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Regions of insensitivity for the variance of the
estimator of a linear function of the mean

parameters in the mixed linear model
with type II constraints

Hana Bohacova and Jana Heckenbergerova

Abstract. The insensitivity regions for the variance of the estimator
of a linear function of the mean parameters in a mixed linear model
are already described in different sources. The aim of this paper is to
outline one possible way of their utilization and to extend the concept of
insensitivity to the estimators of a linear function of the mean parameters
of the mixed linear model with type II constraints.

1. Introduction

Each measurement is characterized, among other parameters by its pa-
rameters of accuracy. If the actual values of the accuracy parameters are
not known, their estimates need to be used when estimating the mean para-
meters, testing hypothesis about the mean parameters, or determining their
confidence regions. The results of these procedures are (more or less) af-
fected by using the estimated values of the accuracy parameters instead of
the actual ones. We need to find some rules for the resolution whether the
disparity between the result based on the actual values of the variance pa-
rameters and the result based on their estimated values is important. We
propose to base such decision on the concept of insensitivity.

Foundations of sensitivity and insensitivity can be found in Chapter 6
of [7]. Regions of insensitivity for the variance of the estimator of a linear
function of the mixed linear model parameters and for the confidence region
of these parametrs can be found in [6]. Other important results regarding
insensitivity can be found in [5], [8], [9], [1].
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Let us at first focus on the concept of the regions of insensitivity for the
variance of the estimator of a linear function of the mean parameters in the
mixed linear model without constraints.

2. Mixed linear model (without constraints)

Let Y be an n-dimensional random vector distribution of which belongs
to a given class of distributions with parameters

β ∈ Rk

and

θ = (θ1, θ2 . . . , θr) ∈ Θ ⊂ Rr.

This class of distributions must satisfy two conditions:

E (Y) = Xβ,

where X is a known matrix of n × k dimension, and

Var (Y) =
r∑

i=1

θiVi = Σθ, (1)

where V1, . . . ,Vr are known symmetrical matrices. Let us consider a regular
model, i.e., X is of full column rank r(X) = k and Θ is such an open subset
of the Euclidean space Rr for which Σθ is a positive definite matrix for all
θ ∈ Θ. The variance parameters can be estimated via MINQUE (see [10]):

θ̂ = S−1

(MXΣθMX)
+




Y′ (MXΣθMX)+ V1 (MXΣθMX)+ Y
...

Y′ (MXΣθMX)+ Vr (MXΣθMX)+ Y


 , (2)

where MX denotes the projection matrix on an orthogonal complement (in
Euclidean sense) of the range space of matrix X, (MXΣθMX)+ denotes
the Moore–Penrose generalized matrix inverse of the matrix MXΣθMX and
S(MXΣθ0

MX)+ is a matrix with

{
S(MXΣθ0

MX)+

}

i,j

= Tr

[
Vi(MXΣθ0

MX)+Vj(MXΣθ0
MX)+

]

on its (i, j)-th position, and (MXΣθ0
MX)+ can be obtained in the form (cf.

[6])

(MXΣθ0
MX)+ = Σθ0

−1 − Σθ0

−1X(X′Σθ0

−1X)−1X′Σθ0

−1.

We need a suitable choice of a starting value of the variance parameters

θ0, which enters (2). The θ estimate θ̂ is a result of an iterative procedure
based on (2). This estimate can be further used to estimate the first order
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parameters. The θ̂-LBLUE (θ̂-locally best linear unbiased estimator) of β

is (cf. e.g. [6])

β̂
(
θ̂
)

=
(
X′Σ

θ̂

−1X
)
−1

X′Σ
θ̂

−1Y. (3)

Here Σ
θ̂

denotes a matrix of type (1) based on θ̂ rather than θ.
Let us now discuss the problem outlined in Section 2 in more detail. What

is the discrepancy between the β-estimate obtained by using θ∗, the actual
value of θ (if it is known), and the estimate based on (3) with the input

value θ̂ obtained by the iterative procedure (2) (if the actual value of θ is
unknown)? Can we get some criterion which enables to decide whether these

two estimates are close (although we are not able to determine β̂ (θ∗) if not
knowing θ∗)?

