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A note on the equality of the BLUPs for new

observations under two linear models

Stephen J. Haslett and Simo Puntanen

Abstract. We consider two linear models, L1 and L2, say, with new
unobserved future observations. We give necessary and sufficient condi-
tions in the general situation, without any rank assumptions, that the
best linear unbiased predictor (BLUP) of the new observation under the
the model L1 continues to be BLUP also under the model L2.

1. Introduction

In the literature the invariance of the the best linear unbiased estimator
(BLUE) of fixed effects under the general linear model

y = Xβ + ε, (1.1)

where E(y) = Xβ, E(ε) = 0, and cov(y) = cov(ε) = V11, has received much
attention; see, for example, the papers by Rao (1967, 1971, 1973), and Mitra
and Moore (1973). In particular, the connection between the ordinary least
squares estimator and BLUE (Xβ), has been studied extensively; see, e.g.,
Rao (1967), Zyskind (1967), and the review papers by Puntanen and Styan
(1989), and Baksalary, Puntanen and Styan (1990a).

According to our knowledge, the equality of the best linear unbiased pre-
dictors (BLUPs) in two models L1 and L2, defined below, has received very
little attention in the literature. Haslett and Puntanen (2010a,b) considered
the equality of the BLUPs of the random factor under two mixed models.
In their (2010a) paper they gave, without a proof, necessary and sufficient
conditions in the general situation that the BLUP of the new observation
under the model L1 continues to be BLUP also under the model L2. The
purpose of this paper is to provide a complete proof of this result.
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Let us start formally by considering the general linear model (1.1), which
can be represented as a triplet

F = {y, Xβ, V11} . (1.2)

Vector y is an n × 1 observable random vector, ε is an n × 1 random error
vector, X is a known n × p model matrix, β is a p × 1 vector of fixed but
unknown parameters, V11 is a known n × n nonnegative definite matrix.
Let yf denote the q × 1 unobservable random vector containing new future
observations. The new observations are assumed to follow the linear model

yf = Xfβ + εf ,

where Xf is a known q × p model matrix associated with the new observa-
tions, β is the same vector of unknown parameters as in (1.2), and εf is a
q×1 random error vector associated with new observations. The expectation
and the covariance matrix are

E

(

y

yf

)

=

(

Xβ

Xfβ

)

=

(

X

Xf

)

β , cov

(

y

yf

)

=

(

V11 V12

V21 V22

)

= V,

where the entire covariance matrix V is assumed to be known. For brevity,
we denote

L1 =

{(

y

yf

)

,

(

X

Xf

)

β,

(

V11 V12

V21 V22

)}

.

Before proceeding, we may introduce the notation used in this paper. We
will denote R

m×n the set of m × n real matrices and R
m = R

m×1. We
will use the symbols A′, A−, A+, C (A), C (A)⊥, and N (A) to denote
the transpose, a generalized inverse, the Moore–Penrose inverse, the column
space, the orthogonal complement of the column space, and the null space,
of the matrix A, respectively. By (A : B) we denote the partitioned matrix
with A ∈ R

m×n and B ∈ R
m×k as submatrices. By A⊥ we denote any

matrix satisfying C (A⊥) = N (A′) = C (A)⊥. Furthermore, we will write
PA = AA+ = A(A′A)−A′ to denote the orthogonal projector (with respect
to the standard inner product) onto C (A). In particular, we denote H = PX

and M = In − PX. Notice that one choice for X⊥ is of course M.
We assume the model L1 to be consistent in the sense that

y ∈ C (X : V11) = C (X : V11M) , (1.3)

i.e., the observed value of y lies in C (X : V11) with probability 1. The
corresponding consistency is assumed in all models that we will consider.

The linear predictor Gy is said to be unbiased for yf if the expected
prediction error is 0: E(yf − Gy) = 0 for all β ∈ R

p. This is equivalent
to GX = Xf , i.e., X′

f = X′G′
. The requirement that C (X′

f ) ⊂ C (X′)

means that Xfβ is estimable under F = {y, Xβ, V11}. Now an unbiased
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linear predictor Gy is the best linear unbiased predictor, BLUP, for yf , if
the Löwner ordering

cov(Gy − yf ) ≤L cov(Fy − yf )

holds for all F such that Fy is an unbiased linear predictor for yf .
The following lemma characterizes the BLUP; for the proof, see, e.g.,

Christensen (2002, p. 283), and Isotalo and Puntanen (2006, p. 1015).

Lemma 1.1. Consider the linear model L1 (with new unobserved future

observations), where Xfβ is a given vector of estimable parametric func-

tions. The linear predictor Gy is the best linear unbiased predictor (BLUP)
for yf if and only if G satisfies the equation

G(X : V11X
⊥) = (Xf : V21X

⊥) (1.4)

for any given choice of X⊥.

We can get, for example, the following matrices Gi such that Giy equals
the BLUP(yf ):

G1 = Xf (X′W−X)−X′W− + V21W
−[In − X(X′W−X)−X′W−] ,

G2 = Xf (X′W−X)−X′W− + V21M(MV11M)−M ,

G3 = Xf (X′X)−X′ + [V21 − Xf (X′X)−X′V11]M(MV11M)−M ,

where W (and the related U) are any matrices such that

W = V11 + XUX′
, C (W) = C (X : V11) .

Notice that the equation (1.4) has a unique solution if and only if C (X :
V11M) = R

n. According to Rao and Mitra (1971, p. 24) the general solution
to (1.4) can be written, for example, as

G = Gi + F(In − P(X :V11M)) ,

where the matrix F is free to vary and P(X :V11M) denotes the orthogonal
projector onto the column space of matrix (X : V11M). Even though the
multiplier G may not be unique, the observed value Gy of the BLUP is
unique with probability 1; this is due to the consistency requirement (1.3).

