pa ({x ∈ X : fa(x)pba > fb(x)pab)}

= Pa

({

x ∈ X :
fb(x)pab

fa(x)pba

< 1

})

> 0,
(17)

Pb ({x ∈ X : fb(x)pab > fa(x)pba)}

= Pb

({

x ∈ X :
fa(x)pba

fb(x)pab

< 1

})

> 0,
(18)

respectively. Again, if paa = pbb, then (17) and (18) both hold without further
assumptions. If paa > pbb, then (17) is automatically satisfied. Likewise, (18)
holds if paa < pbb. Hence, one of the assumptions (8), (9) is always guaranteed
to hold.

In case 3, (8) and (9) write

Pa ({x ∈ X : fa(x)πa > fb(x)πb}) > 0, (19)

Pb ({x ∈ X : fb(x)πb > fa(x)πa}) > 0. (20)

Assume πa ≥ πb. Then, (12) implies λ ({x ∈ X : πafa(x) > πbfb(x)}) > 0,
which in turn implies (19). �
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Finally, we state and prove the main results for each of the three cases.

3.2. Case 1. First, note that condition (7) in this case is equivalent to

λ ({x ∈ X : pbafa(x)pab > pbbfb(x)pbb}) > 0. (21)

As mentioned in §2, condition (7) need not hold in general. Nonetheless, for
the two-state HMM, we have the following lemma.

Lemma 3.2. In case 1, almost every realization of the two-state HMM
has infinitely many strong barriers.

Proof. Without loss of generality, assume paa ≥ pbb. Then (15) holds
implying that there exists ε > 0 such that

Pa(Xa) > 0, where Xa :=

{

x ∈ X :
fb(x)pbb

fa(x)paa

< 1 − ε

}

.

Let integer k be sufficiently large for (1−ε)k < pabpba/(paapbb) to hold. Then
every sequence z1:k ∈ X k

a satisfies

k
∏

j=1

fb(zj)pbb

fa(zj)paa

< (1 − ε)k <
pabpba

paapbb

. (22)

Let u > k be arbitrary and let z0:k ∈ X k+1
a be the last k + 1 observations in

a generic sequence x1:u ∈ X u−k−1×X k+1
a . To shorten the notation, we write

dj(zi) for δu−k+i(j) for every i = 0, 1, . . . , k, j = a, b. Next, we show that
xu−k:u contains at least one strong node, and consequently, z0:k is a strong
barrier. Indeed, if none of the observations xu−k:u were a strong a-node, then
we would have

db(zk) = db(z0)

k
∏

j=1

fb(zj)pbb.

Similarly, if none among the observations xu−k+1:u were a strong b-node, we
would have

δu(a) ≥ δu−k(b)pba(
k

∏

j=1

fa(zj))p
k−1
aa .

Hence,

δu(b)

δu(a)
≤
δu−k(b)pbb(

∏k
j=1 fb(zj))p

k−1
bb

δu−k(b)pba(
∏k

j=1 fa(zj))p
k−1
aa

=

∏k
j=1(fb(zj)pbb)

∏k
j=1(fa(zj)paa)

paa

pba

and by (22)

δu(b)

δu(a)
<
pab

pbb
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that contradicts (10). Thus, at least one of xu−k:u must be a strong node.
Since Pa(Xa) > 0, by ergodicity of HMM, almost every realization has in-
finitely many barriers z0:k ∈ X k+1

a , implying also that every realization has
infinitely many strong nodes. �

The next theorem refines the previous result.

Theorem 3.1. Suppose the (transition matrix of the) two-state HMM
meets the condition of case 1. If paa ≥ pbb, then almost every realization has
infinitely many strong a-barriers. (If paa ≤ pbb, then almost every realization
has infinitely many strong b-barriers.)