Another question arises. Do we have to estimate θ to use the result as an
input value of (2) even if we are not interested in the estimates of the variance
parameters otherwise? If we have some strict rules to review the quality of
the β-estimates (with regard to their closeness to the estimate based on the
actual value θ∗), we will have a possibility to ground the β-estimate on some
suitably chosen initial values of the second order parameters θ0 and check
whether such an estimate is suited to our rules. This would allow us to omit
the iterative procedure of θ-estimation.

In what follows we mostly use the estimates based on an initial value
θ0 ∈ Θ. These are determined according to (2) using θ0 in place of θ and

(6) using θ0 instead of θ̂. These estimates (and appropriate estimators as

well) are denoted by θ̂ (θ0) and β̂ (θ0). If θ = θ0 is under consideration the
variance-covariance matrices of the estimators (2) and (3) are

Varθ0

(
θ̂(θ0)

)
= 2S−1

(MXΣθ0
MX)+

and

Varθ0

(
β̂(θ0)

)
=
(
X′Σθ0

−1X
)
−1

.

3. Region of insensitivity for the variance of the estimator of
a linear function of the mean parameters in the mixed

linear model without constraints

Let us consider a mixed linear model from the previous section. Suppose
that the actual value of the variance parameters θ is θ∗ ∈ Θ ⊂ Rr. In what
follows this value is a priori not known. Let us choose an initial value θ0 ∈ Θ

and vector h ∈ Rk. Let us compare the estimators of a linear function h′β

that we get using θ∗ and θ0 as the input value for (3). In case θ = θ∗ we
have

ĥ′β (θ∗) = h′
(
X′Σθ∗

−1X
)
−1

X′Σθ∗

−1Y, (4)
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where Σθ∗ denotes a variance-covariance matrix of type (1) with θ∗ instead
of θ. Variance of (9) when θ0 is under consideration is

Varθ0

[
ĥ′β (θ∗)

]
= h′

(
X′Σθ∗

−1X
)
−1

X′Σθ∗

−1Σθ0
Σθ∗

−1X

×
(
X′Σθ∗

−1X
)
−1

h. (5)

The estimator of the same linear function h′β using the initial value θ0 is

ĥ′β (θ0) = h′
(
X′Σθ0

−1X
)
−1

X′Σθ0

−1Y. (6)

Here Σθ0
denotes a matrix of type (1) with θ0 instead of θ. Variance of (6)

is

Varθ0

[
ĥ′β (θ0)

]
= h′

(
X′Σθ0

−1X
)
−1

X′Σθ0

−1Σθ0
Σθ0

−1X

×
(
X′Σθ0

−1X
)
−1

h. (7)

Remark 1. It is of course possible to simplify (7) into the form

Varθ0

[
ĥ′β (θ0)

]
= h′

(
X′Σθ0

−1X
)
−1

h

but (7) is more suitable for the following consideration.

As we can see, the estimators (4) and (6) differ about the vectors mul-

tiplying Y. This vector is h′
(
X′Σθ∗

−1X
)
−1

X′Σθ∗

−1 in case of (4) and

h′
(
X′Σθ0

−1X
)
−1

X′Σθ0

−1 in case of (6). The same vectors appear also in
(5) and (7) once in the same form and once transposed. So if these vectors
are different then not just the estimates (4) and (6) but also the variances
(5) and (7) differ. It means the difference between the variances (5) and (7)
can be a disparity criterion for the estimates. Following definition proceeds
from this idea.

