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w- and (-topologies in sequence spaces
KAIDO LATT

ABSTRACT. The aim of this note is to examine the relationship between
p-topologies and [(-topologies in FK-spaces. Every p-topology on an
FK-space is a (-topology, the converse statement is not always true.
Still, in AB-BK-spaces the statement holds, i.e., every S-topology is a
p-topology. We establish that an analogous statement is true for AB-
FK-spaces.

1. Introduction

As first defined by Ruckle [5], ¢-topologies in sequence spaces have many
valuable properties. Two that stand out the most are: (a) the completion
of a sequence space which has a ¢-topology is also a sequence space and (b)
any matrix transformation, defined by a row-finite matrix, between sequence
spaces I/ and F' that have the strongest ¢-topologies of all, is a continuous
mapping.

The [-topologies, as defined in the article [1], are significant because the
summability field ¢4 of any summability matrix A = (a,) is a separable
FK-space such that the FK-topology is a (-topology.

This note aims to analyse the link between ¢- and (-topologies in FK-
spaces. It is quite apparent that every ¢-topology is a G-topology, the oppo-
site is not always true. In the second section we detail p- and (-topologies
in separable FK-spaces and confirm the existence of a S-topology that is not
a p-topology.

In the third section we demonstrate that if an FK-space has AB, then
every [-topology on it is also a ¢-topology. Furthermore, we show that
in such a case the FK-topology is generated by a sequence of monotone
seminorms. An analogous statement for BK-spaces is well-known (cf. [4],
Lemma 2.1).
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The terminology from the theory of locally convex spaces and summability
is standard, we refer to Wilansky [6] and [7].

Let X be a vector space and let M be a total subspace of X* (the algebraic
dual space of X). Then X and M by means of the bilinear form

(,): Xx M=K, (z,f)—(z,f) = f(z),
form a dual pair (X, M). A locally convex topology 7 on X is said to be
(X, M)-polar, if it is generated by a family of seminorms {p, }er having the
property

Vyel 35, C M Vz € X p,(x)= sup |f(z)]. (1)
fesy
We call a seminorm M-polar if it satisfies (1). Note that 7 is an (X, M)-polar
topology on X if and only if there exists a T-neighbourhood basis 98 of zero
such that

YUe®B MNU%is o(X', X)-dense in UY,

(cf. [1], Proposition 4.2), where X’ is the topological dual of (X,7) and
UV:={feX'|VxeU |f(x)] <1} is the the polar set of U.

2. ¢- and (J-topologies

Let w be the space of all complex or real sequences z = (x) and ¢ the
space of all finitely non-zero sequences. A linear subspace of w is called a
sequence space. The space ¢ is clearly the linear span of {ek | k € N}, where

e* .= (0r) = (0,...,0,1,0,...) (k € N).
For a sequence space E its 3-dual E? is defined by

EP = {y cEwl Zxkyk converges for each x € E} .
k

A K-space is a sequence space endowed with a locally convex topology
such that the coordinate functionals 7y, defined by 7 (z) := =y (k € N) are
continuous. A Fréchet (Banach, LB-)K-space is called an FK(BK, LBK)-
space.

Let E be a sequence space containing ¢. By means of the natural pairing

(x,u) := Zajkuk (xr e E, ue E®),
k

the sequence space E is in duality with both E® and ¢. Obviously, the
inclusion ¢ C E’ holds for each K-space E. If (E,7g) is an FK-space, then
ESCE.

A p-topology on a sequence space E is defined as an (E, ¢)-polar topology.
It can be verified that a K-topology 7 on E is a @p-topology if and only if
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there exists a T-neighbourhood basis of zero consisting of 7| ,-closed subsets,
where 7, is the FK-topology of the sequence space w.

An (E, E®)-polar topology on a sequence space E is called a (-topology
(cf. [1], Definition 4.1).

