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Orthogonal decompositions in growth curve models

Daniel Klein and Ivan Žežula

Dedicated to Professor L. Kubáček on the occasion of his eightieth birthday

Abstract. The article shows advantage of orthogonal decompositions
in the standard and extended growth curve models. Using this, distri-
bution of estimators of ρ and σ

2 in the standard GCM with uniform
correlation structure is derived. Also, equivalence of Hu and von Rosen
conditions in the extended GCM under mild conditions is shown.

1. The standard growth curve model with uniform

correlation structure

The basic model that we consider is the following one:

Y = XBZ ′ + e, Vec(e) ∼ N (0,Σ ⊗ In) , Σ = θ1G + θ2ww′, (1)

where Yn×p is a matrix of independent p-variate observations, Xn×m is an
ANOVA design matrix, Zp×r is a regression variables matrix, and e is a
matrix of random errors. As for the unknown parameters, Bm×r is an loca-
tion parameters matrix, and θ1, θ2 are (scalar) variance parameters. Matrix
Gp×p > 0 and vector w ∈ Rp are known. The Vec operator stacks elements
of a matrix into a vector column-wise.

Assumed correlation structure is called generalized uniform correlation
structure. It was studied in the context of the growth curve model (GCM)
in [6], and recently in [4]. A special case was studied also in [3].

As for the estimation of unknown parameters, Žežula in [6] used directly
model (1), whereas Ye and Wang [4] used modified model with orthogonal
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36 DANIEL KLEIN AND IVAN ŽEŽULA

decomposition:

Y G−
1
2 = Y1 + Y2,

Y1 = Y G−
1
2 PF = XBZ ′G−

1
2 PF + e1, (2)

Y2 = Y G−
1
2 MF = XBZ ′G−

1
2 MF + e2,

where F = G−
1
2 w, PF is the orthogonal projection matrix onto the column

space R(F ) of F , and MF = I − PF onto its orthogonal complement.
Let us denote

S =
1

n − r(X)
Y ′MXY,

W1 = PF G−
1
2 SG−

1
2 PF , W2 = MF G−

1
2 SG−

1
2 MF .

The estimators of Žežula are

θ̂1 =
(1′w)2 Tr(S) − 1

′S1w′w

(1′w)2 Tr(G) − 1′G1w′w
, θ̂2 =

1
′S1Tr(G) − 1

′G1Tr(S)

(1′w)2 Tr(G) − 1′G1w′w
, (3)

and the estimators of Ye and Wang are

θ̂∗1 =
Tr(W2)

p − 1
=

w′G−1w.Tr
(

G−1S
)

− w′G−1SG−1w

(p − 1) (w′G−1w)
,

θ̂∗2 =
(p − 1)Tr(W1) − Tr(W2)

(p − 1)w′G−1w
=

p.w′G−1SG−1w − w′G−1w.Tr
(

G−1S
)

(p − 1) (w′G−1w)2
.

(4)

These pairs of estimators are both unbiased, but different. Naturally, we
would like to know the variances. Since S ∼ Wp

(

n − r(X), 1
n−r(X)Σ

)

, it is
easy to establish that

Var(Vec S) =
1

n − r(X)

(

Ip2 + Kpp

)

(Σ ⊗ Σ) , (5)

where Kpp is the commutation matrix, see e.g. [5]. This immediately implies

Var
[

Tr
(

G−1S
)]

=
2

n − r(X)
Tr
(

G−1ΣG−1Σ
)

,

Var
[

w′G−1SG−1w
]

=
2

n − r(X)

(

w′G−1ΣG−1w
)2

,

Cov
[

Tr
(

G−1S
)

, w′G−1SG−1w
]

=
2

n − r(X)
w′G−1ΣG−1ΣG−1w .
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Necessary formulas for Var [Tr(S)], Var 1
′S1, and Cov [Tr(S),1′S1] are spe-

cial cases. Short computation gives

Var θ̂1 =
2

n − r(X)
·
(1′w)4 Tr

(

Σ2
)

