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On the osculator Lorentz spheres of timelike

parallel pi-equidistant ruled surfaces in the

Minkowski 3-space R3
1

Nuri Kuruoğlu and Melek Masal

Abstract. In this paper, we present radii and curvature axes of oscula-
tor Lorentz spheres of the timelike parallel pi-equidistant ruled surfaces
with a timelike base curve in the Minkowski 3-space R

3

1 and give the arc
lengths of indicatrix curves of timelike base curves of these surfaces.

1. Introduction

I. E. Valeontis [3] defined parallel p-equidistant ruled surfaces in E3 and
gave some results related to the striction curves of these surfaces.

M. Masal and N. Kuruoğlu [2] studied arc lengths, curvature radii, cur-
vature axes, spherical involute and areas of real closed spherical indicatrix
curves of base curves of parallel p-equidistant ruled surfaces in E3. And
also, M. Masal and N. Kuruoğlu [1] defined timelike parallel pi-equidistant
ruled surfaces with a timelike base curve in the Minkowski 3-space and have
studied dralls, the shape operators, Gaussian curvatures, mean curvatures,
shape tensor, qth fundamental forms of these surfaces.

This paper is organized as follows. In Section 3 we have found radii
and curvature axes of osculator Lorentz spheres of the timelike parallel
pi-equidistant ruled surfaces with a timelike base curve in the Minkowski
3-space. And later in Section 4 we have given arc lengths of indicatrix
curves of these surfaces.

2. Preliminaries

Let α : I → R3
1 , α(t) = (α1(t), α2(t), α3(t)) be a differentiable unit

speed timelike curve in the Minkowski 3-space, where I is an open interval
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in R containing the origin. Let V1 be the tangent vector field of α , D be
the Levi–Civita connection on R3

1 and DV1
V1 be a spacelike vector. If

V1 moves along α, then a timelike ruled surface M which is given by the
parametrization

ϕ(t, v) = α(t) + vV1(t)

is obtained. Let {V1,V2,V3} be an orthonormal frame field along α in

R3
1, where V2 and V3 are spacelike vectors. If k1 and k2 are the

natural curvature and torsion of α(t) , respectively, then for α the Frenet
formulas are given by (see [4])

V
′

1 = k1V2, V
′

2 = k1V1 − k2V3, V
′

3 = k2V2. (2.1)

Using V1 = α
′

and V2 =
α

′′

‖α′′‖
, we have k1 =

∥

∥

∥
α

′′

∥

∥

∥
> 0, where “

′

“

means derivative with respect to time t (see [1]).

Definition 2.1 ([1]). The planes corresponding to subspaces Sp{V1,V2},
Sp{V2,V3} and Sp{V3,V1} along striction curves of timelike ruled surface M

are called asymptotic plane, polar plane and central plane, respectively.

Let us suppose that α* = α*(t*) is another differentiable timelike curve

with arc-length and {V *
1 , V *

2 , V *
3 } is the Frenet frame of this curve in three

dimensional Minkowski space R3
1. Hence, we define timelike ruled surface

M* parametrically as follows:

ϕ*(t*, v*) = α*(t*) + v*V *
1 (t*), (t*, v*) ∈ I × R.

Definition 2.2 ([1]). Let M and M* be two timelike ruled surfaces and
let p1, p2 and p3 be the distances between the polar planes, central planes

and asymptotic planes, respectively. If the directions of M and M* are
parallel and the distances pi, 1 6 i 6 3, of M and M* are constant,
then the pair of ruled surfaces M and M* is called timelike parallel pi-
equidistant ruled surfaces with a timelike base curve. If specifically pi=0,
then this pair of ruled surfaces is named as timelike parallel pi-equivalent
ruled surfaces with a timelike base curve, where the base curves of ruled
surfaces M and M* are of class C2 .

Therefore the pair of timelike parallel pi-equidistant ruled surfaces are
defined parametrically as

M : ϕ(t, v) = α(t) + vV1(t), (t, v) ∈ I × R,

M* : ϕ*(t*, v*) = α*(t*) + v*V1(t
*), (t*, v*) ∈ I × R,

where t and t* are the arc parameters of curves α and α*, respectively. Let
the striction curve of M be the base curve of M and let α* be a base curve
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of M*. In this case we can write

α* = α + p1V1 + p2V2 + p3V3,

where p1(t), p2(t) and p3(t) are of class C2 (see [1]).