Definition 1. Let for the mixed linear model, defined above, θ0 ∈ Θ,
h ∈ Rk be given and let ε > 0. The set N

h′β,θ0
is called the region of

insensitivity for the variance of the estimator of a linear function h′β if the
set N

h′β,θ0
consists of all points θ = θ0 + δθ (where δθ denotes a shift from

the initial point θ0) satisfying

θ0 + δθ ∈ N
h′β,θ0

⇒

√
Varθ0

[
h′β̂(θ0 + δθ)

]
≤ (1 + ε)

√
Varθ0

[
h′β̂(θ0)

]
.

(8)

The following theorem can be found in [7].

Theorem 1. Suppose that θ0 ∈ Θ, h ∈ Rk and ε > 0 are given. The

region of insensitivity for the variance of the estimator of a linear function

of the mean parameters of the mixed linear model is a set

N
h′β,θ0

= {θ0 + δθ : δθ′Whδθ ≤ (2ε + ε2)Varθ[h′β̂(θ)]}, (9)
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here

Wh =




h′ (X′Σθ0
X)−1

X′Σθ0

−1V1
...

h′ (X′Σθ0
X)−1

X′Σθ0

−1Vr


 (MXΣθ0

MX)+

×




h′ (X′Σθ0
X)−1

X′Σθ0

−1V1
...

h′ (X′Σθ0
X)−1

X′Σθ0

−1Vr




′

.

Lemma 1 (cf. [7]). Let us consider the mixed linear model described in

Section 3. Let h ∈ Rk, θ0 ∈ Θ. Then θ0 is orthogonal to the range space

M(Wh) of matrix Wh from Theorem 1.

Corollary 1. In compliance with Lemma 1, matrix Wh is always singu-

lar.

Remark 2. In Definition 1 and Theorem 1, a linear function h′β is used
instead of the entire vector of the mean parameters β. The choice of h ∈ Rk

can result from some requirements of a particular problem. When there is
no such choice of h it is reasonable to use h = ei, i = 1, 2, . . . , k. In this
case, the region of insensitivity determined according to (9) is a set of all
admissible input values θ = θ0 + δθ which causes at most the ε-multiple
increase of the standard deviation of the estimator of βi. The intersection

Nβ,θ0
=

k⋂

i=1

N
e′

i
β,θ0

(10)

gives a set of all input values of the variance parameters, that for all the
components βi, i = 1, 2, . . . , k, keeps the standard deviation of the estimator
of βi less than the (1+ε)-multiple of the standard deviation of the estimator
of βi based on θ0.

Remark 3. The region of insensitivity given in Theorem 1 is based on an

approximation of h′β̂ (θ0 + δθ) by a linear Taylor polynomial, that is used
in (8). Such a linearization can break the validity of (8). Present numerical
studies indicate an adequacy of a linear approximation. (Cf. e.g. [2]).

With respect to our motivation for the regions of insensitivity for the
variance of the estimator of a linear function of the mean parameters the
ideal location of the actual value θ∗ of the variance parameters is inside

the region of insensitivity. If θ∗ ∈ N
h′β,θ0

, Varθ0

[
ĥ′β (θ∗)

]
is close to

Varθ0

[
ĥ′β (θ0)

]
, and consequently ĥ′β (θ∗) is close to ĥ′β (θ0). As we do

not know θ∗, we are not able to decide whether it is an element of N
h′β,θ0

or not. What we can do is to find a confidence region Eθ0,θ which covers
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the actual value θ∗ with a given probability close to 1. Subsequently we
can transform our requirement into Eθ0,θ ⊂ N

h′β,θ0
. Or more precisely

Eθ0,θ ⊂ Nβ,θ0
. Here Nβ,θ0

is given by (10).

Remark 4. We need some estimate of θ = (θ1, θ2, . . . , θr)
′ to determine

the confidence region for the variance parameters. Let us consider θ̂ (θ0) is
the estimate computed according to (2) using an initial value θ0 ∈ Θ instead
of θ. One way of determining a confidence region is based on Chebyshev’s
and Bonferroni’s inequalities. Let us denote θ∗ = (θ∗1, θ

∗

2, . . . , θ
∗

r)
′ the actual

value of the variance parameters. According to Chebyshev’s inequality

∀c > 0

P

{∣∣∣θ̂i (θ0) − θ∗i

∣∣∣ ≤ c

√
Varθ0

[
θ̂i (θ0)

]}
≥ 1 −

1

c2
, i = 1, 2, . . . , r.

