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On the first derivative of the sums of

trigonometric series with quasi-convex coefficients

of higher order

Xhevat Z. Krasniqi

Abstract. In this paper, for the sum of sine or cosine series with quasi-
convex coefficients of higher order, the representation of their first deriva-
tives are found in terms of the r-th differences of coefficients of the series
obtained by formal differentiation. Also some estimates in terms of coef-
ficients of the series are obtained for the integrals of the absolute values
of those derivatives.

1. Introduction and preliminaries

Let us consider the trigonometric series

a0

2
+

∞∑

k=1

ak cos kx (1)

and
∞∑

k=1

ak sin kx, (2)

whose coefficients tend to zero, in other words,

lim
k→∞

ak = 0. (3)

A numerical sequence {ak} is said to be quasi-convex if

∞∑

k=1

k|42ak| < ∞, (4)

where 4ak = ak − ak+1, 4
2ak = 4 (4ak).
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It is a well-known fact that conditions (3) and (4) are satisfied if and only
if the sequence {ak} can be expressed as a difference of two convex sequences
(42ak ≥ 0) that tend to zero (see [6], page 129). Likewise, it is known that
the series (1) and (2) with convex coefficients that tend to zero, converge
uniformly on each interval [ε, π], ε > 0, and their sums are continuously
differentiable on (0, π] (see [6], page 129). So, under conditions (3) and (4),
the series (1) and (2) possess these characteristics too. We shall denote with
f(x) and g(x) the sums of the series (1) and (2), respectively.

S. A. Telyakovskĭı [4] has investigated the estimates of integrals of |f ′(x)|
and |g′(x)| on intervals that are inside the interval (0, π]. Firstly, he studied
the aspects of how the integrals of |f ′(x)| and |g′(x)| increase on intervals
[ε, π], when ε → +0, if these functions are integrable over their period, and
secondly, he studied the aspects of how these integrals decrease on intervals
[0, ε], when ε → +0, if these functions are integrable over their period. In
fact, he studied these integrals over the intervals of the form [π/(m+1), π/`],
where ` ≤ m are natural numbers. Then putting ` = 1 and letting m → ∞,
he obtained the estimates mentioned above.

In this paper, using differences of higher order of the coefficients of the se-
ries (1) and (2), we shall prove some statements that generalize Telyakovskĭı’s
results proved in [4]. Before doing this we need some definitions and nota-
tion.

A null sequence {ak} is said to be r-fold monotone, with r ∈ N, if 4iak ≥ 0
for all k and i = 1, 2, . . . , r (see [3]). Clearly, if ak = o(1) and 4rak ≥ 0 for
any r, then the sequence {ak} is r-fold monotone.

We say that {ak} is a quasi-convex sequence of order r if it tends to zero
and satisfies the condition

∞∑

k=1

kr|4r+1ak| < ∞, (5)

where 4rak = 4
(
4r−1ak

)
.

We note that for r = 1 the concept of quasi-convexity of order r reduces to
the standard concept of quasi-convexity of a sequence. In addition, condition
(5) always implies that

∑
∞

k=1 k|4r+1ak| < ∞, which is essential in this
paper.

The structure of a quasi-convex sequence of order r is characterized by
the following result (see [1]): a null sequence {ak} is quasi-convex of order
r if and only if it can be represented as a difference of two r-fold monotone
sequences.

Throughout this paper O-symbols contain positive constants that may be,
in general, different in different estimates.

The rest of the paper is organized as follows. Section 2 contains some
helpful lemmas that are needed to prove main results. Section 3 includes
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the main results. We conclude with Section 4, where we provide a few
corollaries of the main results.

Finally, we would like to mention the nice technique by Telyakovskĭı [4]
that encouraged the author to obtain results of the present paper.

2. Helpful lemmas

The following result is well known (see, for example, Bromwich [2]).

Lemma 1. If ak = O(1) and the series
∞∑

k=1

kr|4r+1ak|

converges, where r is a natural number, then the series
∞∑

k=1

ki|4i+1ak|

converges for i = 1, 2, . . . , r.

We denote
λk := kak, (k = 1, 2, . . . ) .

Lemma 2. Let ak be real numbers such that

4rak → 0 as k → ∞, r ∈ N. (6)

If the condition
∞∑

k=1

k|4r+1ak| < ∞ (7)

holds, then the condition
∞∑

k=1

|4r+1λk| < ∞ (8)

holds as well.

