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ϕ- and β-topologies in sequence spaces

Kaido Lätt

Abstract. The aim of this note is to examine the relationship between
ϕ-topologies and β-topologies in FK-spaces. Every ϕ-topology on an
FK-space is a β-topology, the converse statement is not always true.
Still, in AB-BK-spaces the statement holds, i.e., every β-topology is a
ϕ-topology. We establish that an analogous statement is true for AB-
FK-spaces.

1. Introduction

As first defined by Ruckle [5], ϕ-topologies in sequence spaces have many
valuable properties. Two that stand out the most are: (a) the completion
of a sequence space which has a ϕ-topology is also a sequence space and (b)
any matrix transformation, defined by a row-finite matrix, between sequence
spaces E and F that have the strongest ϕ-topologies of all, is a continuous
mapping.

The β-topologies, as defined in the article [1], are significant because the
summability field cA of any summability matrix A = (ank) is a separable
FK-space such that the FK-topology is a β-topology.

This note aims to analyse the link between ϕ- and β-topologies in FK-
spaces. It is quite apparent that every ϕ-topology is a β-topology, the oppo-
site is not always true. In the second section we detail ϕ- and β-topologies
in separable FK-spaces and confirm the existence of a β-topology that is not
a ϕ-topology.

In the third section we demonstrate that if an FK-space has AB, then
every β-topology on it is also a ϕ-topology. Furthermore, we show that
in such a case the FK-topology is generated by a sequence of monotone
seminorms. An analogous statement for BK-spaces is well-known (cf. [4],
Lemma 2.1).
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The terminology from the theory of locally convex spaces and summability
is standard, we refer to Wilansky [6] and [7].

Let X be a vector space and let M be a total subspace of X∗ (the algebraic
dual space of X). Then X and M by means of the bilinear form

〈 , 〉 : X × M → K, (x, f) 7→ 〈x, f〉 := f(x),

form a dual pair 〈X,M〉. A locally convex topology τ on X is said to be
〈X,M〉-polar, if it is generated by a family of seminorms {pγ}γ∈Γ having the
property

∀γ ∈ Γ ∃Sγ ⊂ M ∀x ∈ X pγ(x) = sup
f∈Sγ

|f(x)| . (1)

We call a seminorm M -polar if it satisfies (1). Note that τ is an 〈X,M〉-polar
topology on X if and only if there exists a τ -neighbourhood basis B of zero
such that

∀U ∈ B M ∩ U0 is σ(X ′,X)-dense in U0,

(cf. [1], Proposition 4.2), where X ′ is the topological dual of (X, τ) and
U0 := {f ∈ X ′ | ∀x ∈ U |f(x)| ≤ 1} is the the polar set of U .

2. ϕ- and β-topologies

Let ω be the space of all complex or real sequences x = (xk) and ϕ the
space of all finitely non-zero sequences. A linear subspace of ω is called a
sequence space. The space ϕ is clearly the linear span of {ek | k ∈ N}, where

ek := (δki) = (0, . . . , 0, 1, 0, . . . ) (k ∈ N).

For a sequence space E its β-dual Eβ is defined by

Eβ :=

{

y ∈ ω |
∑

k

xkyk converges for each x ∈ E

}

.

A K-space is a sequence space endowed with a locally convex topology
such that the coordinate functionals πk defined by πk(x) := xk (k ∈ N) are
continuous. A Fréchet (Banach, LB-)K-space is called an FK(BK, LBK)-
space.

Let E be a sequence space containing ϕ. By means of the natural pairing

〈x, u〉 :=
∑

k

xkuk (x ∈ E, u ∈ Eβ),

the sequence space E is in duality with both Eβ and ϕ. Obviously, the
inclusion ϕ ⊂ E′ holds for each K-space E. If (E, τE) is an FK-space, then
Eβ ⊂ E′.

A ϕ-topology on a sequence space E is defined as an 〈E,ϕ〉-polar topology.
It can be verified that a K-topology τ on E is a ϕ-topology if and only if
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there exists a τ -neighbourhood basis of zero consisting of τω|E -closed subsets,
where τω is the FK-topology of the sequence space ω.

An 〈E,Eβ〉-polar topology on a sequence space E is called a β-topology
(cf. [1], Definition 4.1).

Let A = (ank) be an infinite matrix. Then its summability field cA, defined
by

cA :=

{

x ∈ ω | ∃ lim
n

∑

k

ankxk =: limAx

}

,

is a separable FK-space, where the FK-topology is generated by the semi-
norms

p0(x) := sup
n

∣

∣

∣

∣

∣

∑

k

ankxk

∣

∣

∣

∣

∣

,

pn(x) := sup
m

∣

∣

∣

∣

∣

m
∑

k=1

ankxk

∣

∣

∣

∣

∣

(n ∈ N)

and

rk(x) := |xk| (k ∈ N)

for each x ∈ cA. The seminorms p0, pn and rk are Eβ-polar, thus the FK-
topology of cA is a β-topology. (Note that in this instance we accept that
ϕ ⊂ cA, i.e., the columns (ank)n∈N (k ∈ N) are all converging sequences.) If
A = (ank) is row-finite, that is (ank)k∈N ∈ ϕ (n ∈ N), then its summability
field cA is an FK-space such that the FK-topology is a ϕ-topology.