Using (7) and Bonferroni’s inequality (cf. [4]), we get

P

{
∀i = 1, 2, . . . , r :

∣∣∣θ̂i (θ0) − θ∗i

∣∣∣ ≤ c

√
Varθ0

[
θ̂i (θ0)

]}
≥ 1 −

r

c2
.

We are looking for a confidence region – a set which covers the actual value
θ∗ with the probability of 1 − α, α ∈ (0, 1). Thus we need 1 − α = 1 − r

c2
,

which implies c =
√

r
α
. The resultant confidence region is a set

Eθ0,θ =
{
θ = (θ1, θ2, . . . , θr)

′ :

∣∣∣θ̂i (θ0) − θi

∣∣∣ ≤
√

r

α
Varθ0

[
θ̂i (θ0)

]
, ∀i = 1, 2, . . . , r

}
. (11)

The next section describes the utility of the regions.

4. The utilization of the regions of insensitivity

The reasons for a need of insensitivity regions were given by the assessment
of the quality of the estimates. Suppose that we have a mixed linear model
from Section 3 with both mean and variance parameters unknown. Let us
choose some initial value θ0 of the variance parameters and investigate the

quality of mean parameter estimate β̂ (θ0). Let us determine the region of
insensitivity Nβ,θ0

according to (9) and (10) and the confidence region Eθ0,θ
according to (11). There are two possible cases of the relative position of
the insensitivity region Nβ,θ0

and the confidence region Eθ0,θ.

(1) Eθ0,θ ⊂ Nβ,θ0
. A relative position like this is advantageous. The

estimate β̂ (θ0) can be regarded as a quality estimate of the parameter β.

β̂ (θ0) is comparable to β̂ (θ∗) which would be achieved if we knew the actual
value θ∗ of the variance parameters.
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(2) Eθ0,θ * Nβ,θ0
. This time, β̂ (θ0) can be distinct from the estimate

based on the actual value θ∗. One way how to improve the estimate of β is
to start with the iterative procedure (2). Let us suppose that this iterative

procedure stops after m steps. Then θ̂ (θm) is used as an estimate and
Nβ,θm

and Eθm,θ are determined according to (11), (9) and (10), using θm

in place of θ0. If the updated confidence region Eθm,θ is a subset of the

new region of insensitivity Nβ,θm
we achieved our purpose: β̂ (θm) can be

understood as a reliable estimate of the parameter β. If Eθm,θ is still not

imbedded into the region of insensitivity Nβ,θm
we can try to change the

design of the experiment, if possible, and check the relative position of the
confidence and insensitivity region again.

5. Mixed linear model with type II constraints

There are many experiments leading to regression models with type II
constraints. Let us have a look at such a model and estimation of its param-
eters. Let us consider an n-dimensional random vector Y which satisfies

Y ∼n (Xβ1,Σθ), (12)

where X is a known design matrix of n× k1 dimension and of a full column
rank k1, β1 ∈ Rk1 is an unknown parameter, and the variance-covariance
matrix Σθ is the same as the one in Section 3. At the same time, we have
the following constraints on the mean parameter β1:

B1β1 + B2β2 + b = 0, (13)

where B1 and B2 are given q×k1 and q×k2 matrices satisfying the following
conditions:

r(B1,B2) = q,

r(B2) = k2,

k2 < q < (k1 + k2) ,

and b is a given q-dimensional vector, r(A) denotes the rank of matrix A.
β1 is an indirectly observable parameter from the model (12), and β2 is also
unknown and can be estimated on basis of (13) after an estimate of β1 is
known. Equations (12), (13) describe a mixed linear model with type II
constraints.

