On the osculator Lorentz spheres of timelike parallel p_{i}-equidistant ruled surfaces in the Minkowski 3 -space R_{1}^{3}

Nuri Kuruoğlu and Melek Masal

Abstract

In this paper, we present radii and curvature axes of osculator Lorentz spheres of the timelike parallel p_{i}-equidistant ruled surfaces with a timelike base curve in the Minkowski 3 -space R_{1}^{3} and give the arc lengths of indicatrix curves of timelike base curves of these surfaces.

1. Introduction

I. E. Valeontis [3] defined parallel p-equidistant ruled surfaces in E^{3} and gave some results related to the striction curves of these surfaces.
M. Masal and N. Kuruoğlu [2] studied arc lengths, curvature radii, curvature axes, spherical involute and areas of real closed spherical indicatrix curves of base curves of parallel p-equidistant ruled surfaces in E^{3}. And also, M. Masal and N. Kuruoğlu [1] defined timelike parallel p_{i}-equidistant ruled surfaces with a timelike base curve in the Minkowski 3 -space and have studied dralls, the shape operators, Gaussian curvatures, mean curvatures, shape tensor, $q^{\text {th }}$ fundamental forms of these surfaces.

This paper is organized as follows. In Section 3 we have found radii and curvature axes of osculator Lorentz spheres of the timelike parallel p_{i}-equidistant ruled surfaces with a timelike base curve in the Minkowski 3 -space. And later in Section 4 we have given arc lengths of indicatrix curves of these surfaces.

2. Preliminaries

Let $\quad \alpha: I \rightarrow R_{1}^{3}, \alpha(t)=\left(\alpha_{1}(t), \alpha_{2}(t), \alpha_{3}(t)\right) \quad$ be a differentiable unit speed timelike curve in the Minkowski 3 -space, where I is an open interval

[^0]in R containing the origin. Let V_{1} be the tangent vector field of α, D be the Levi-Civita connection on R_{1}^{3} and $D_{V_{1}} V_{1}$ be a spacelike vector. If V_{1} moves along α, then a timelike ruled surface M which is given by the parametrization
$$
\varphi(t, v)=\alpha(t)+v V_{1}(t)
$$
is obtained. Let $\left\{V_{1}, V_{2}, V_{3}\right\}$ be an orthonormal frame field along α in R_{1}^{3}, where V_{2} and V_{3} are spacelike vectors. If k_{1} and k_{2} are the natural curvature and torsion of $\alpha(t)$, respectively, then for α the Frenet formulas are given by (see [4])
\[

$$
\begin{equation*}
V_{1}^{\prime}=k_{1} V_{2}, V_{2}^{\prime}=k_{1} V_{1}-k_{2} V_{3}, \quad V_{3}^{\prime}=k_{2} V_{2} \tag{2.1}
\end{equation*}
$$

\]

Using $\quad V_{1}=\alpha^{\prime} \quad$ and $\quad V_{2}=\frac{\alpha^{\prime \prime}}{\left\|\alpha^{\prime \prime}\right\|}$, we have $k_{1}=\left\|\alpha^{\prime \prime}\right\|>0$, where "' " means derivative with respect to time t (see [1]).

Definition 2.1 ([1]). The planes corresponding to subspaces $S p\left\{V_{1}, V_{2}\right\}$, $S p\left\{V_{2}, V_{3}\right\}$ and $S p\left\{V_{3}, V_{1}\right\}$ along striction curves of timelike ruled surface M are called asymptotic plane, polar plane and central plane, respectively.