Let A = (anx) be an infinite matrix. Then its summability field ¢4, defined
by

= {az Ew| Elli;LnZanka:k =: limAa:} )
k

is a separable FK-space, where the FK-topology is generated by the semi-
norms

)

po(x) := sup
n

Z kT
k

m

Z AnkTE

k=1

pn(T) = sup (n €N)

and
ri(x) == |zg| (k € N)

for each & € c4. The seminorms pg, p, and 7 are EP-polar, thus the FK-
topology of ¢4 is a (B-topology. (Note that in this instance we accept that
¢ C ca, i.e., the columns (ank)nen (k € N) are all converging sequences.) If
A = (apy) is row-finite, that is (ank)ren € ¢ (n € N), then its summability
field ¢4 is an FK-space such that the FK-topology is a y-topology.

Proposition 1. Let (E,7g) be a separable FK-space. If g is a (-
topology, then for every f € E' there exists a matriz A = (ani) such that
E Ccy and

f(z) =limax (z € E).
Moreover, if T is a @-topology, then the matriz A = (anx) can be chosen
row-finite.

Proof. Let (E,Tg) be a separable FK-space such that 75 is a S-topology.
If f € E', then there exists a Tg-neighbourhood U of zero such that |f(x)| <
1 (x € U). Because 7 is a (-topology, we may choose U such that U% =
——0o(E',E i . . .
Uon ES (L5 Since (E, 7g) is separable, (U°, o(E', E)|yo) is a metrizable

topological space (cf. [6],9.5.3). Hence, for the functional f € U9 N T
there exists a sequence (a(”)), consisting of elements from U°N E®, such that
a™ — fin (E',0(F', E)). Since a™ = (ani)ren € EP for every n € N,

f(z) =lim(z,a™) = limz AnpTr = limgx
k
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for each x € E. Moreover, E C cy4.
——(E"\E
If 7 is a @-topology, then we may choose U such that U? = U9 N 900( ).
Therefore the matrix A = (a,x) can be chosen so that a™ € ¢ (n € N),

that is, the matrix A is row-finite. O

As already mentioned, every FK-topology that is a ¢-topology is also a
(B-topology. The following example demonstrates that the opposite is not
always true.

Example. Erdos and Piranian [3] (see also [1], Remarks 4.3 and Example
4.4) examined a matrix B = (byx) defined by

b o277 k= 2"=1(2p — 1) (p,n € N),
kT otherwise.

The matrix B is regular, that is, cg D ¢ (where ¢ is the space of all converging
sequences) and limpx = limy, 2, for each = € ¢. Erdés and Piranian showed
that if C' is any regular matrix such that cg C c¢, then C' is not row-finite.
We know that cp is a separable FK-space such that the FK-topology is a
B-topology. Since limp € (c¢g)’, by Proposition 1 there exists a matrix A
such that ¢g C ¢4 and

limpgx = limx for all z € ¢p.
Therefore A is a regular matrix, which implies that it is not row-finite. By

Proposition 1, the FK-topology on ¢p is not a y-topology.

3. Monotone seminorms

Let (E,| ||) be a BK-space. The norm || || is called monotone (see [7],
7.1.1) if

]| = sup [,
n
where z[" is the nt" section of = defined by

M= (x1,29,...,2p,0,...) = Zxkek (n € N).
k=1

If the norm || || is monotone, then ||zl™|| < ||z[™| for each m > n. Any BK-
space (E,|| ||) that has a monotone norm also has AB, i.e., for each x € E
the subset {z[" | n € N} is bounded in (F, || ||). The converse is not always
true, that is, there exist AB-BK-spaces that do not have a monotone norm.
An example is the sum bs + ¢o (cf. [7], 10.3.7), where cg is the space of all
sequences which converge to zero and

m

Z T < OO} .

k=1

bs == {x € w | ||lz],, := sup
m
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It is well-known, that a BK-space (E, || ||) has a monotone norm if and only if
(E, || ]]) is an AB-BK-space that has a ¢-topology (cf. [4], Lemma 2.1). Our
aim is to demonstrate that an analogous statement holds for AB-FK-spaces
and that in such a scenario every §-topology is also a (-topology.