The aim is to estimate the unknown parameters β1, β2 and θ. Let us
transform (12), (13) to an equivalent model without constraints (cf. [6]).
We need to find matrices K1 of k1 × (k1 + k2 − q) dimension and K2 of
k2 × (k1 + k2 − q) dimension satisfying condition

(B1,B2)

(
K1

K2

)
= 0q×(k1+k2−q). (14)
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With respect to (14) the range space of matrix

(
K1

K2

)
is the same as the

range space of matrix M(
B1

B2

), where B′

2B2 is a regular matrix (as we

suppose B2 to be of a full column rank k2) which means K2 can be written
in form

K2 = −(B′

2 · B2)
−1B′

2B1K1. (15)

Using (14) and (15) we get

0=B1K1−B2(B
′

2 ·B2)
−1B′

2B1K1 =[I−B2(B
′

2B2)
−1B′

2]B1K1 =MB2
B1K1.

Hence the range space of K1 is equal to the range space of MB′

1
MB2

.

The following equality results from the assumptions made for (12) and
(13):

r(K1) = (k1 + k2 − q).

Let β
(0)
1 , β

(0)
2 be any values of β1 and β2 satisfying condition (13). Then

all remaining vectors β1, β2 satisfying this condition can be written in the
form (

β1

β2

)
=

(
β

(0)
1

β
(0)
2

)
+

(
K1

K2

)
γ, γ ∈ Rk1+k2−q. (16)

Mixed linear model (12) with type II constraints (13) is equivalent to the
following mixed linear model without constraints:

(Y − Xβ
(0)
1 ) ∼n (XK1γ,Σθ). (17)

A MINQUE of θ is, according to (2) and (17),

θ̂ = S−1

(MXK1
ΣθMXK1

)
+×




(Y − Xβ
(0)
1 )′ (MXK1

ΣθMXK1
)+ V1 (MXK1

ΣθMXK1
)+ (Y − Xβ

(0)
1 )

...

(Y − Xβ
(0)
1 )′ (MXK1

ΣθMXK1
)+ Vr (MXK1

ΣθMXK1
)+ (Y − Xβ

(0)
1 )


,

where {
S
(MXK1

ΣθMXK1
)
+

}

i,j

=

Tr
[
Vi (MXK1

ΣθMXK1
)+ Vj (MXK1

ΣθMXK1
)+
]
,

i, j = 1, 2, . . . , r.

A θ̂-LBLUE of the new parameter γ is, according to (3) and (17),

γ̂
(
θ̂
)

= (K′

1X
′Σ

θ̂

−1XK1)
−1K′

1X
′Σ

θ̂

−1(Y − Xβ
(0)
1 ). (18)
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Hence because of (16)

 β̂1

(
θ̂
)

β̂2

(
θ̂
)

 =

(
β

(0)
1

β
(0)
2

)
+

(
K1

K2

)
γ̂. (19)

In order to derive the region of insensitivity for the variance of the estimator
of a linear function of β2, let us modify the estimator of this parameter.
According to (18), (19) and (15) we have

β̂2

(
θ̂
)

= β
(0)
2 + K2γ̂

(
θ̂
)

= β
(0)
2 −

(
B′

2B2

)
−1

B′

2B1K1γ̂
(
θ̂
)

= β
(0)
2 −

(
B′

2B2

)
−1

B′

2B1

[
β̂1

(
θ̂
)
− β

(0)
1

]

= β
(0)
2 −

(
B′

2B2

)
−1

B′

2B1β̂1

(
θ̂
)

+
(
B′

2B2

)
−1

B′

2B1β
(0)
1

= β
(0)
2 −

(
B′

2B2

)
−1

B′

2B1β̂1

(
θ̂
)

+
(
B′

2B2

)
−1

B′

2

(
−B2β

(0)
2 − b

)

= −
(
B′

2B2

)
−1

B′

2

[
B1β̂1

(
θ̂
)

+ b
]
. (20)

According to [3] (p. 337, Lemma A.7.9)

