\section{Introduction}

As first defined by Ruckle \cite{5}, \(\phi\)-topologies in sequence spaces have many valuable properties. Two that stand out the most are: (a) the completion of a sequence space which has a \(\phi\)-topology is also a sequence space and (b) any matrix transformation, defined by a row-finite matrix, between sequence spaces \(E\) and \(F\) that have the strongest \(\phi\)-topologies of all, is a continuous mapping.

The \(\beta\)-topologies, as defined in the article \cite{1}, are significant because the summability field \(c_A\) of any summability matrix \(A = (a_{nk})\) is a separable FK-space such that the FK-topology is a \(\beta\)-topology.

This note aims to analyse the link between \(\phi\)- and \(\beta\)-topologies in FK-spaces. It is quite apparent that every \(\phi\)-topology is a \(\beta\)-topology, the opposite is not always true. In the second section we detail \(\phi\) and \(\beta\)-topologies in separable FK-spaces and confirm the existence of a \(\beta\)-topology that is not a \(\phi\)-topology.

In the third section we demonstrate that if an FK-space has AB, then every \(\beta\)-topology on it is also a \(\phi\)-topology. Furthermore, we show that in such a case the FK-topology is generated by a sequence of monotone seminorms. An analogous statement for BK-spaces is well-known (cf. \cite{4}, Lemma 2.1).
The terminology from the theory of locally convex spaces and summability is standard, we refer to Wilansky [6] and [7].

Let X be a vector space and let M be a total subspace of X^* (the algebraic dual space of X). Then X and M by means of the bilinear form

$$\langle \ , \ \rangle : \ X \times M \to \mathbb{K}, \ (x, f) \mapsto \langle x, f \rangle := f(x),$$

form a dual pair $\langle X, M \rangle$. A locally convex topology τ on X is said to be $\langle X, M \rangle$-polar, if it is generated by a family of seminorms $\{p_\gamma \}_{\gamma \in \Gamma}$ having the property

$$\forall \gamma \in \Gamma \ \exists S_\gamma \subset M \ \forall x \in X \ p_\gamma(x) = \sup_{f \in S_\gamma} |f(x)|. \quad (1)$$

We call a seminorm M-polar if it satisfies (1). Note that τ is an $\langle X, M \rangle$-polar topology on X if and only if there exists a τ-neighbourhood basis \mathcal{B} of zero such that

$$\forall U \in \mathcal{B} \ M \cap U^0 \text{ is } \sigma(X', X)\text{-dense in } U^0,$$

(cf. [1], Proposition 4.2), where X' is the topological dual of (X, τ) and $U^0 := \{f \in X' \mid \forall x \in U \ |f(x)| \leq 1\}$ is the the polar set of U.

2. φ- and β-topologies

Let ω be the space of all complex or real sequences $x = (x_k)$ and φ the space of all finitely non-zero sequences. A linear subspace of ω is called a sequence space. The space φ is clearly the linear span of $\{e^k \mid k \in \mathbb{N}\}$, where

$$e^k := (\delta_{ki}) = (0, \ldots, 0, 1, 0, \ldots) \ (k \in \mathbb{N}).$$

For a sequence space E its β-dual E^β is defined by

$$E^\beta := \left\{ y \in \omega \mid \sum_k x_k y_k \text{ converges for each } x \in E \right\}.$$

A K-space is a sequence space endowed with a locally convex topology such that the coordinate functionals π_k defined by $\pi_k(x) := x_k \ (k \in \mathbb{N})$ are continuous. A Fréchet (Banach, LB-)K-space is called an FK (BK, LBK)-space.

Let E be a sequence space containing φ. By means of the natural pairing

$$\langle x, u \rangle := \sum_k x_k u_k \ (x \in E, \ u \in E^\beta),$$

the sequence space E is in duality with both E^β and φ. Obviously, the inclusion $\varphi \subset E'$ holds for each K-space E. If (E, τ_E) is an FK-space, then $E^\beta \subset E'$.

A φ-topology on a sequence space E is defined as an $\langle E, \varphi \rangle$-polar topology. It can be verified that a K-topology τ on E is a φ-topology if and only if
there exists a \(\tau \)-neighbourhood basis of zero consisting of \(\tau_\omega \o E \)-closed subsets, where \(\tau_\omega \) is the FK-topology of the sequence space \(\omega \).