Theorem 2.1 (see [1], Theorem 3.2 and Corollary 3.1). Let M and M*

be timelike parallel pi-equidistant ruled surfaces.
i) The Frenet vectors of timelike parallel pi-equidistant ruled surfaces M

and M* at α(t) and α*(t*) points are equivalent for
dt*

dt
> 0.

ii) There is a relation between the natural curvatures k1(t) and k*
1(t*) of

base curves and the torsions k2(t) and k*
2(t*) of M and M* as follows:

k*
i = ki

dt

dt*
, 1 ≤ i ≤ 2 .

3. On the osculator Lorentz spheres of timelike parallel

pi-equidistant ruled surfaces with a timelike base curve

In this section, we will investigate radii and curvature axes of osculator
Lorentz spheres of timelike parallel pi-equidistant ruled surfaces M and M*

with a timelike base curve.
We compute the locus of center of the osculator sphere S2

1 which is the
fourth order contact with the base curve α of M . Let us consider the
function f defined by

f :I → R

t → f(t) = 〈α(t) − a, α(t) − a〉 − R2,

where a and R are the center and radius of S2
1 , respectively. Since S2

1 is
the fourth order contact with the curve α, we can write

f(t) = f
′

(t) = f
′′

(t) = f
′′′

(t) = 0.

From f(t) = 0 we have

〈α(t) − a, α(t) − a〉 = R2, (3.1)

from f
′

(t) = 0 and V1(t) = α
′

(t) we get

〈V1(t), α(t) − a〉 = 0, (3.2)

from f
′′

(t) = 0 and equation (2.1) we have

〈V2(t), α(t) − a〉 =
1

k1(t)
. (3.3)

Furthermore, for the vector α(t) − a, we can write

α(t) − a = m1(t)V1(t) + m2(t)V2(t) + m3(t)V3(t), mi(t) ∈ R, (3.4)
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where {V1,V2,V3} is the orthonormal frame field of M . From here we have

〈α(t) − a, V1(t)〉 = −m1(t), 〈α(t) − a, V2(t)〉 = m2(t),

〈α(t) − a, V3(t)〉 = m3(t).
(3.5)

From equations (3.2) and (3.3) we get

m1(t) = 0, m2(t) =
1

k1(t)
. (3.6)

From equations (3.1), (3.4) and (3.6) we obtain

R =
√

m2
2 + m2

3 (3.7)

or

m3 = ±
√

R2 − m2
2 . (3.8)

Using (3.4), for the center a of S2
1 , we can write

a = α(t) −
1

k1
V2 − λV3, λ = m3(t) ∈ R .

From f
′′′

(t) = 0 we have

k
′

1〈V2(t), α(t) − a〉 + k1〈V
′

2 (t), α(t) − a〉 + k1〈V2(t), V1(t)〉 = 0.

So, from (2.1), (3.5) and (3.6) we obtain

m3 =
−k

′

1

k2
1k2

=
m

′

2

k2
. (3.9)

Similarly, we compute the locus of center of osculator sphere S*2
1 which

is the fourth order contact with the timelike base curve α* of M*. Let us
consider the function f* defined as

f* : I → R

t* → f*(t*) = 〈α*(t*) − a*, α*(t*) − a*〉 − R*2,

where a* and R* are the center and the radius of S*2
1 . In addition, for the

vector α*(t*) − a*, we can write

α*(t*) − a* = m*
1(t

*)V *
1 (t*) + m*

2(t
*)V *

2 (t*) + m*
3(t

*)V *
3 (t*), m*

i (t
*) ∈ R,

where {V *
1 , V *

2 , V *
3 } is the orthonormal frame field of M*.