Proof. Let paa ≥ pbb and use the notation of the proof of Lemma 3.2.
First, we show that none of the observations xk−u+1:u is a b-node. Indeed,
since

db(z1) = max{da(z0)pab, db(z0)pbb}fb(z1),

at least one of the following two inequalities must hold:

pabfb(z1)pba ≥ paafa(z1)paa, pbbfb(z1)pba ≥ pbafa(z1)paa (23)

in order for xu−k+1 to be a b-node. However, (15) implies that pbafa(z1)paa >
pbbfb(z1)pba and, since pbb > pab, we have pbbfb(z1)pba > pabfb(z1)pba. Hence,
neither of the two inequalities (23) holds. Thus, xu−k+1 cannot be a b-
node, and the same argument shows that none of the subsequent observations
xu−k+2, . . . , xu can be a b-node either.

The argument of the proof of Lemma 3.2 then shows that one of the
observations in xu−k:u is a strong a-node and therefore z0:k is a strong a-
barrier. The ergodic argument finishes the proof. (The same argument with
a and b swapped establishes the second part of the theorem.) �

Note that the condition pbb ≥ paa is sufficient but not necessary for (16) to
hold. In fact, for many 2-state HMMs, such as the one with additive white
Gaussian noise, both (15) and (16) hold for any (positive) values of paa and
pbb. On the other hand, it might happen that one of the conditions (15) and
(16), say (16), fails. This would mean Pb ({x ∈ X : pbbfb(x) > paafa(x)}) = 0
or, equivalently,

λ ({x ∈ X : pbbfb(x) > paafa(x)}) = 0. (24)

Corollary 3.1. In case 1, equation (24) implies that almost every se-
quence of observations has infinitely many strong a-barriers and no strong
b-nodes. Furthermore, equation (24) in case 1 implies that for almost every
realization, if a b-node does occur, it occurs before the first a-node.

Proof. From the proof of Theorem 3.1, it follows that no observation x ∈ X
such that pbbfb(x) ≤ paafa(x) (i.e. from the complement of the set in (24))
can be a strong b-node; a closer inspection of the proof actually shows that
even a weak (i.e. not strong) b-node cannot occur after an a-node (since in
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case 1 pbb > pba). Theorem 3.1 then implies that almost every sequence of
observations has infinitely many strong a-barriers. �

Corollary 3.1 in its turn implies that starting with the first strong a-
node onward, the Viterbi alignment v(x1:n) stays in state a. As we have
already mentioned, Viterbi alignments need not be unique (see Lember and
Koloydenko (2008)), i.e. ties are possible in general, and in this case, in
particular, they are possible up until the first strong a-node. However, the
impossibility of strong b-nodes in this case implies that the ties can be broken
in favor of a, resulting in the constant all a alignment.

Theorem 3.1 is a generalization of Theorem 7 in Caliebe (2006), which
basically states that in case 1, if (15) and (16) hold, then under some addi-
tional assumptions (equal supports of Pa and Pb and further conditions A2),
almost every realization has infinitely many nodes. Thus, Caliebe (2006)
stops short of realizing that in case 1 conditions (15) and (16) alone ensure
the existence of a- and b-nodes. This results in Caliebe (2006) invoking The-
orem 2 of Caliebe and Rösler (2002) to prove the existence of nodes, hence
superfluous assumptions A1, A2. Also the proof of Theorem 7 in Caliebe and
Rösler (2002) could be simplified and shortened with the help of the notions
of nodes and barriers. Finally, Corollary 3.1 generalizes Theorems 8 and 9
of Caliebe (2006).

3.3. Case 2. Recall that we have been proving the existence of barriers
without condition (7). Note that in case 2, condition (7) becomes

λ ({x ∈ X : paafa(x)paa > pabfb(x)pba}) > 0.

Recall (§2) also that interchanging a with b gives a similar condition for
strong b-nodes to occur infinitely often in almost every realization.