− 2(1′w)2w′w.1′Σ2
1 + (w′w)2(1′Σ1)2

[(1′w)2 Tr(G) − 1′G1w′w]2
,

(6)

Var θ̂2 =
2

n − r(X)
·
[Tr(G)1′Σ1]2 − 2Tr(G)1′G11

′Σ2
1 + (1′G1)2 Tr(Σ2)

[(1′w)2 Tr(G) − 1′G1w′w]2
,

(7)

and

Var θ̂∗1 =
2

n − r(X)
·

1

(p − 1)2 (w′G−1w)2

[

(

w′G−1w
)2

Tr
(

G−1ΣG−1Σ
)

+

+
(

w′G−1ΣG−1w
)2

− 2
(

w′G−1w
) (

w′G−1ΣG−1ΣG−1w
)

]

, (8)

Var θ̂∗2 =
2

n − r(X)
·

1

(p − 1)2 (w′G−1w)4
[

(w′G−1w)2 Tr
(

G−1ΣG−1Σ
)

+

+p2(w′G−1ΣG−1w)2 − 2p(w′G−1w)
(

w′G−1ΣG−1ΣG−1w
)]

. (9)

Analytical comparison of these quantities is quite difficult. Few simulations
performed suggest that in general Ye and Wang’s estimators tend to have
smaller variance.

Very important special case of the previous model is the model with

Σ = σ2
[

(1 − ρ)Ip + ρ11′
]

. (10)

This correlation structure is called the uniform correlation structure or the
intraclass correlation structure. It is the case with G = Ip and w = 1, slightly
reparametrized. It must hold

−
1

p − 1
≤ ρ ≤ 1.

As a special case of (1), estimators of σ2 and ρ can be then obtained by a
simple transformation of θ̂1 and θ̂2:

σ̂2 = θ̂1 + θ̂2 and ρ̂ =
θ̂2

θ̂1 + θ̂2

. (11)

This implies the following form of estimators due to Žežula:

σ̂2
Z =

Tr(S)

p
, ρ̂Z =

1

p − 1

(

1
′S1

Tr(S)
− 1

)

, (12)

and due to Ye and Wang:

σ̂2
Y W =

Tr (V1) + Tr (V2)

p
, ρ̂Y W = 1 −

p Tr (V2)

(p − 1) (Tr (V1) + Tr (V2))
, (13)
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where
V1 = P1SP1, V2 = M1SM1 .

Ye and Wang recognized that σ̂2
Z = σ̂2

Y W , but they failed to recognize that
also ρ̂Z = ρ̂Y W .

Lemma 1. σ̂2
Z = σ̂2

Y W and ρ̂Z = ρ̂Y W for any Y .

Proof. Trivially,

Tr (V1) = Tr (P1SP1) = Tr (SP1) =
1

p
Tr(S11

′) =
1

p
1
′S1,

and

Tr (V2) = Tr (M1SM1) = Tr (SM1) = Tr(S) − Tr (SP1) = Tr(S) −
1

p
1
′S1.

Substituting these values into (13), we easily get (12). �

Thus, in the following we can write only σ̂2 and ρ̂.
This orthogonal decomposition is very useful for derivation of the distri-

bution of the estimators.

Lemma 2. Let H ∼ Wp(`,Ξ), Ξ > 0, and let Tk×p be an arbitrary matrix.

Then,

Tr(THT ′) ∼

r(T )
∑

i=1

λiχ
2
` ,

where λ1, . . . , λr(T ) are all positive eigenvalues of TΞT ′ and r(T ) is the rank

of T . In particular,

E Tr(THT ′) = `

r(T )
∑

i=1

λi , Var Tr(THT ′) = 2`

r(T )
∑

i=1

λ2
i .