An \(\langle E, E^\beta \rangle \)-polar topology on a sequence space \(E \) is called a \(\beta \)-topology (cf. [1], Definition 4.1).

Let \(A = (a_{nk}) \) be an infinite matrix. Then its summability field \(c_A \), defined by

\[
c_A := \left\{ x \in \omega \mid \exists \lim_n \sum_k a_{nk}x_k =: \lim A x \right\},
\]

is a separable FK-space, where the FK-topology is generated by the seminorms

\[
p_0(x) := \sup_n \left| \sum_k a_{nk}x_k \right|,
\]

\[
p_n(x) := \sup_m \left| \sum_{k=1}^m a_{nk}x_k \right| \quad (n \in \mathbb{N})
\]

and

\[
r_k(x) := |x_k| \quad (k \in \mathbb{N})
\]

for each \(x \in c_A \). The seminorms \(p_0, p_n \) and \(r_k \) are \(E^\beta \)-polar, thus the FK-topology of \(c_A \) is a \(\beta \)-topology. (Note that in this instance we accept that \(\varphi \subset c_A \), i.e., the columns \((a_{nk})_{n \in \mathbb{N}} \) \((k \in \mathbb{N}) \) are all converging sequences.) If \(A = (a_{nk}) \) is row-finite, that is \((a_{nk})_{k \in \mathbb{N}} \in \varphi \) \((n \in \mathbb{N}) \), then its summability field \(c_A \) is an FK-space such that the FK-topology is a \(\varphi \)-topology.

Proposition 1. Let \((E, \tau_E) \) be a separable FK-space. If \(\tau_E \) is a \(\beta \)-topology, then for every \(f \in E' \) there exists a matrix \(A = (a_{nk}) \) such that \(E \subset c_A \) and

\[
f(x) = \lim A x \quad (x \in E).
\]

Moreover, if \(\tau_E \) is a \(\varphi \)-topology, then the matrix \(A = (a_{nk}) \) can be chosen row-finite.

Proof. Let \((E, \tau_E) \) be a separable FK-space such that \(\tau_E \) is a \(\beta \)-topology. If \(f \in E' \), then there exists a \(\tau_E \)-neighbourhood \(U \) of zero such that \(|f(x)| \leq 1 \quad (x \in U) \). Because \(\tau_E \) is a \(\beta \)-topology, we may choose \(U \) such that \(U = U^0 \cap E^\beta \langle E', E \rangle \). Since \((E, \tau_E) \) is separable, \((U^0, \sigma(E', E)|U^0) \) is a metrizable topological space (cf. [6], 9.5.3). Hence, for the functional \(f \in \underbrace{U^0 \cap E^\beta \langle E', E \rangle} \) there exists a sequence \((a^{(n)}) \), consisting of elements from \(U^0 \cap E^\beta \), such that \(a^{(n)} \to f \) in \((E', \sigma(E', E)) \). Since \(a^{(n)} = (a_{nk})_{k \in \mathbb{N}} \in E^\beta \) for every \(n \in \mathbb{N} \),

\[
f(x) = \lim_n \langle x, a^{(n)} \rangle = \lim_n \sum_k a_{nk}x_k = \lim A x
\]
for each \(x \in E \). Moreover, \(E \subset c_A \).

If \(\tau_E \) is a \(\varphi \)-topology, then we may choose \(U \) such that \(U^0 = U^0 \cap \sigma(E',E) \). Therefore the matrix \(A = (a_{nk}) \) can be chosen so that \(a^{(n)} \in \varphi \) (\(n \in \mathbb{N} \)), that is, the matrix \(A \) is row-finite. \(\square \)

As already mentioned, every FK-topology that is a \(\varphi \)-topology is also a \(\beta \)-topology. The following example demonstrates that the opposite is not always true.