Let us suppose that $\alpha^{*}=\alpha^{*}\left(t^{*}\right)$ is another differentiable timelike curve with arc-length and $\left\{V_{1}^{*}, V_{2}^{*}, V_{3}^{*}\right\}$ is the Frenet frame of this curve in three dimensional Minkowski space R_{1}^{3}. Hence, we define timelike ruled surface M^{*} parametrically as follows:

$$
\varphi^{*}\left(t^{*}, v^{*}\right)=\alpha^{*}\left(t^{*}\right)+v^{*} V_{1}^{*}\left(t^{*}\right),\left(t^{*}, v^{*}\right) \in I \times \mathrm{R} .
$$

Definition 2.2 ([1]). Let M and M^{*} be two timelike ruled surfaces and let p_{1}, p_{2} and p_{3} be the distances between the polar planes, central planes and asymptotic planes, respectively. If the directions of M and M^{*} are parallel and the distances $p_{i}, \quad 1 \leqslant i \leqslant 3$, of M and M^{*} are constant, then the pair of ruled surfaces M and M^{*} is called timelike parallel $p_{i^{-}}$ equidistant ruled surfaces with a timelike base curve. If specifically $p_{i}=0$, then this pair of ruled surfaces is named as timelike parallel p_{i}-equivalent ruled surfaces with a timelike base curve, where the base curves of ruled surfaces M and M^{*} are of class C^{2}.

Therefore the pair of timelike parallel p_{i}-equidistant ruled surfaces are defined parametrically as

$$
\begin{aligned}
M: \varphi(t, v) & =\alpha(t)+v V_{1}(t), \quad(t, v) \in I \times \mathrm{R}, \\
M^{*}: \varphi^{*}\left(t^{*}, v^{*}\right) & =\alpha^{*}\left(t^{*}\right)+v^{*} V_{1}\left(t^{*}\right), \quad\left(t^{*}, v^{*}\right) \in I \times \mathrm{R},
\end{aligned}
$$

where t and t^{*} are the arc parameters of curves α and α^{*}, respectively. Let the striction curve of M be the base curve of M and let α^{*} be a base curve
of M^{*}. In this case we can write

$$
\alpha^{*}=\alpha+p_{1} V_{1}+p_{2} V_{2}+p_{3} V_{3}
$$

where $p_{1}(t), p_{2}(t)$ and $p_{3}(t)$ are of class C^{2} (see [1]).
Theorem 2.1 (see [1], Theorem 3.2 and Corollary 3.1). Let M and M^{*} be timelike parallel p_{i}-equidistant ruled surfaces.
i) The Frenet vectors of timelike parallel p_{i}-equidistant ruled surfaces M and M^{*} at $\alpha(t)$ and $\alpha^{*}\left(t^{*}\right)$ points are equivalent for $\frac{d t^{*}}{d t}>0$.
ii) There is a relation between the natural curvatures $k_{1}(t)$ and $k_{1}^{*}\left(t^{*}\right)$ of base curves and the torsions $k_{2}(t)$ and $k_{2}^{*}\left(t^{*}\right)$ of M and M^{*} as follows:

$$
k_{i}^{*}=k_{i} \frac{d t}{d t^{*}}, \quad 1 \leq i \leq 2
$$

3. On the osculator Lorentz spheres of timelike parallel p_{i}-equidistant ruled surfaces with a timelike base curve

In this section, we will investigate radii and curvature axes of osculator Lorentz spheres of timelike parallel p_{i}-equidistant ruled surfaces M and M^{*} with a timelike base curve.

We compute the locus of center of the osculator sphere S_{1}^{2} which is the fourth order contact with the base curve α of M. Let us consider the function f defined by

$$
\begin{aligned}
f: I & \rightarrow \mathrm{R} \\
t & \rightarrow f(t)=\langle\alpha(t)-a, \alpha(t)-a\rangle-R^{2},
\end{aligned}
$$

where a and R are the center and radius of S_{1}^{2}, respectively. Since S_{1}^{2} is the fourth order contact with the curve α, we can write

$$
f(t)=f^{\prime}(t)=f^{\prime \prime}(t)=f^{\prime \prime \prime}(t)=0
$$

From $f(t)=0$ we have

$$
\begin{equation*}
\langle\alpha(t)-a, \alpha(t)-a\rangle=R^{2} \tag{3.1}
\end{equation*}
$$

from $f^{\prime}(t)=0$ and $V_{1}(t)=\alpha^{\prime}(t)$ we get

$$
\begin{equation*}
\left\langle V_{1}(t), \alpha(t)-a\right\rangle=0, \tag{3.2}
\end{equation*}
$$

from $f^{\prime \prime}(t)=0$ and equation (2.1) we have

$$
\begin{equation*}
\left\langle V_{2}(t), \alpha(t)-a\right\rangle=\frac{1}{k_{1}(t)} . \tag{3.3}
\end{equation*}
$$