In a similar way m*
1(t

*),m*
2(t

*),m*
3(t

*), R* and a* of S*2
1 are found to be

m*
1(t

*) = 0, m*
2(t

*) =
1

k*
1(t

*)
, m*

3(t
*) =

m*
′

2

k*
2(t

*)
, R* =

√

m*2
2 + m*2

3 (3.10)

and

a* = α*(t*) −
1

k*
1

V *
2 − λ*V *

3 , λ* = m*
3(t

*) ∈ R .
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Now, we can compute the relations between the radii of osculator Lorentz
spheres and curvature axes of the base curves of M and M*. From Theorem
2.1 ii), equations (3.6) and (3.10), we have

m*
1(t

*) = m1(t) = 0, m*
2(t

*) =
dt*

dt
m2(t). (3.11)

If
dt

dt*
is constant, then from Theorem 2.1 ii) we obtain

k*
1

′

= k1
′

(

dt

dt*

)2

. (3.12)

Hence, using (3.10), (3.12), (3.9) and Theorem 2.1 ii), we find

m*
3 =

dt*

dt
m3. (3.13)

Combining (3.11), (3.13) and Theorem 2.1 i), we get

α* − a* =
dt*

dt
(α − a) .

Similarly, combining (3.7), (3.8), (3.11) and (3.13), we have

R*2
=

(

dt*

dt

)2

R2

or

R* =

∣

∣

∣

∣

∣

dt*

dt

∣

∣

∣

∣

∣

R .

So, we have proved the following theorem.

Theorem 3.1. Let M and M* be the timelike parallel pi-equidistant ruled
surfaces with a timelike base curve.

i) If qα and qα* are the curvature axes (the locus of center of osculator

Lorentz spheres) of the base curves α and α* of M and M*, then we have

qα* − α* =
dt*

dt
(qα − α) .

ii) If R and R* are the radiuses of osculator Lorentz spheres of base

curves α and α* of M and M*, then we have

R* =

∣

∣

∣

∣

∣

dt*

dt

∣

∣

∣

∣

∣

R .
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4. Arc lengths of indicatrix curves of the timelike parallel

pi-equidistant ruled surfaces with a timelike base curve

In this section, we will investigate arc lengths of indicatrix curves of time-
like base curves of the timelike parallel pi-equidistant ruled surfaces M and
M* with timelike base curve.

Since V2 and V3 are spacelike vectors, the curves (V2) and (V3) generated
by the spacelike vectors V2 and V3 on the pseudosphere S2

1 are called the
pseudo-spherical indicatrix curves. The curve (V1) generated by the vector
V1 on the pseudohyperbolic space H2

1 is called indicatrix curve. Let SVi

and SV *
i

denote the arc lengths of indicatrix curves (Vi) and
(

V *
i

)

generated

by the vector fields Vi and V *
i , respectively. So we can write

SVi
=

∫

∥

∥

∥
V

′

i

∥

∥

∥
dt and SV *

i

=

∫

∥

∥

∥
V *

i

′
∥

∥

∥
dt* , 1 ≤ i ≤ 3 .

Using the Frenet formulas and Theorem 2.1 ii), we get

SV *

İ

=

∫

k1dt = SVi
, SV *

2

=

∫

√

∣

∣k2
2 − k2

1

∣

∣dt = SV2
, SV *

3

=

∫

|k2| dt = SV3
,

where
dt

dt*
> 0 .

Similarly, for the arc lengths Sα and Sα* of the indicatrix curves (α)

and
(

α*
)

generated by the timelike curves α and α* on the pseudosphere

S2
1 , respectively, we can write

Sα =

∫

∥

∥

∥
α

′

∥

∥

∥
dt =

∫

dt and Sα* =

∫

∥

∥

∥
α*′
∥

∥

∥
dt* =

∫

dt* .

If
k1

k*
1

is constant, then using Theorem 2.1 ii), we obtain

Sα* =
k1

k*
1

Sα .

Thus we have proved the following theorems.

Theorem 4.1. If SVi
and SV *

i

, 1 ≤ i ≤ 3, are the arc lengths of

indicatrix curves of Frenet vectors Vi and V *
i of timelike base curves α

and α* of the timelike parallel pi-equidistant ruled surfaces M and M*,
respectively, then we have

SV *
i

= SVi
, 1 ≤ i ≤ 3 .

Theorem 4.2. Let Sα and Sα* be the arc lengths of indicatrix curves

of timelike base curves α and α* of the timelike parallel pi-equidistant ruled
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surfaces M and M*, respectively. If
k1

k*
1

is constant, then we have Sα* =

k1

k*
1

Sα .
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[1] N. Kuruoğlu and M. Masal, Timelike parallel pi-equidistant ruled surfaces by a timelike

base curve in the Minkowski 3-space R
3

1, Acta Comment. Univ. Tartu. Math. 11 (2007),
1–9.
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