Example. Erdős and Piranian [3] (see also [1], Remarks 4.3 and Example 4.4) examined a matrix \(B = (b_{nk}) \) defined by

\[
b_{nk} := \begin{cases} 2^{-p} & \text{if } k = 2^n(2p - 1) \ (p, n \in \mathbb{N}), \\ 0 & \text{otherwise.} \end{cases}
\]

The matrix \(B \) is regular, that is, \(c_B \supset c \) (where \(c \) is the space of all converging sequences) and \(\lim_B x = \lim_n x_n \) for each \(x \in c \). Erdős and Piranian showed that if \(C \) is any regular matrix such that \(c_B \subset c_C \), then \(C \) is not row-finite. We know that \(c_B \) is a separable FK-space such that the FK-topology is a \(\beta \)-topology. Since \(\lim_B \in (c_B)' \), by Proposition 1 there exists a matrix \(A \) such that \(c_B \subset c_A \) and

\[
\lim_B x = \lim_A x \quad \text{for all } x \in c_B.
\]

Therefore \(A \) is a regular matrix, which implies that it is not row-finite. By Proposition 1, the FK-topology on \(c_B \) is not a \(\varphi \)-topology.

3. Monotone seminorms

Let \((E, \| \|) \) be a BK-space. The norm \(\| \| \) is called **monotone** (see [7], 7.1.1) if

\[
\| x \| = \sup_n \| x^{[n]} \|,
\]

where \(x^{[n]} \) is the \(n^{th} \) section of \(x \) defined by

\[
x^{[n]} := (x_1, x_2, \ldots, x_n, 0, \ldots) = \sum_{k=1}^{n} x_k e_k \ (n \in \mathbb{N}).
\]

If the norm \(\| \| \) is monotone, then \(\| x^{[m]} \| \leq \| x^{[n]} \| \) for each \(m \geq n \). Any BK-space \((E, \| \|) \) that has a monotone norm also has AB, i.e., for each \(x \in E \) the subset \(\{ x^{[n]} : n \in \mathbb{N} \} \) is bounded in \((E, \| \|) \). The converse is not always true, that is, there exist AB-BK-spaces that do not have a monotone norm. An example is the sum \(bs + c_0 \) (cf. [7], 10.3.7), where \(c_0 \) is the space of all sequences which converge to zero and

\[
bs := \left\{ x \in \omega \mid \| x \|_{bs} := \sup_m \left| \sum_{k=1}^{m} x_k \right| < \infty \right\}.
\]
It is well-known, that a BK-space \((E, \| \|)\) has a monotone norm if and only if \((E, \| \|)\) is an AB-BK-space that has a \(\varphi\)-topology (cf. [4], Lemma 2.1). Our aim is to demonstrate that an analogous statement holds for AB-FK-spaces and that in such a scenario every \(\beta\)-topology is also a \(\varphi\)-topology.

Let \(E\) be a sequence space. Then we call a seminorm \(q : E \to \mathbb{R}\) monotone if

\[
q(x) = \sup_m q(x^{[m]}) \quad \text{for each } x \in E.
\]

If \((E, \tau_E)\) is an FK-space, then there exists a sequence \(\{p_n \mid n \in \mathbb{N}\}\) of seminorms generating the FK-topology \(\tau_E\) such that

\[
p_n(x) \leq p_{n+1}(x) \quad \text{for each } x \in E \text{ and } n \in \mathbb{N}.
\]

For the subsets \(U_n := \{x \in E \mid p_n(x) \leq 1\}\) we get that \(U_1 \supseteq U_2 \supseteq \ldots\). Let

\[
G_n := \left\{ f \in E' \mid \left\| f \right\|_{G_n} := \sup_{x \in U_n} |f(x)| \right\} < \infty\}
\]

and

\[
F_n := \left\{ u \in E^\beta \mid \left\| u \right\|_{F_n} := \sup_{x \in U_n} \left| \sum_{k=1}^m u_k x_k \right| < \infty\right\}
\]

for each \(n \in \mathbb{N}\). Then \((G_n, \left\| G_n \right\|)\) is a Banach space and \((F_n, \left\| F_n \right\|)\) is a BK-space for every \(n \in \mathbb{N}\). We denote by \(B_{F_n}\) the unit ball of \(F_n\). Note that

\[
\sup_{u \in B_{F_n}} \left| \sum_{k=1}^\infty u_k x_k \right| = \sup_{u \in B_{F_n}} \left| \sum_{k=1}^m u_k x_k \right| \quad \text{for each } x \in E.
\]

If the seminorm \(p_n\) is monotone, then

\[
\sup_{f \in U_n^{0,\varphi}} \left| \sum_{k=1}^m x_k f(e^k) \right| = \sup_{f \in U_n^{0,\varphi}} \left| \sum_{k=1}^\infty x_k f(e^k) \right| = \sup_{f \in U_n^{0,\varphi} \cap E^\beta} \left| \sum_{k=1}^\infty x_k f(e^k) \right|.
\]

Proposition 2. Let \((E, \tau_E)\) be an AB-FK-space. Then the following statements are equivalent.