Furthermore, for the vector $\alpha(t)-a$, we can write

$$
\begin{equation*}
\alpha(t)-a=m_{1}(t) V_{1}(t)+m_{2}(t) V_{2}(t)+m_{3}(t) V_{3}(t), m_{i}(t) \in \mathrm{R}, \tag{3.4}
\end{equation*}
$$

where $\left\{V_{1}, V_{2}, V_{3}\right\}$ is the orthonormal frame field of M. From here we have

$$
\begin{align*}
& \left\langle\alpha(t)-a, V_{1}(t)\right\rangle=-m_{1}(t),\left\langle\alpha(t)-a, V_{2}(t)\right\rangle=m_{2}(t), \\
& \left\langle\alpha(t)-a, V_{3}(t)\right\rangle=m_{3}(t) . \tag{3.5}
\end{align*}
$$

From equations (3.2) and (3.3) we get

$$
\begin{equation*}
m_{1}(t)=0, \quad m_{2}(t)=\frac{1}{k_{1}(t)} \tag{3.6}
\end{equation*}
$$

From equations (3.1), (3.4) and (3.6) we obtain

$$
\begin{equation*}
R=\sqrt{m_{2}^{2}+m_{3}^{2}} \tag{3.7}
\end{equation*}
$$

or

$$
\begin{equation*}
m_{3}= \pm \sqrt{R^{2}-m_{2}^{2}} \tag{3.8}
\end{equation*}
$$

Using (3.4), for the center a of S_{1}^{2}, we can write

$$
a=\alpha(t)-\frac{1}{k_{1}} V_{2}-\lambda V_{3}, \quad \lambda=m_{3}(t) \in \mathrm{R} .
$$

From $f^{\prime \prime \prime}(t)=0$ we have

$$
k_{1}^{\prime}\left\langle V_{2}(t), \alpha(t)-a\right\rangle+k_{1}\left\langle V_{2}^{\prime}(t), \alpha(t)-a\right\rangle+k_{1}\left\langle V_{2}(t), V_{1}(t)\right\rangle=0 .
$$

So, from (2.1), (3.5) and (3.6) we obtain

$$
\begin{equation*}
m_{3}=\frac{-k_{1}^{\prime}}{k_{1}^{2} k_{2}}=\frac{m_{2}^{\prime}}{k_{2}} . \tag{3.9}
\end{equation*}
$$

Similarly, we compute the locus of center of osculator sphere $S_{1}^{* 2}$ which is the fourth order contact with the timelike base curve α^{*} of M^{*}. Let us consider the function f^{*} defined as

$$
\begin{aligned}
f^{*}: I & \rightarrow \mathrm{R} \\
\quad t^{*} & \rightarrow f^{*}\left(t^{*}\right)=\left\langle\alpha^{*}\left(t^{*}\right)-a^{*}, \alpha^{*}\left(t^{*}\right)-a^{*}\right\rangle-R^{* 2}
\end{aligned}
$$

where a^{*} and R^{*} are the center and the radius of $S_{1}^{* 2}$. In addition, for the vector $\alpha^{*}\left(t^{*}\right)-a^{*}$, we can write

$$
\alpha^{*}\left(t^{*}\right)-a^{*}=m_{1}^{*}\left(t^{*}\right) V_{1}^{*}\left(t^{*}\right)+m_{2}^{*}\left(t^{*}\right) V_{2}^{*}\left(t^{*}\right)+m_{3}^{*}\left(t^{*}\right) V_{3}^{*}\left(t^{*}\right), m_{i}^{*}\left(t^{*}\right) \in \mathrm{R},
$$

where $\left\{V_{1}^{*}, V_{2}^{*}, V_{3}^{*}\right\}$ is the orthonormal frame field of M^{*}.
In a similar way $m_{1}^{*}\left(t^{*}\right), m_{2}^{*}\left(t^{*}\right), m_{3}^{*}\left(t^{*}\right), R^{*}$ and a^{*} of $S_{1}^{* 2}$ are found to be