It follows from (12) that for some ε > 0, the sets

Xa := {x ∈ X : fa(x)(1− ε) > fb(x)}, Xb := {x ∈ X : fa(x) < fb(x)(1− ε)}

both have positive λ-measure. Hence Pa(Xa) > 0 and Pb(Xb) > 0. Then, for
x1:2 ∈ Xa ×Xb, the following holds:

fb(x1)fa(x2)

fa(x1)fb(x2)
< (1 − ε)2. (25)

Lemma 3.3. In case 2, almost every realization has infinitely many strong
barriers.

Proof. Let Xa and Xb be as above. Choose k sufficiently large for

(1 − ε)2k <
paapbb

pbapab

to hold. Next, consider a sequence z0:2k ∈ X 2k+1, where z0, z2i ∈ Xa, z2i−1 ∈
Xb, for every i = 1, . . . , k. We show that for every u > 2k, every sequence
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of observations x1:u ∈ X u such that xu−2k:u = z0:2k, contains a strong node,
making z0:2k a strong barrier.

The choice of k and z0:2k implies
∏k

i=1 pbafa(z2i−1)pabfb(z2i)
∏k

i=1 pabfb(z2i−1)pbafa(z2i)
< (1 − ε)2k <

pbbpaa

pbapab

. (26)

If there is no strong node among xu−2k:u, then

db(z2k) = db(z0)
k

∏

i=1

pbafa(z2i−1)pabfb(z2i)

and

da(z2k) ≥ db(z0)
pbb

pab

k
∏

i=1

pabfb(z2i−1)pbafa(z2i).

Hence, by (26)

db(z2k)

da(z2k)
≤

∏k
i=1 pbafa(z2i−1)pabfb(z2i)

pbb

pab

∏k
i=1 pabfb(z2i−1)pbafa(z2i)

<
paa

pba

which contradicts (11). �

Next, we refine this result. Without loss of generality assume pba ≥ pab.
Therefore

pabpaa ≥ pbapbb, (27)

and also, for every x ∈ Xa,

pbafa(x) > pabfb(x). (28)

Hence, (17) holds. We multiply the right side of (28) by pbapbb and the left
side by pabpaa, and use (27) to obtain

fa(x)paa > fb(x)pbb. (29)

Finally, for x ∈ Xb, we have

fa(x) < fb(x). (30)

We will need the following lemma.

Lemma 3.4. Assume (in addition to being in case 2) that pab ≤ pba.

a) In any pair of observations z1:2 ∈ Xa ×Xb, z1 is not a b-node.
b) In any pair of observations z2:3 ∈ Xb ×Xa, if z2 is a b-node, then z3

is a strong a-node.

Proof. Assume that pab ≤ pba, and consider a). First note that since we
are in case 2, z1 is a b-node if and only if

db(z1)pbb ≥ da(z1)pab. (31)
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Suppose first that z0 is not a node, in which case db(z1) = da(z0)pabfb(z1)
and da(z1) = db(z0)pbafa(z1). Then

da(z1)pab = db(z0)pbafa(z1)pab ≥ da(z0)paafa(z1)pab

> da(z0)pbbfb(z1)pab = da(z0)pabfb(z1)pbb = db(z1)pbb.

The first inequality above follows from the recursion property (3) of scores
δ, whereas the second one follows from (29). Thus, when z0 is not a node,
z1 cannot be a b-node. Similarly, supposing that z0 is an a-node, we obtain
that z1 is not a b-node. Suppose finally that z0 is a b-node. Then db(z1) =
db(z0)pbbfb(z1) and da(z1) = db(z0)pbafa(z1). Applying consecutively pbb <
pab, (28) and pbb < pab again, we obtain: pbbfb(z1)pbb < pabfb(z1)pbb ≤
pbafa(z1)pbb < pbafa(z1)pab. Thus, contrary to (31),

db(z1)pbb = db(z0)pbbfb(z1)pbb < db(z0)pbafa(z1)pab = da(z1)pab,

that is, z1 is not a b-node in this case either.
Let us now prove b). If z2 is a b-node, then da(z3) = db(z2)pbafa(z3) and

db(z3) = db(z2)pbbfb(z3). By (29), we now have

da(z3)paa = db(z2)pbafa(z3)paa > db(z2)pbbfb(z3)pba = db(z3)pba.