(B′

2)
−

m

[
B1

(
X′Σ

θ̂

−1
X

)
−1

B′

1

] =
[
B1

(
X′Σ

θ̂

−1X
)
−1

B′

1 + B2B
′

2

]
−1

B2

×

{
B′

2

[
B1

(
X′Σ

θ̂

−1X
)
−1

B′

1 + B2B
′

2

]
−1

B2

}
−1

. (21)

This means we have

(B′

2)
−

m

[
B1

(
X′Σ

θ̂

−1
X

)
−1

B′

1

]





′

B2 = I,

hence

(
B′

2B2

)
−1

B′

2 =



(B′

2)
−

m

[
B1

(
X′Σ

θ̂

−1
X

)
−1

B′

1

]





′

.

In accordance with (20) and (21) we can write

β̂2

(
θ̂
)

= −


(B′

2)
−

m

[
B1

(
X′Σ

θ̂

−1
X

)
−1(

θ̂
)
B′

1

]



′

(B1β̂1

(
θ̂
)

+ b)

= −

{
B′

2

[
B1

(
X′Σ

θ̂

−1X
)
−1

B1 + B2B
′

2

]
−1

B2

}
−1

B′

2

×
[
B1

(
X′Σ

θ̂

−1X
)
−1

B1 + B2B
′

2

]
−1 [

B1β̂1

(
θ̂
)

+ b
]
.
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6. Region of insensitivity for the variance of the estimator of
a linear function of the mean parameters in the mixed

linear model with type II constraints

Let us consider model (12) together with constraints (13) from the previ-
ous section. Let us derive the region of insensitivity for the variance of the
estimator of a linear function of β1 at first. We can use the insensitivity
region (9) from Theorem 1 and the transformation of (12), (13) to (17). Let
h ∈ Rk1 be given. For the appropriate linear combination of β1 components
we have, according to (16),

h′β1 = h′β
(0)
1 + h′K1γ.

Let us choose a fixed θ0 ∈ Rr and denote K′

1h = t . Then, using (19) and
the matrix Wh from Theorem 1, we get for t′γ
{
Wt,γ

}
i,j

= t′(K′

1X
′Σθ0

−1XK1)
−1K′

1X
′Σθ0

−1Vi(MXK1
Σθ0

MXK1
)+Vj

×Σθ0

−1XK1(K
′

1X
′Σθ0

−1XK1)
−1t

= h′K1(K
′

1X
′Σθ0

−1XK1)
−1K′

1X
′Σθ0

−1Vi(MXK1
Σθ0

MXK1
)+Vj

×Σθ0

−1XK1(K
′

1X
′Σθ0

−1XK1)
−1K′

1h = {W
h,β

1

}i,j, i, j = 1, 2, . . . , r.

An analogy of Lemma 1 is valid in case of the mixed linear model with
type II constraints.

Lemma 2. Let model (12) with constraints (13) be given. Let W
h,β

1

be

a matrix with

{W
h,β

1

}i,j = h′K1(K
′

1X
′Σθ0

−1XK1)
−1K′

1X
′Σθ0

−1Vi

×(MXK1
Σθ0

MXK1
)+VjΣθ0

−1XK1(K
′

1X
′Σθ0

−1XK1)
−1K′

1h,

on its (i, j)-th position. Then θ0 is orthogonal to the range space M
(
W

h,β
1

)
.

Proof. The proof of this assertion is analogous to the proof of the Lemma
1. We just need to use the matrix product XK1 instead of X.

�

According to [3] (p. 198)

Varθ0
β̂1

(
θ̂
)

=
(
X′Σθ0

−1X
)
−1

−
(
X′Σθ0

−1X
)
−1

B′

1

×
[
MB2

B1

(
X′Σ

θ̂

−1X
)
−1

B′

1MB2

]+
B1

(
X′Σθ0

−1X
)
−1

. (22)

Let us denote this variance-covariance matrix by Σ(β̂1).