Proof. Mathematical induction can be used to prove, with regard to r,
that the identity

4r+1λk = k4r+1ak − (r + 1)4rak+1

holds for all natural numbers r. Therefore
∞∑

k=1

∣∣4r+1λk

∣∣ ≤
∞∑

k=1

k
∣∣4r+1ak

∣∣+ (r + 1)

∞∑

k=2

|4rak| . (9)

From (6), we have

4rak =

∞∑

i=k

(
4r+1ai

)
,
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thus, using (9), we get

∞∑

k=1

|4r+1λk| ≤

∞∑

k=1

k|4r+1ak| + (r + 1)

∞∑

k=2

∞∑

i=k

∣∣4r+1ai

∣∣

≤

∞∑

k=1

k|4r+1ak| + (r + 1)

∞∑

k=1

(
k∑

i=1

1

)
∣∣4r+1ak

∣∣

≤ (r + 2)

∞∑

k=1

k|4r+1ak|.

In this way (8) follows from (7). �

Lemma 3. Let ak be real numbers that satisfy conditions (3) and (5).
Then for ` = 1, 2, . . . , r, the following holds:

4`λk → 0 as k → ∞. (10)

Proof. We have

4`λk = k4`ak − `4`−1ak+1, ` = 1, 2, . . . , r,

and since

∣∣∣k4`ak

∣∣∣ =
∣∣∣∣k

∞∑

i=k

(
4`+1ai

) ∣∣∣∣ ≤
∞∑

i=k

i
∣∣∣4`+1ai

∣∣∣→ 0 as k → ∞,

(10) follows. �

Remark 1. We note that for r = 1, Lemma 2 and Lemma 3 partially
reduce to the Lemmas 1 and 2, respectively, proved in [4].

3. Main results

Let us first denote

B1
0(x) =

1

2
,

B1
k(x) =

1

2
+ cos x + · · · + cos kx for k ≥ 1,

Br
k(x) =

k∑

ν=0

Br−1
ν (x) for r = 2, 3, . . . and k ≥ 0;

B̃1
k(x) = sin x + · · · + sin kx for k ≥ 1,

B̃r
k(x) =

k∑

ν=0

B̃r−1
ν (x) for r = 2, 3, . . . and k ≥ 1.
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Theorem 4. If the coefficients of the series (2) tend to zero and satisfy
condition (5), then for the first derivative of its sum the following equality
holds:

g′(x) =
∞∑

k=0

4r+1λkB
r+1
k (x), 0 < x ≤ π. (11)

Proof. By Lemma 1 (for i = 1), the series (2) converges uniformly on
[ε, π], ε > 0, therefore its (C, 1)-means

σn(g;x) :=

n∑

k=1

(
1 −

k

n + 1

)
ak sin kx

converge uniformly on [ε, π] as well.
Let us prove that σ′

n(g;x) converge uniformly to g′(x) on [ε, π]. Indeed,
if we denote

βk :=

(
1 −

k

n + 1

)
λk, k = 0, 1, . . . , n + 1,

then

σ′

n(g;x) =
β0

2
+

n∑

k=1

βk cos kx (β0 = βn+1 = 0).

Applying (r + 1)-times Abel’s transformation, we obtain

σ′

n(g;x) =

n−r∑

k=0

4r+1βkB
r+1
k (x) +

r∑

j=1

4jβnBj+1
n (x).

It is easily shown that

4r+1βk =

(
1 −

k

n + 1

)
4r+1λk +

r + 1

n + 1
4rλk+1 (k + r ≤ n),

therefore

σ′

n(g;x) =

n−r∑

k=0

4r+1λkB
r+1
k (x) + τn(x),

where

τn(x) = −
1

n + 1

n−r∑

k=1

k4r+1λkB
r+1
k (x) +

r + 1

n + 1

n−r∑

k=0

4rλk+1B
r+1
k (x)

+
1

n + 1

r∑

j=1

(
4jλn + j4j−1λn+1

)
Bj+1

n (x).

Since, by Lemma 2, the series
∑

∞

k=0 |4
r+1λk| converges, and

Br+1
k (x) ≤

C

xr+1
,
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where C is a constant independent of k and x (see [5]), the series

∞∑

k=0

4r+1λkB
r+1
k (x)

converges uniformly on each interval [ε, π], ε > 0. So, our theorem will be
proved if we show that τn(x) uniformly tends to zero on [ε, π].

For x ∈ [ε, π], we have

|τn(x)| ≤
C

εr+1

{
1

n + 1

n−r∑

k=1

k|4r+1λk| +

+
r + 1

n + 1

n−r∑

k=0

|4rλk+1| +
1

n + 1

r∑

j=1

(
|4jλn| + j|4j−1λn+1|

)
}

.