Proof. There must exist independent r.v. X1, . . . ,X` distributed as Np(0,Ξ)

such that H =
∑`

i=1 XiX
′

i = G′G, where G′ = (X1, . . . ,X`). Then, TXi ∼

Nk (0, TΞT ′) ∀ i (which may be singular). According to the Theorem in [1]
it holds

Tr(THT ′) = Tr
(

(GT ′)′(GT ′)
)

∼

r(T )
∑

i=1

λiχ
2
` ,

where λ1, . . . , λr(T ) are all positive eigenvalues of TΞT ′. Since χ2-statistics
are independent, the claims about mean and variance are trivial. �

The results concerning distributions of Tr (V1) and Tr (V2) can be found in
[4], but without proof. We extend these results to the parameters of interest.
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Theorem 3. Distributions of Tr (V1) and Tr (V2) are independent,

Tr (V1) ∼
σ2[1 + (p − 1)ρ]

n − r(X)
χ2

n−r(X),

Tr (V2) ∼
σ2(1 − ρ)

n − r(X)
χ2

(p−1)(n−r(X)),

so that

σ̂2 ∼
σ2

p(n − r(X))

[

(1 + (p − 1)ρ)χ2
n−r(X) + (1 − ρ)χ2

(p−1)(n−r(X))

]

,

1 − ρ

1 + (p − 1)ρ

[

1 + (p − 1)ρ̂

1 − ρ̂

]

∼ Fn−r(X),(p−1)(n−r(X)) .

Proof. It is well known that under normality

S ∼ Wp

(

n − r(X),
1

n − r(X)
Σ

)

.

(see e.g. Theorem 3.8 in [5]). We want to make use of Lemma 2 with

` = n − r(X), Ξ =
1

n − r(X)
Σ, T = P1, and also with T = M1. Since

P1

(

1

n − r(X)
Σ

)

P1 =
σ2[1 + (p − 1)ρ]

n − r(X)
P1

is a multiple of idempotent matrix of rank 1, its only positive eigenvalue is
equal to σ2[1 + (p− 1)ρ]/(n− r(X)). Similarly, since M1 is idempotent with
rank p − 1 and

M1

(

1

n − r(X)
Σ

)

M1 =
σ2(1 − ρ)

n − r(X)
M1 ,

it has p− 1 positive eigenvalues which are all equal to σ2(1− ρ)/(n− r(X)).
Now the results for Tr (V1) and Tr (V2) follow from Lemma 2, perpendicular-
ity of M1 and P1, and properties of χ2-distribution.

This, together with (13), immediately implies the result for σ̂2. The second
formula in (13) can be transformed to

1 + (p − 1)ρ̂

1 − ρ̂
=

(p − 1)Tr (V1)

Tr (V2)
.

Because the distributions of Tr (V1) and Tr (V2) are independent, clearly

σ2(1 − ρ)(n − r(X))

σ2[1 + (p − 1)ρ](n − r(X))
·
(p − 1)Tr (V1)

Tr (V2)
∼ Fn−r(X),(p−1)(n−r(X)) .

�
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This result is not very useful with respect to σ̂2, since its distribution
depends on both σ2 and ρ, but enables us to test for any specific value of
ρ. Using simple transformation, we can even derive directly the probability
density function of ρ̂:

f(x) =

(

1 − ρ

(p − 1)[1 + (p − 1)ρ]

)
n−r(X)

2 Γ
(

p (n−r(X))
2

)

Γ
(

n−r(X)
2

)

Γ
(

(p−1)(n−r(X))
2

)×

×

(

1 +
1 − ρ

(p − 1)[1 + (p − 1)ρ]

1 + (p − 1)x

1 − x

)

−
p(n−r(X))

2

×

×

(

1 + (p − 1)x

1 − x

)
n−r(X)

2
−1 p

(1 − x)2
.

Also, 1 − α confidence interval for ρ is given by
(

1 − c1

1 + (p − 1)c1
;

1 − c2

1 + (p − 1)c2

)

, (14)

where

c1 =
1 − ρ̂

1 + (p − 1)ρ̂
Fn−r(X),(p−1)(n−r(X))

(

1 −
α

2

)

and

c2 =
1 − ρ̂

1 + (p − 1)ρ̂
Fn−r(X),(p−1)(n−r(X))

(α

2

)

.