Consider now another linear model L2, which may differ from L1 through
its covariance matrix and model matrix, i.e.,

L2 =

{(

y

yf

)

,

(

X

Xf

)

β,

(

V11 V12

V21 V22

)}

.

In the next section we consider the conditions under which the BLUP for yf

under L1 continues to be BLUP under L2. Naturally, as pointed out by an
anonymous referee, Xfβ must be estimable under {y, Xβ, V11}; otherwise
yf does not have a BLUP under L2.
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2. Main results

Theorem 2.1. Consider the models L1 and L2 (with new unobserved

future observations), where C (X′

f ) ⊂ C (X′) and C (X′

f ) ⊂ C (X′). Then

every representation of the BLUP for yf under the model L1 is also a BLUP

for yf under the model L2 if and only if

C

(

X V11M

Xf V21M

)

⊂ C

(

X V11M

Xf V21M

)

. (2.1)

Proof. For the proof it is convenient to observe that (2.1) holds if and
only if

C

(

V11M

V21M

)

⊂ C

(

X V11M

Xf V21M

)

, (2.2a)

and

C

(

X

Xf

)

⊂ C

(

X V11M

Xf V21M

)

. (2.2b)

Let us first assume that every representation of the BLUP for yf under L1

continues to be BLUP under L2. Let G0 be a general solution to (1.4):

G0 = Xf (X′W−X)−X′W− + V21M(MV11M)−M

+ F(In − P(X :V11M)) ,

where F is free to vary. Then G0 has to satisfy also the other fundamental
BLUP equation:

G0(X : V11M) = (Xf : V21M) , (2.3)

where M = In − PX. The X-part of the condition (2.3) is

Xf (X′W−X)−X′W−X

+ V21M(MV11M)−MX

+ F(In − P(X :V11M))X

= Xf . (2.4)

Because (2.4) must hold for all matrices F, we necessarily have

F(In − P(X :V11M))X = 0 for all F ∈ R
n×n

,

which further implies C (X) ⊂ C (X : V11M), i.e.,

X = XK1 + V11MK2 for some K1 ∈ R
p×p and K2 ∈ R

n×p
, (2.5)

and hence

Xf (X′W−X)−X′W−X = Xf (X′W−X)−X′W−(XK1 + V11MK2)

= Xf (X′W−X)−X′W−XK1 + Xf (X′W−X)−X′W−V11MK2

= XfK1 + Xf (X′W−X)−X′W−WMK2

= XfK1 , (2.6)
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where we have used V11M = WM and X′W−W = X′. Note also that the
assumption C (X′

f ) ⊂ C (X′) implies

Xf (X′W−X)−X′W−X = Xf ;

for properties of the matrix of type (X′W−X)−, see, e.g., Baksalary and
Mathew (1990, Th. 2) and Baksalary, Puntanen and Styan (1990b, Th. 2).

In view of (2.5) we have

V21M(MV11M)−MX = V21M(MV11M)−MV11MK2 .

Because V is nonnegative definite, we have C (V12) ⊂ C (V11), and thereby

C (MV12) ⊂ C (MV11) = C (MV11M) ,

and so

V21M(MV11M)−MX = V21MK2 . (2.7)

Combining (2.6), (2.7) and (2.4) shows that Xf = XfK1 +V21MK1, which
together with (2.5) yields the following:

(

X

Xf

)

=

(

X V11M

Xf V21M

)(

K1

K2

)

, (2.8)

i.e., (2.2b) holds.
The right-hand part of the condition (2.3) is

Xf (X′W−X)−X′W−V11M (2.9a)

+ V21M(MV11M)−MV11M (2.9b)

+ F(In − P(X:V11M))V11M (2.9c)

= V21M . (2.9d)

Again, because (2.9) must hold for all matrices F, we necessarily have

F(In − P(X:V11M))V11M = 0 for all F ∈ R
n×n

,

which further implies C (V11M) ⊂ C (X : V11M) , and hence

V11M = XL1 + V11ML2 for some L1 ∈ R
p×n and L2 ∈ R

n×n
. (2.10)

Substituting (2.10) into (2.9a), gives (proceeding as was done above with
the X-part)

Xf (X′W−X)−X′W−V11M = XfL1 ,

while the term (2.9b) becomes

V21M(MV11M)−MV11ML2 = V21ML2 ,

and hence (2.9) gives

XfL1 + V21ML2 = V21M . (2.11)
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Combining (2.10) and (2.11) yields
(

V11M

V21M

)

=

(

X V11M

Xf V21M

)(

L1

L2

)

, (2.12)

i.e., (2.2a) holds.
To go the other way, suppose that (2.2a) and (2.2b) hold and that K1

and K2, and L1 and L2 are defined as in (2.8) and in (2.12), respectively.
Moreover, assume that Gy is the BLUP of yf under L1, i.e.,

G(X : V11M) = (Xf : V21M) . (2.13)

Postmultiplying (2.13) by
(

K1 L1

K2 L2

)

yields

G(X : V11M) = (Xf : V21M) ,

which confirms that Gy is also the BLUP of yf under L2. Thus the proof
is completed. �

If the both models L1 and L2 have the same model matrix part we get
the following corollary.

Corollary 2.1. Consider the same situation as in Theorem 2.1 but sup-

pose that the two models L1 and L2 have the same model matrix part
(

X
Xf

)

.

Then every representation of the BLUP for yf under the model L1 is also a

BLUP for yf under the model L2 if and only if

C

(

V11M

V21M

)

⊂ C

(

X V11M

Xf V21M

)

.

Moreover, the sets of all representations of BLUPs for yf under L1 and L2

are identical if and only if

C

(

X V11M

Xf V21M

)

= C

(

X V11M

Xf V21M

)

.
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