Similarly to the argument regarding b-nodes guaranteed by (31) above, we
now have da(z3) > db(z3), implying da(z3)pab > db(z3)pbb. Thus z3 is a strong
a-node. �

Theorem 3.2. If pba ≥ pab, then almost every realization has infinitely
many strong a-nodes. If pba ≤ pab, then almost every realization has infinitely
many strong b-nodes.

Proof. Assume again that pba ≥ pab. Let z0:2k be as in the proof of Lemma
3.3 and attach one more element z2k+1 ∈ Xb to the end. Thus, z2i ∈ Xa and
z2i+1 ∈ Xb, i = 0, 1, . . . , k.

From (the proof of) Lemma 3.3 we know that z0:2k contains at least one
strong node. If this is an a-node, then the theorem is proven. Otherwise this
is a b-node, which, according to part a) of Lemma 3.4, can only be among z1,
z3, . . . , z2k−1. Applying part b) of Lemma 3.4 shows that there must also be
a strong a-node z2, z4, . . . , z2k. Invoking ergodicity again finishes the proof.

Clearly, swapping a and b in the above discussion following the proof of
Lemma 3.3, establishes the other part of the theorem. �

Inequality (27) guarantees (17). Often, the model is such that in addi-
tion to (17), (18) also holds. However, to apply the previous proof (i.e. of
Theorem 3.2) to guarantee the simultaneous existence of infinitely many
strong a and b-nodes, we would need the following counterpart of (29):
Pb({x ∈ X : fb(x)pab > fa(x)pba, fb(x)pbb > fa(x)paa}) > 0, which is
stronger than (18). However, this previous condition is indeed often met,
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resulting in infinitely many strong a- and b-nodes (in almost every realiza-
tion x1:∞).

Lemma 3.3 appears without proof as Theorem 10 in Caliebe (2006). The
author of Caliebe (2006) actually suggests that Theorem 10 and other re-
sults for case 2 are analogous to the corresponding results for case 1, mainly
Theorem 7 (of the same work). It is further stated in Caliebe (2006) that
the proofs of those results are not given as they “are very similar” to the cor-
responding proofs in case 1. Our present workings actually show that case
2 is quite dissimilar to case 1 (due to the fluctuating nature of the typical
Viterbi alignment) and in particular requires a more careful treatment. Note
that, even if Theorem 10 in Caliebe (2006) assumed (8) and (9) (as Theorem
7 in Caliebe (2006) does) to help one to prove this theorem by analogy to
Theorem 7, it is still not clear how the two proofs could be very similar.

3.4. Case 3 (the mixture model). Recall that every observation in this
case is a (not necessarily strong) node. Furthermore, every observation from
{x ∈ X : πafa(x) > πbfb(x)} is a strong a node. Thus, we have the following
counterpart of Theorems 3.1 and 3.2.

Theorem 3.3. If πa ≥ πb, then almost every realization has infinitely
many strong a-nodes. If πa ≤ πb, then almost every realization has infinitely
many strong b-nodes.

4. Conclusion

In summary, we have proved Theorem 4.1 stated below and providing a
basis for the piecewise construction and asymptotic analysis of the Viterbi
alignments of two-state HMMs.

Theorem 4.1. Almost every realization of the two-state HMM has infin-
itely many strong barriers. Furthermore

a) if the transition probabilities satisfy paa ≥ pba then (almost every
realization of) the chain has infinitely many strong s-barriers where
s is such that pss = max{paa, pbb},

b) otherwise (i.e. if paa < pba) (almost every realization of) the chain
has infinitely many strong s-barriers where s is such that pts =
max{pab, pba} (for some t ∈ S).
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