Figures 1–4 below show histograms and theoretical densities of ρ̂ for a
special case of the model (quadratic growth in three groups, 2500 simulations)
for various true values of unknown parameter.

Example 4. Let us consider random sample from bivariate normal dis-
tribution with the same variances in both dimensions. It can be formally
written as GCM with the uniform correlation structure:

Y =







Y11 Y12
...

...
Yn1 Yn2






= 1n (µ1, µ2) I2+e , e ∼ Nn×2

(

0n×2, σ
2

(

1 ρ
ρ 1

)

⊗ In

)

.

Using the above mentioned estimator we get

ρ̂ =
2s12

s2
1 + s2

2

,

where s12 is sample covariance of the two variables, and s2
1 and s2

2 are sample
variances. This estimator is slightly more effective than the standard sample
correlation coefficient (in the sense of MSE).
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2. The extended growth curve model

The extended growth curve model (ECGM) with fixed effects, called also
the sum-of-profiles model, is

Y =

k
∑

i=1

XiBiZ
′

i + e , e ∼ Nn×p (0,Σ ⊗ In) . (15)

The dimensions of matrices Xi, Bi, and Zi are n × mi, mi × ri, and p × ri,
respectively. Usually it is supposed that column spaces of Xi’s are ordered,

R (Xk) ⊆ · · · ⊆ R (X1) , (16)

while nothing is said about different matrices Zi. Recently, Hu (see [2]) came
up with modification of the model, assuming

X ′

iXj = 0 ∀ i 6= j. (17)

His idea is to separate groups rather then models. We will show that the two
models are under certain conditions equivalent.

Example 5. Let us consider EGCM with two groups with different growth
patterns – linear and quadratic:

Yij =

{

β1 + β2tj + eij , i = 1, . . . , n1 , j = 1, . . . , p ,

β3 + β4tj + β5t
2
j + eij , i = n1 + 1, . . . , n1 + n2 , j = 1, . . . , p .



42 DANIEL KLEIN AND IVAN ŽEŽULA

This model can be written as

Y =

(

1n1 0
0 1n2

)(

β1 β2

β3 β4

)(

1 . . . 1
t1 . . . tp

)

+

(

0
1n2

)

β5

(

t21 . . . t2p
)

+ e,

or, by the new way, as

Y =

(

1n1

0

)

(β1, β2)

(

1 . . . 1
t1 . . . tp

)

+

(

0
1n2

)

(β3, β4, β5)





1 . . . 1
t1 . . . tp
t21 . . . t2p



+ e.

Note that in the second form in the previous example R (Z1) ⊂ R (Z2).
This leads to the idea that we can consider a model in which the column
spaces of all matrices Zi are nested, which naturally arises in situations when
different groups use polynomial regression functions of different order.

Let us consider model (15) with condition (16), such that

n − p ≥ r (X1) . (18)

Since Xi are 0-1 matrices whose columns are indicators of different groups,
without loss of generality we can assume that all columns of X1 are mutually
perpendicular, and columns of every Xi+1 are a subset of columns of Xi. Let
us define X∗

k = Xk and X∗

i = Xi�Xi+1, i = 1, . . . , k − 1, where the symbol
Xi�Xi+1 denotes the matrix consisting of those columns of Xi which are
not in Xi+1. It is easy to see, that Xi = (X∗

i , . . . ,X∗

k) and PXi
− PXi+1 =

PX⊥

i+1∩Xi
= PX∗

i
.

Then, we can reformulate the model (15) with von Rosen’s condition (16)
in the following way:

EY =

k
∑

i=1

XiBiZi
′ =

k
∑

i=1

(X∗

i , . . . ,X∗

k)







B∗

ii
...

B∗

ik






Z ′

i =

k
∑

i=1

k
∑

j=i

X∗

j B∗

ijZ
′

i =

=

k
∑

j=1

j
∑

i=1

X∗

j B∗

ijZ
′

i =

k
∑

j=1

X∗

j

(

B∗

1j , . . . , B
∗

jj

)







Z ′

1
...