(a) \(\tau_E\) is generated by a sequence of monotone seminorms.

(b) \(\tau_E\) is a \(\varphi\)-topology.

(c) \(\tau_E\) is a \(\beta\)-topology.

Proof. (a)⇒(b) Let \((E, \tau_E)\) be an AB-FK-space where \(\tau_E\) is generated by a sequence \(\{p_n \mid n \in \mathbb{N}\}\) of monotone seminorms. We may assume that (2) holds. For every monotone seminorm \(p_n\) we get (cf. (4))

\[
p_n(x) = \sup_m p_n(x^{[m]}) = \sup_{f \in U_n^{0,\varphi}} \left| \sum_{k=1}^m x_k f(e^k) \right| \quad \text{for each } x \in E.
\]
Since \((E, \tau_E) \) is an AB-FK-space, \(E^\beta \cap G_n \) is closed in the Banach space \(G_n \) for every \(n \in \mathbb{N} \) (cf. [2], Theorem 3.4). Therefore \((E^\beta \cap G_n, \| \cdot \|_{G_n}) \) is a BK-space for every \(n \in \mathbb{N} \). Consequently, the sequences \((F_n)_{n \in \mathbb{N}} \) and \((E^\beta \cap G_n)_{n \in \mathbb{N}} \), both consisting of BK-spaces, determine the same sequence space \(E^\beta \), that is,

\[
E^\beta = \bigcup_{n \in \mathbb{N}} F_n = \bigcup_{n \in \mathbb{N}} (E^\beta \cap G_n).
\]

Hence, the inductive sequences \((F_n)_{n \in \mathbb{N}} \) and \((E^\beta \cap G_n)_{n \in \mathbb{N}} \) are equivalent. Then for each \(n \in \mathbb{N} \) there exist \(i \in \mathbb{N} \) and \(\rho_{n,i} > 0 \), such that

\[
U_n = (U^0_n \cap E^\beta)^0 \supset \frac{1}{\rho_{n,i}} (B_{F_i})^0.
\]

(5)

Conversely, from the inclusion \(F_n \subset E^\beta \cap G_n \) we get that there exists \(\mu_n > 0 \) such that

\[
(B_{F_n})^0 \supset \frac{1}{\mu_n} (U^0_n \cap E^\beta)^0 = \frac{1}{\mu_n} U_n \quad (n \in \mathbb{N}).
\]

(6)

Let us define

\[
q_i(x) := \sup_{u \in B_{F_i}} \left| \sum_{k=1}^{\infty} u_k x_k \right| = \sup_{u \in B_{F_i}, m \in \mathbb{N}} \left| \sum_{k=1}^{m} u_k x_k \right| \quad (x \in E)
\]

(cf. (3)). Then

\[
\sup_m q_i(x^m) = \sup_{m \in \mathbb{N}} \left| \sum_{k=1}^{n} (u^m)_k x_k \right| = \sup_{u \in B_{F_i}, l \in \mathbb{N}} \left| \sum_{k=1}^{l} u_k x_k \right| = q_i(x)
\]

for each \(x \in E \) and \(i \in \mathbb{N} \). So \(\{q_i \mid i \in \mathbb{N}\} \) is a sequence of monotone seminorms. Since

\[
\{x \in E \mid q_i(x) \leq 1\} = \left\{x \in E \mid \sup_{u \in B_{F_i}} \left| \sum_{k=1}^{\infty} u_k x_k \right| \leq 1\right\} = (B_{F_i})^0,
\]

from (5) and (6) we see that the locally convex topology \(\tau' \) generated by \(\{q_i \mid i \in \mathbb{N}\} \) coincides with \(\tau_E \). Thus we have proved that the \(\beta \)-topology \(\tau_E \) can be determined by a sequence of monotone seminorms.

\(\square \)
References

Faculty of Mathematics and Computer Science, University of Tartu, J. Liivi 2, 50409, Tartu, Estonia
E-mail address: klatt@ut.ee