$$
\begin{equation*}
m_{1}^{*}\left(t^{*}\right)=0, m_{2}^{*}\left(t^{*}\right)=\frac{1}{k_{1}^{*}\left(t^{*}\right)}, m_{3}^{*}\left(t^{*}\right)=\frac{m_{2}^{*^{\prime}}}{k_{2}^{*}\left(t^{*}\right)}, R^{*}=\sqrt{m_{2}^{* 2}+m_{3}^{* 2}} \tag{3.10}
\end{equation*}
$$

and

$$
a^{*}=\alpha^{*}\left(t^{*}\right)-\frac{1}{k_{1}^{*}} V_{2}^{*}-\lambda^{*} V_{3}^{*}, \quad \lambda^{*}=m_{3}^{*}\left(t^{*}\right) \in \mathrm{R} .
$$

Now, we can compute the relations between the radii of osculator Lorentz spheres and curvature axes of the base curves of M and M^{*}. From Theorem 2.1 ii), equations (3.6) and (3.10), we have

$$
\begin{equation*}
m_{1}^{*}\left(t^{*}\right)=m_{1}(t)=0, m_{2}^{*}\left(t^{*}\right)=\frac{d t^{*}}{d t} m_{2}(t) \tag{3.11}
\end{equation*}
$$

If $\frac{d t}{d t^{*}}$ is constant, then from Theorem 2.1 ii) we obtain

$$
\begin{equation*}
k_{1}^{*^{\prime}}=k_{1}^{\prime}\left(\frac{d t}{d t^{*}}\right)^{2} \tag{3.12}
\end{equation*}
$$

Hence, using (3.10), (3.12), (3.9) and Theorem 2.1 ii), we find

$$
\begin{equation*}
m_{3}^{*}=\frac{d t^{*}}{d t} m_{3} \tag{3.13}
\end{equation*}
$$

Combining (3.11), (3.13) and Theorem 2.1 i), we get

$$
\alpha^{*}-a^{*}=\frac{d t^{*}}{d t}(\alpha-a)
$$

Similarly, combining (3.7), (3.8), (3.11) and (3.13), we have

$$
R^{* 2}=\left(\frac{d t^{*}}{d t}\right)^{2} R^{2}
$$

or

$$
R^{*}=\left|\frac{d t^{*}}{d t}\right| R
$$

So, we have proved the following theorem.
Theorem 3.1. Let M and M^{*} be the timelike parallel p_{i}-equidistant ruled surfaces with a timelike base curve.
i) If q_{α} and $q_{\alpha^{*}}$ are the curvature axes (the locus of center of osculator Lorentz spheres) of the base curves α and α^{*} of M and M^{*}, then we have

$$
q_{\alpha^{*}}-\alpha^{*}=\frac{d t^{*}}{d t}\left(q_{\alpha}-\alpha\right)
$$

ii) If R and R^{*} are the radiuses of osculator Lorentz spheres of base curves α and α^{*} of M and M^{*}, then we have

$$
R^{*}=\left|\frac{d t^{*}}{d t}\right| R
$$

4. Arc lengths of indicatrix curves of the timelike parallel p_{i}-equidistant ruled surfaces with a timelike base curve

In this section, we will investigate arc lengths of indicatrix curves of timelike base curves of the timelike parallel p_{i}-equidistant ruled surfaces M and M^{*} with timelike base curve.

Since V_{2} and V_{3} are spacelike vectors, the curves $\left(V_{2}\right)$ and $\left(V_{3}\right)$ generated by the spacelike vectors V_{2} and V_{3} on the pseudosphere S_{1}^{2} are called the pseudo-spherical indicatrix curves. The curve $\left(V_{1}\right)$ generated by the vector V_{1} on the pseudohyperbolic space H_{1}^{2} is called indicatrix curve. Let $S_{V_{i}}$ and $S_{V_{i}^{*}}$ denote the arc lengths of indicatrix curves $\left(V_{i}\right)$ and $\left(V_{i}^{*}\right)$ generated by the vector fields V_{i} and V_{i}^{*}, respectively. So we can write

$$
S_{V_{i}}=\int\left\|V_{i}^{\prime}\right\| d t \text { and } S_{V_{i}^{*}}=\int\left\|V_{i}^{*^{\prime}}\right\| d t^{*}, 1 \leq i \leq 3
$$