Since
∑

∞

k=0 |4
r+1λk| < ∞,

1

n + 1

n−r∑

k=1

k|4r+1λk| → 0 as n → ∞.

This follows by standard arguments. For an arbitrary N , one has

1

n + 1

n−r∑

k=1

k|4r+1λk| ≤
1

n + 1

N∑

k=1

k|4r+1λk| +

∞∑

k=N+1

|4r+1λk|.

We first choose, for a given ε > 0, a number N = N(ε) so that

∞∑

k=N+1

|4r+1λk| <
ε

2
.

So, for all sufficiently large n, we have

1

n + 1

n−r∑

k=1

k|4r+1λk| < ε.

Also, with help of Lemma 3, we obtain that

r + 1

n + 1

n−r∑

k=0

|4rλk+1| → 0

and
1

n + 1

r∑

j=1

(
|4jλn| + j|4j−1λn+1|

)
→ 0 as n → ∞,

which completes the proof of (11). �

Now we shall prove a similar result concerning the cosine series (1).
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Theorem 5. If the coefficients of the series (1) tend to zero and satisfy
condition (5), then for the first derivative of its sum the following equality
holds:

f ′(x) = −

∞∑

k=1

4r+1λkB̃
r+1
k (x), 0 < x ≤ π.

Proof. Similarly, by Lemma 1 (i = 1), the series (1) converges uniformly
on [ε, π], ε > 0, therefore its (C, 1)-means

σn(f ;x) :=

n∑

k=1

(
1 −

k

n + 1

)
ak cos kx

converge uniformly on (0, π] as well.
Keeping same notation as in Theorem 4 and applying Abel’s transforma-

tion (r + 1)-times to the equality

σ′

n(g;x) = −
n∑

k=1

βk sin kx,

we obtain the equality

σ′

n(f ;x) = −

n−r−1∑

k=1

4r+1βkB̃
r+1
k (x) −

r∑

j=1

4jβnB̃j
n(x) −

n

n + 1
an sin nx.

Then using the equality

4r+1βk =

(
1 −

k

n + 1

)
4r+1λk +

r + 1

n + 1
4rλk+1,

we get that

σ′

n(g;x) = −
n−r−1∑

k=1

4r+1λkB̃
r+1
k (x) + µn(x),

where

µn(x) =
1

n + 1

n−r−1∑

k=1

k4r+1λkB̃
r+1
k (x) −

r + 1

n + 1

n−r−1∑

k=1

4rλk+1B̃
r+1
k (x)

−
1

n + 1

r∑

j=1

(
4jλn + j4j−1λn+1

)
B̃j

n(x) −
n

n + 1
an sin nx.

Since

B̃r+1
k (x) ≤

C

xr+1

(C is a constant independent of k and x), repeating the same reasoning as in
the proof of Theorem 3.1, we can show that µn(x) → 0 as n → ∞ (we omit
the details). With this we have completed the proof of our theorem. �
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The next theorem gives an estimate of the integral of |g′(x)| on the inter-
vals [π/(m + 1), π/`], 1 ≤ ` ≤ m.

Theorem 6. Let the sequence {ak} be quasi-convex of order r and tend
to zero. Then
∫ π/`

π/(m+1)
|g′(x)|dx = O

(
m + 1 − `

m

`−1∑

k=0

(k + 1)r

`
|4rλk|

)
+ (12)

+O

(
∞∑

k=`

min(k + 1 − `, m + 1 − `)kr−1|4r+1λk|

)
.

Proof. By Theorem 4 and Lemma 3, we have

g′(x) =
i−1∑

k=0

4r+1λkB
r+1
k (x) +

∞∑

k=i

4r+1λkB
r+1
k (x)

=

i−1∑

k=0

4rλkB
r
k(x) +

∞∑

k=i

4r+1λk

[
Br+1

k (x) − Br+1
i−1 (x)

]
.

The integral (12) can be written as
∫ π/`

π/(m+1)
|g′(x)|dx =

m∑

i=`

∫ π/i

π/(i+1)
|g′(x)|dx. (13)

Therefore
∫ π/i

π/(i+1)
|g′(x)|dx ≤

∫ π/i

π/(i+1)

i−1∑

k=0

|4rλk||B
r
k(x)|dx +

+

∫ π/i

π/(i+1)

∞∑

k=i

|4r+1λk||B
r+1
k (x) − Br+1

i−1 (x)|dx.