Proposition 1. Let (E, τE) be a separable FK-space. If τE is a β-

topology, then for every f ∈ E′ there exists a matrix A = (ank) such that

E ⊂ cA and

f(x) = limAx (x ∈ E).

Moreover, if τE is a ϕ-topology, then the matrix A = (ank) can be chosen

row-finite.

Proof. Let (E, τE) be a separable FK-space such that τE is a β-topology.
If f ∈ E′, then there exists a τE-neighbourhood U of zero such that |f(x)| ≤
1 (x ∈ U). Because τE is a β-topology, we may choose U such that U0 =

U0 ∩ Eβ
σ(E′,E)

. Since (E, τE) is separable, (U0, σ(E′, E)|U0) is a metrizable

topological space (cf. [6], 9.5.3). Hence, for the functional f ∈ U0 ∩ Eβ
σ(E′,E)

there exists a sequence (a(n)), consisting of elements from U0∩Eβ, such that
a(n) → f in (E′, σ(E′, E)). Since a(n) = (ank)k∈N ∈ Eβ for every n ∈ N,

f(x) = lim
n
〈x, a(n)〉 = lim

n

∑

k

ankxk = limAx
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for each x ∈ E. Moreover, E ⊂ cA.

If τE is a ϕ-topology, then we may choose U such that U0 = U0 ∩ ϕ
σ(E′,E)

.
Therefore the matrix A = (ank) can be chosen so that a(n) ∈ ϕ (n ∈ N),
that is, the matrix A is row-finite. �

As already mentioned, every FK-topology that is a ϕ-topology is also a
β-topology. The following example demonstrates that the opposite is not
always true.

Example. Erdös and Piranian [3] (see also [1], Remarks 4.3 and Example
4.4) examined a matrix B = (bnk) defined by

bnk :=

{

2−p if k = 2n−1(2p − 1) (p, n ∈ N),
0 otherwise.

The matrix B is regular, that is, cB ⊃ c (where c is the space of all converging
sequences) and limBx = limk xk for each x ∈ c. Erdös and Piranian showed
that if C is any regular matrix such that cB ⊂ cC , then C is not row-finite.
We know that cB is a separable FK-space such that the FK-topology is a
β-topology. Since limB ∈ (cB)′, by Proposition 1 there exists a matrix A

such that cB ⊂ cA and

limBx = limAx for all x ∈ cB .

Therefore A is a regular matrix, which implies that it is not row-finite. By
Proposition 1, the FK-topology on cB is not a ϕ-topology.

3. Monotone seminorms

Let (E, ‖ ‖) be a BK-space. The norm ‖ ‖ is called monotone (see [7],
7.1.1) if

‖x‖ = sup
n

‖x[n]‖,

where x[n] is the nth section of x defined by

x[n] := (x1, x2, . . . , xn, 0, . . . ) =

n
∑

k=1

xke
k (n ∈ N).

If the norm ‖ ‖ is monotone, then ‖x[n]‖ ≤ ‖x[m]‖ for each m ≥ n. Any BK-
space (E, ‖ ‖) that has a monotone norm also has AB, i.e., for each x ∈ E

the subset {x[n] | n ∈ N} is bounded in (E, ‖ ‖). The converse is not always
true, that is, there exist AB-BK-spaces that do not have a monotone norm.
An example is the sum bs + c0 (cf. [7], 10.3.7), where c0 is the space of all
sequences which converge to zero and

bs :=

{

x ∈ ω | ‖x‖bs := sup
m

∣

∣

∣

∣

∣

m
∑

k=1

xk

∣

∣

∣

∣

∣

< ∞

}

.
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It is well-known, that a BK-space (E, ‖ ‖) has a monotone norm if and only if
(E, ‖ ‖) is an AB-BK-space that has a ϕ-topology (cf. [4], Lemma 2.1). Our
aim is to demonstrate that an analogous statement holds for AB-FK-spaces
and that in such a scenario every β-topology is also a ϕ-topology.

Let E be a sequence space. Then we call a seminorm q : E → R monotone

if

q(x) = sup
m

q(x[m]) for each x ∈ E.