Let E be a sequence space. Then we call a seminorm ¢ : £ — R monotone
if

q(x) = sup ¢(z™) for each z € E.
m

If (F,7p) is an FK-space, then there exists a sequence {p, | n € N} of
seminorms generating the FK-topology 75 such that

Pn(x) < ppy1(x) for each z € E and n € N. (2)
For the subsets U,, := {z € E | p,(z) < 1} we get that Uy D Uz D .... Let

G e {f e ' | Ifllg, = sup |f()] < oo}
zeUy

m
Z UpTr| < OO}
k=1

for each n € N. Then (G,,|| |lg,) is a Banach space and (F,, || ||r,) is a
BK-space for every n € N. We denote by B, the unit ball of F},. Note that

and

F,:=ucE°||ulp := sup
" xzeUn, meN

o0 m
sup Zukxk = sup Zuka:k for each ¢ € E. (3)
u€Bp, —1 u€BF,, , meN =1
If the seminorm p,, is monotone, then
m o o
swp (S o f) = sup [Saf @) = sup [ ().
feug, meN |5 fevine -1 FeUINES |

(4)
Proposition 2. Let (E,7p) be an AB-FK-space. Then the following
statements are equivalent.
(a) Tg is generated by a sequence of monotone seminorms.
(b) 7g is a @-topology.
(¢c) Tg is a [-topology.
Proof. (a)=(b) Let (E,7g) be an AB-FK-space where 7 is generated by
a sequence {p, | n € N} of monotone seminorms. We may assume that (2)
holds. For every monotone seminorm p,, we get (cf. (4))

Zxkf(ek)

k=1

Zxkf(ek)

k=1

sup
feuing

pn(x) = suppn(a:[m]) = sup
m fEUY, meN
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for each = € E. Hence, p, is p-polar.
The implication (b)=-(c) is obvious.
(¢)=(a) Let (E,7g) be an AB-FK-space, where the (-topology 7p is

generated by a sequence {p, | n € N} of seminorms with the property (2).

Because 7g is a S-topology, we may assume that (U2 N E%)? = (U%)° = U,,,

and thus

o

pn(z) = sup (x € E, n€N).

ueUONEPR

TrU
k=1

Since (E,7g) is an AB-FK-space, E” N G,, is closed in the Banach space
G, for every n € N (cf. [2], Theorem 3.4). Therefore (E° N Gy, || |la,)
is a BK-space for every n € N. Consequently, the sequences (F),),en and
(EP N Gp)nen, both consisting of BK-spaces, determine the same sequence
space EP, that is,
B’ =] F = J(E NG,
neN neN

Hence, the inductive sequences (F},)neny and (E? N Gy )pen are equivalent.
Then for each n € N there exist 7 € N and p,; > 0, such that

L (Br). (5)

U, = (U°NE° >

.0
Conversely, from the inclusion F,, ¢ EPNG,, we get that there exists ji,, > 0
such that
1 1
(Br,)" > —(UNE?)° = —U, (n € N). (6)

n Hn

Let us define

gi(z) :== sup
uEBFi

= sup
’u,EBFZ.7 meN

Emzuka;k (x € E)

k=1

oo
g Uk T

k=1

(cf. (3)). Then

n

> (@™,

k=1

supgi(«™) = sup  sup = qi(z)

m ’u,EBFZ.7 neN

l
= sup Z Uk T
UEBFiy leN k=1

for each x € F and i € N. So {¢; | i« € N} is a sequence of monotone
seminorms. Since

o)
E Uk T

{er\qi(az)gl}:{erl sup
k=1

UGBFi

< 1} = (BFi)Ov

from (5) and (6) we see that the locally convex topology 7' generated by
{q; | i € N} coincides with 75. Thus we have proved that the S-topology 75
can be determined by a sequence of monotone seminorms. O
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