Applying estimates |Br
k(x)| ≤ C(k + 1)r and 0 ≤ Br+1

k (x) ≤ C/xr+1 (0 <
x ≤ π), we obtain

∫ π/i

π/(i+1)
|g′(x)|dx ≤ C

i−1∑

k=0

|4rλk|
(k + 1)r

i(i + 1)
+ Cir−1

∞∑

k=i

|4r+1λk|. (14)

Thus, from (13) and (14), we get that

∫ π/`

π/(m+1)
|g′(x)|dx ≤ C

m∑

i=`

i−1∑

k=0

|4rλk|
(k + 1)r

i(i + 1)
+ C

m∑

i=`

∞∑

k=i

kr−1|4r+1λk|.

(15)
For the first term of the right-hand side of (15), we have
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m∑

i=`

i−1∑

k=0

|4rλk|
(k + 1)r

i(i + 1)
=

=

m∑

i=`

`−1∑

k=0

|4rλk|
(k + 1)r

i(i + 1)
+

m∑

i=`+1

i−1∑

k=`

|4rλk|
(k + 1)r

i(i + 1)

=
`−1∑

k=0

(k + 1)r|4rλk|

(
1

`
−

1

m + 1

)

+

m−1∑

k=`

(k + 1)r|4rλk|

(
1

k + 1
−

1

m + 1

)

≤
m + 1 − `

m

`−1∑

k=0

(k + 1)r

`
|4rλk| +

m∑

k=`

∞∑

j=k

jr−1|4r+1λj |. (16)

The second term in (15) and (16) can then be written as follows:

m∑

i=`

∞∑

k=i

kr−1|4r+1λk| =
m∑

i=`

m∑

k=i

kr−1|4r+1λk| +
m∑

i=`

∞∑

k=m+1

kr−1|4r+1λk| =

=
m∑

k=`

(k + 1 − `)kr−1|4r+1λk| + (m + 1 − `)
∞∑

k=m+1

kr−1|4r+1λk|. (17)

The claim of the theorem follows from (15), (16), and (17). �

Remark 2. A result similar to Theorem 6 can be proved for the cosine
series (1).

4. Some corollaries

Putting r = 1 in Theorems 4 and 5, respectively, we obtain two useful
corollaries. The first was proved in [4] and the second is a version of Theorem
3 proved in the same paper.

Corollary 7. If the coefficients of the series (2) tend to zero and satisfy
condition (5), then for the first derivative of its sum the following equality
holds:

g′(x) =

∞∑

k=0

42λkB
2
k(x), 0 < x ≤ π.
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Corollary 8. If the coefficients of the series (1) tend to zero and satisfy
condition (5), then for the first derivative of its sum the following equality
holds:

f ′(x) = −

∞∑

k=1

42λkB̃
2
k(x), 0 < x ≤ π.

We note that

4r+1λ0B
r+1
0 (x) = 4r−1

(
42λ0

) 1

2
= −4ra1,

therefore (11) can be written as

g′(x) + 4ra1 =
∞∑

k=1

4r+1λkB
r+1
k (x).

Since the functions Br+1
k (x) are nonnegative for x ∈ (0, π] (see [5]), the

following corollary holds true.

Corollary 9. Let the sequence {ak} be quasi-convex of order r and tend
to zero. Then the following assertions hold.

(1) If

4r+1λk ≥ 0 for all k = 1, 2, . . . ,

then the function

g(x) + 4ra1x

is non-decreasing on (0, π].
(2) If

4r+1λk ≤ 0 for all k = 1, 2, . . . ,

then the function

g(x) + 4ra1x

is non-increasing on (0, π].
(3) If ak are zero but 4ra1 < 0, or 4ra1 > 0, then the function g(x) is

strictly increasing or, respectively, strictly decreasing on (0, π].

From Corollary 9 we immediately obtain the following result proved in
[4].

Corollary 10. Let the sequence {ak} be quasi-convex and tend to zero.
Then the following assertions hold.

(1) If

42λk ≥ 0 for all k = 1, 2, . . . ,

then the function

g(x) + 4a1x

is non-decreasing on (0, π].
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(2) If
42λk ≤ 0 for all k = 1, 2, . . . ,

then the function
g(x) + 4a1x

is non-increasing on (0, π].
(3) If all the numbers ak are zero but 4a1 < 0 or 4a1 > 0, then the

function g(x) is strictly increasing or, respectively, strictly decreasing
on (0, π].

In the end, let us formulate a corollary proved in [4] that follows directly
from Theorem 6 (for r = 1).

Corollary 11. Let the sequence {ak} be quasi-convex and tend to zero.
Then

∫ π/`

π/(m+1)
|g′(x)|dx = O

(
m + 1 − `

m

`−1∑

k=0

k + 1

`
|4λk|

)

+O

(
∞∑

k=`

min(k + 1 − `, m + 1 − `)|42λk|

)
.
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