If (E, τE) is an FK-space, then there exists a sequence {pn | n ∈ N} of
seminorms generating the FK-topology τE such that

pn(x) ≤ pn+1(x) for each x ∈ E and n ∈ N. (2)

For the subsets Un := {x ∈ E | pn(x) ≤ 1} we get that U1 ⊃ U2 ⊃ . . .. Let

Gn :=

{

f ∈ E′ | ‖f‖Gn
:= sup

x∈Un

|f(x)| < ∞

}

and

Fn :=

{

u ∈ Eβ | ‖u‖Fn
:= sup

x∈Un, m∈N

∣

∣

∣

∣

∣

m
∑

k=1

ukxk

∣

∣

∣

∣

∣

< ∞

}

for each n ∈ N. Then (Gn, ‖ ‖Gn) is a Banach space and (Fn, ‖ ‖Fn) is a
BK-space for every n ∈ N. We denote by BFn the unit ball of Fn. Note that

sup
u∈BFn

∣

∣

∣

∣

∣

∞
∑

k=1

ukxk

∣

∣

∣

∣

∣

= sup
u∈BFn , m∈N

∣

∣

∣

∣

∣

m
∑

k=1

ukxk

∣

∣

∣

∣

∣

for each x ∈ E. (3)

If the seminorm pn is monotone, then

sup
f∈U0

n, m∈N

∣

∣

∣

∣

∣

m
∑

k=1

xkf(ek)

∣

∣

∣

∣

∣

= sup
f∈U0

n∩ϕ

∣

∣

∣

∣

∣

∞
∑

k=1

xkf(ek)

∣

∣

∣

∣

∣

= sup
f∈U0

n∩Eβ

∣

∣

∣

∣

∣

∞
∑

k=1

xkf(ek)

∣

∣

∣

∣

∣

.

(4)

Proposition 2. Let (E, τE) be an AB-FK-space. Then the following

statements are equivalent.

(a) τE is generated by a sequence of monotone seminorms.

(b) τE is a ϕ-topology.

(c) τE is a β-topology.

Proof. (a)⇒(b) Let (E, τE) be an AB-FK-space where τE is generated by
a sequence {pn | n ∈ N} of monotone seminorms. We may assume that (2)
holds. For every monotone seminorm pn we get (cf. (4))

pn(x) = sup
m

pn(x[m]) = sup
f∈U0

n, m∈N

∣

∣

∣

∣

∣

m
∑

k=1

xkf(ek)

∣

∣

∣

∣

∣

= sup
f∈U0

n∩ϕ

∣

∣

∣

∣

∣

∞
∑

k=1

xkf(ek)

∣

∣

∣

∣

∣
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for each x ∈ E. Hence, pn is ϕ-polar.
The implication (b)⇒(c) is obvious.
(c)⇒(a) Let (E, τE) be an AB-FK-space, where the β-topology τE is

generated by a sequence {pn | n ∈ N} of seminorms with the property (2).
Because τE is a β-topology, we may assume that (U0

n ∩ Eβ)0 = (U0
n)0 = Un,

and thus

pn(x) = sup
u∈U0

n∩Eβ

∣

∣

∣

∣

∣

∞
∑

k=1

xkuk

∣

∣

∣

∣

∣

(x ∈ E, n ∈ N).

Since (E, τE) is an AB-FK-space, Eβ ∩ Gn is closed in the Banach space
Gn for every n ∈ N (cf. [2], Theorem 3.4). Therefore (Eβ ∩ Gn, ‖ ‖Gn)
is a BK-space for every n ∈ N. Consequently, the sequences (Fn)n∈N and
(Eβ ∩ Gn)n∈N, both consisting of BK-spaces, determine the same sequence
space Eβ, that is,

Eβ =
⋃

n∈N

Fn =
⋃

n∈N

(Eβ ∩ Gn).

Hence, the inductive sequences (Fn)n∈N and (Eβ ∩ Gn)n∈N are equivalent.
Then for each n ∈ N there exist i ∈ N and ρn,i > 0, such that

Un = (U0
n ∩ Eβ)0 ⊃

1

ρn,i
(BFi

)0. (5)

Conversely, from the inclusion Fn ⊂ Eβ ∩Gn we get that there exists µn > 0
such that

(BFn)0 ⊃
1

µn
(U0

n ∩ Eβ)0 =
1

µn
Un (n ∈ N). (6)

Let us define

qi(x) := sup
u∈BFi

∣

∣

∣

∣

∣

∞
∑

k=1

ukxk

∣

∣

∣

∣

∣

= sup
u∈BFi

, m∈N

∣

∣

∣

∣

∣

m
∑

k=1

ukxk

∣

∣

∣

∣

∣

(x ∈ E)

(cf. (3)). Then

sup
m

qi(x
[m]) = sup

m
sup

u∈BFi
, n∈N

∣

∣

∣

∣

∣

n
∑

k=1

(u[m])kxk

∣

∣

∣

∣

∣

= sup
u∈BFi

, l∈N

∣

∣

∣

∣

∣

l
∑

k=1

ukxk

∣

∣

∣

∣

∣

= qi(x)

for each x ∈ E and i ∈ N. So {qi | i ∈ N} is a sequence of monotone
seminorms. Since

{x ∈ E | qi(x) ≤ 1} =

{

x ∈ E | sup
u∈BFi

∣

∣

∣

∣

∣

∞
∑

k=1

ukxk

∣

∣

∣

∣

∣

≤ 1

}

= (BFi
)0,

from (5) and (6) we see that the locally convex topology τ ′ generated by
{qi | i ∈ N} coincides with τE. Thus we have proved that the β-topology τE

can be determined by a sequence of monotone seminorms. �
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