REGIONS OF INSENSITIVITY 13

Theorem 2. Let us consider the mixed linear model (12) with type II

constraints (13). Let h ∈ Rk1 and θ0 ∈ Rr be given. Then for every ε > 0 the

region of insensitivity for the variance of the estimator of a linear function

hβ1 takes the form

N
h′β

1
,θ0

=

{
θ0 + δθ : δθ′W

h,β
1

δθ ≤
(
2ε + ε2

)√
h′Σ(β̂1)h

}
.

Proof. This theorem is a consequence of Theorem 1, transformation of
(12) and (13) to (17) and the form of the variance-covariance matrix (22).

�

In some cases, an estimate of β2 or some of its components is needed.
Then the region of insensitivity for the variance of the estimator of a linear
function of β2 may be useful.

Theorem 3. Let us consider a mixed linear model (12) with type II con-

straints (13). Let h2 ∈ Rk2 and θ0 ∈ Rr be given. Let us denote

• S1i =
{

[B′

2

[
B1

(
X′Σθ0

−1X
)
−1

B′

1 + B2B
′

2

]
)−1B2

}
−1

B′

2

×
[
B1

(
X′Σθ0

−1X
)
−1

B′

1 + B2B
′

2

]
−1

B1

(
X′Σθ0

−1X
)
−1

X′Σθ0

−1Vi

×Σθ0

−1X
(
X′Σθ0

−1X
)
−1

B′

1

[
B1

(
X′Σθ0

−1X
)
−1

B′

1 + B2B
′

2

]
−1

B2

• S2i =

{
B′

2

[
B1

(
X′Σθ0

−1X
)
−1

B′

1 + B2B
′

2

]
−1

B2

}
−1

B′

2

×
[
(B1

(
X′Σθ0

−1X
)
−1

B′

1 + B2B
′

2

]
−1

B1

(
X′Σθ0

−1X
)
−1

X′Σθ0

−1

×ViΣθ0

−1

• t ... vector having covθ0

[
h′

2
̂̂
β2(θ0),h

′

2S1i
̂̂
β2(θ0)

]
, on its i-th posi-

tion

• T ... matrix having covθ0

[
h′

2S1i
̂̂
β2(θ0),h

′

2S1j
̂̂
β2(θ0)

]
on its (i, j)-

position

• U ... matrix having covθ0
(h′

2S2iv,h′

2S2jv) on its (i, j)-position.

Let t ∈ M(T + U), the range space of T + U. Then for every ε > 0 the

region of insensitivity for the variance of the estimator of a linear function

h′

2β2 is of the following form:

N
h′

2
β

2
,θ0

=
{
θ0 + δθ : [δθ + (T + U)+t]′(T + U)[δθ + (T + U)+t]

≤ t′(T + U)+t + (2ε + ε2)Varθ0
[h′

2
̂̂
β2(θ0)]

}
.
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Proof. Derivation of this insensitivity region is time-consuming. Its pro-
cedure is similar to the proof of Theorem 1 which can be found in [10].

�

The utilization of the insensitivity regions from Theorem 2 and Theorem
3 is the same as described in Section 4. Review of the relative position
of the insensitivity region, and the confidence region Eθ0,θ, shows whether

the estimates β̂1 (θ0), β̂2 (θ0), respectively, are comparable to β̂1 (θ∗) and

β̂2 (θ∗).
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Olomouc. (in Czech)
[7] Kubacek, L. et al. (1995), Statistical Models with Linear Structures, Veda, Bratislava.
[8] Kubacek, L. et al. (1998), How the design of an experiment influences the nonsen-

sitiveness regions in models with variance components, Appl. Math. (Warsaw) 43,
439–460.

[9] Lesanska, E. (2001), Insensitivity regions for estimators of mean value parameters in

mixed models with constraints, Tatra Mt. Math. Publ. 22, 37–39.
[10] Rao, C. R. and Kleffe, J. (1988), Estimation of Variance Components and Application,

North-Holland, Amsterdam –New York –Oxford – Tokyo.

Department of Mathematics, Faculty of Economics and Administration,
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