Using the Frenet formulas and Theorem 2.1 ii), we get
$S_{V_{\mathrm{i}}^{*}}=\int k_{1} d t=S_{V_{i}}, \quad S_{V_{2}^{*}}=\int \sqrt{\left|k_{2}^{2}-k_{1}^{2}\right|} d t=S_{V_{2}}, S_{V_{3}^{*}}=\int\left|k_{2}\right| d t=S_{V_{3}}$, where $\frac{d t}{d t^{*}}>0$.

Similarly, for the arc lengths S_{α} and $S_{\alpha^{*}}$ of the indicatrix curves (α) and $\left(\alpha^{*}\right)$ generated by the timelike curves α and α^{*} on the pseudosphere S_{1}^{2}, respectively, we can write

$$
S_{\alpha}=\int\left\|\alpha^{\prime}\right\| d t=\int d t \text { and } S_{\alpha^{*}}=\int\left\|\alpha^{*^{\prime}}\right\| d t^{*}=\int d t^{*}
$$

If $\frac{k_{1}}{k_{1}^{*}}$ is constant, then using Theorem 2.1 ii), we obtain

$$
S_{\alpha^{*}}=\frac{k_{1}}{k_{1}^{*}} S_{\alpha}
$$

Thus we have proved the following theorems.
Theorem 4.1. If $S_{V_{i}}$ and $S_{V_{i}^{*}}, 1 \leq i \leq 3$, are the arc lengths of indicatrix curves of Frenet vectors V_{i} and V_{i}^{*} of timelike base curves α and α^{*} of the timelike parallel p_{i}-equidistant ruled surfaces M and M^{*}, respectively, then we have

$$
S_{V_{i}^{*}}=S_{V_{i}}, \quad 1 \leq i \leq 3
$$

Theorem 4.2. Let S_{α} and $S_{\alpha^{*}}$ be the arc lengths of indicatrix curves of timelike base curves α and α^{*} of the timelike parallel p_{i}-equidistant ruled
surfaces M and M^{*}, respectively. If $\frac{k_{1}}{k_{1}^{*}}$ is constant, then we have $S_{\alpha^{*}}=$ $\frac{k_{1}}{k_{1}^{*}} S_{\alpha}$.

Acknowledgement. The authors thank the referee for the helpful suggestions and comments.

References

[1] N. Kuruoğlu and M. Masal, Timelike parallel p_{i}-equidistant ruled surfaces by a timelike base curve in the Minkowski 3-space R_{1}^{3}, Acta Comment. Univ. Tartu. Math. 11 (2007), 1-9.
[2] M. Masal and N. Kuruoğlu, Some characteristics properties of the spherical indicatrices leading curves of parallel p-equidistant ruled surfaces, Bull. Pure Appl. Sci. Sect. E Math. Stat. 19 (2000), 405-410.
[3] I. E. Valeontis, Parallel-p-äquidistante Regelflächen, Manuscripta Math. 54 (1986), 391-404.
[4] I. Woestijne, Minimal surfaces of the 3-dimensional Minkowski space, Geometry and topology of submanifolds, II (Avignon, 1988), 344-369, World Sci. Publ., Teaneck, NJ, 1990.

University of Bahçeşehir, Faculty of Arts and Science, Department of Mathematics and Computer Sciences, Bahçeşehir 34538, Istanbul, Turkey E-mail address: kuruoglu@bahcesehir.edu.tr

Sakarya University, Faculty of Education, Department of Elementary Education, Hendek 54300, Sakarya, Turkey

E-mail address: mmasal@sakarya.edu.tr

[^0]: Received May 29, 2008.
 2000 Mathematics Subject Classification. 53C50.
 Key words and phrases. Minkowski space, timelike parallel p_{i}-equidistant ruled surfaces, osculator, arc lengths.