Z ′

j







df
=

k
∑

j=1

X∗

j B∗

j Z∗

j
′

(19)

(matrices X∗

j have dimensions n×m∗

j and B∗

ij m∗

j×ri, where mi =
∑k

j=i m
∗

j).
It is now easy to see that model (19) satisfies Hu’s condition:

X∗

i
′X∗

j = 0 ∀ i 6= j. (20)

Moreover, now we have

Z∗

i = (Z1, . . . , Zi) , ∀ i = 1, . . . , k,

which implies R(Z∗

1 ) ⊂ · · · ⊂ R(Z∗

k).
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ECGM with Hu’s condition is much easier to handle. If all matrices X∗

i

and Z∗

i are of full rank, then all B∗

i are estimable, and unbiased LSE B̂∗

i

depend only on X∗

i and Z∗

i :

B̂∗

i =
(

X∗

i
′X∗

i

)

−1
X∗

i
′Y Σ−1Z∗

i

(

Z∗

i
′Σ−1Z∗

i

)−1
, (21)

see [2]. Such a closed form was difficult to obtain in the von Rosen model.
Even for two components the estimators are rather complicated:

B̂1 =
(

X1
′X1

)

−1
X1

′Y Σ−1Z1

(

Z1
′Σ−1Z1

)−1

−
(

X1
′X1

)

−1
X1

′PX2Y

(

P
Σ−1MΣ−1

Z1
Z2

)

′

Σ−1Z1

(

Z1
′Σ−1Z1

)−1
,

B̂2 =
(

X2
′X2

)

−1
X2

′Y Σ−1Z2

(

Z2
′Σ−1MΣ−1

Z1
Z2

)

−1
,

see [7]. Each B̂1 and B̂2 depends on both Z1 and Z2, and B̂1 even on X2.
Estimator of common variance matrix can be split into perpendicular

pieces:

Σ̂ =
1

n − r(X1)
Y ′MX1Y =

1

n −
∑k

i=1 r(X∗

i )
Y ′

(

I −

k
∑

i=1

PX∗

i

)

Y. (22)

In the last expression, the left-hand side term is the estimator using von
Rosen’s model and right-hand side one using Hu’s model. It is easy to see,
that the estimators are equivalent, since X1 = (X∗

1 , . . . ,X∗

k).
The situation in Hu’s model is much easier also for a special correlation

structure Σ = σ2R with R known. The unbiased estimator of residual vari-
ance σ2 is

σ̂2 =
1

n −
∑k

i=1 r(Xi)Tr
(

PR−1

Zi
R
) Tr

[

(Y − Ŷ )′(Y − Ŷ )
]

,

where Ŷ =
∑k

i=1 PXi
Y
(

PR−1

Zi

)

′

is the unbiased estimator of EY . For com-
parison, in the von Rosen model the unbiased estimator of residual variance
is

σ̂2 =
1

m
Tr
[

(Y − Ŷ )′(Y − Ŷ )
]

,
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where

m = (n − r(X1)) Tr(R) +

k−1
∑

i=1

(r(Xi) − r(Xi+1)) Tr
(

MR−1

(Z1,...,Zi)
R
)

+

+ r (Xk)Tr
(

MR−1

(Z1,...,Zk)R
)

=

= n −

k−1
∑

i=1

(r(Xi) − r(Xi+1))Tr
(

PR−1

(Z1,...,Zi)
R
)

− r (Xk)Tr
(

PR−1

(Z1,...,Zk)R
)

,

see [7].

3. Conclusion

The method of orthogonal decomposition is very promising in complex
models. Many tasks, which are very difficult or impossible to handle in basic
models, can be done with ease in models consisting of mutually orthogonal
components. As it is shown above, simple transformation can change a model
into an equivalent which allows to determine explicit forms of estimators
and/or their distribution. We hope the method will prove even more useful
in the future, either in the models investigated here or in some others.
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