On the relationship between the method of least squares and Gram-Schmidt orthogonalization

Hilmar Drygas

Abstract

A method for solving Least Squares Problems is developed which automatically results in the appearance of the Gram-Schmidt orthogonalizers. Given these orthogonalizers an induction-proof is available for solving Least Squares Problems.

1. Introduction

The method of Least Squares consists in the following minimization problem. For given vectors $y, x_{1}, \ldots x_{k} \in \mathbb{R}^{n}$ find numbers $\beta_{1}, \ldots, \beta_{k}$ such that

$$
\left\|y-\sum_{i=1}^{k} \beta_{i} x_{i}\right\|
$$

is minimized. The underlying linear model is

$$
y=x_{1} \beta_{1}+\ldots+x_{k} \beta_{k}+\epsilon,
$$

where ϵ is a disturbance term. Mostly, it is assumed that ϵ is a random vector with expectation 0 and covariance matrix $\sigma^{2} I_{n}$, where $\sigma>0$ is an unknown parameter. The method of Least Squares is therefore also described by

$$
\|\epsilon\|=\min .
$$

The simplest linear model is $y=a 1_{n}+\epsilon$, where 1_{n} is the vector of ones. The Least Squares problem for estimating a can be solved by Steiner's theorem.

Steiner's theorem is essentially a theorem in Mechanics ("TrägheitsMomente"). The following theorem is a special case of the equation

$$
E(X-a)^{2}=(a-E X)^{2}+\operatorname{Var}(X)
$$

Received January 15, 2010.
2010 Mathematics Subject Classification. 15A63, 62J05, 65F25.
Key words and phrases. Gram-Schmidt orthogonalization, Least Squares method, linear models, orthogonal projection, simple regression, Steiner's theorem.
for a random variable X.
Theorem 1.1 (Steiner's theorem). Let $w_{i} \geq 0, \sum_{i=1}^{n} w_{i}>0$ and

$$
\sum_{i=1}^{n} w_{i}\left(y_{i}-a\right)^{2}=\sum_{i=1}^{n} w_{i}\left(y_{i}-\bar{y}_{w g h}\right)^{2}+\left(\sum_{i=1}^{n} w_{i}\right)\left(a-\bar{y}_{w g h}\right)^{2} .
$$

Then $\bar{y}_{\text {wgh }}=\left(\sum_{i=1}^{n} w_{i}\right)^{-1}\left(\sum_{i=1}^{n} w_{i} y_{i}\right)$.
Proof. The proof follows from the Pythagoras theorem since

$$
\sum_{i=1}^{n} w_{i}\left(y_{i}-\bar{y}_{w g h}\right)\left(a-\bar{y}_{w g h}\right)=0
$$

Thus $a=\bar{y}_{\text {wgh }}$ solves the Least Squares problem

$$
\sum_{i=1}^{n} w_{i}\left(y_{i}-a\right)^{2}=\min .
$$

This theorem can also be used to find estimates for the regression model

$$
y_{i}=\alpha+\beta x_{i}+\epsilon_{i}, i=1, \ldots, n, y=\alpha 1_{n}+\beta x+\epsilon .
$$

The task consists in minimizing

$$
Q=\sum_{i=1}^{n}\left(y_{i}-\alpha-\beta x_{i}\right)^{2} .
$$

By Steiner's theorem we get the solution

$$
\hat{\alpha}=\bar{y}-\beta \bar{x}, \bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}, \bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i} .
$$

By plugging in the obtained estimates we get

$$
\begin{aligned}
Q & =\sum_{i=1}^{n}\left(y_{i}-\bar{y}-\beta\left(x_{i}-\bar{x}\right)\right)^{2} \\
& =\sum_{i=x_{i} \neq \bar{x}}\left(x_{i}-\bar{x}\right)^{2}\left(\frac{y_{i}-\bar{y}}{x_{i}-\bar{x}}-\beta\right)^{2}+\sum_{i: x_{i}=\bar{x}}\left(y_{i}-\bar{y}\right)^{2} .
\end{aligned}
$$

According to Steiner's theorem the estimate of β from minimization is a weighted mean of the slopes $\frac{y_{i}-\bar{y}}{x_{i}-\bar{x}}$, namely

$$
\hat{\beta}=\frac{\sum_{i=x_{i} \neq \bar{x}}\left(x_{i}-\bar{x}\right)^{2} \frac{\left(y_{i}-\bar{y}\right)}{\left(x_{i}-\bar{x}\right)}}{\sum_{i=x_{i} \neq \bar{x}}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} .
$$

If all x_{i} are equal to \bar{x}, then β is arbitrary since Q does not depend on β.

This above used procedure can be extended to the general case as will be shown in the next section.

2. Generalization of successive estimation

Theorem 2.1 (Generalized Steiner's theorem). For vectors x and y the following equality holds:

$$
\|y-a x\|^{2}=\left\|y-\frac{(y, x)}{(x, x)} x\right\|^{2}+\|x\|^{2}\left(a-\frac{(x, y)}{(x, x)}\right)^{2}
$$

if $x \neq 0$.
Proof. The vectors $\left(y-\frac{(y, x)}{(x, x)} x\right)$ and x are orthogonal. The Pythagoras theorem therefore yields the result.

Corollary 2.2. The Least Squares solution of

$$
\|y-a x\|=\min
$$

is obtained when $a=\frac{(y, x)}{(x, x)}$.
Now we want to minimize

$$
\begin{equation*}
\left\|y-\sum_{i=1}^{k} \beta_{i} x_{i}\right\|^{2} \tag{2.1}
\end{equation*}
$$

If $x_{1}=0$, then β_{1} does not appear in (2.1) and it is therefore arbitrary. If $x_{1} \neq 0$, then according to Theorem 2.1

$$
\hat{\beta}_{1}=\frac{\left(y-\sum_{i=2}^{k} \beta_{i} x_{i}, x_{1}\right)}{\left(x_{1}, x_{1}\right)} .
$$

By plugging in this estimate into (2.1) we get the new minimization problem

$$
\left\|y^{(2)}-\sum_{i=2}^{k} \beta_{i} x_{i}^{(2)}\right\|=\min
$$

where

$$
y^{(2)}=y-\frac{\left(y, x_{1}\right)}{\left(x_{1}, x_{1}\right)} x_{1}=P_{\left\{x_{1}\right\}^{\perp}} y, x_{i}^{(2)}=x_{i}-\frac{\left(x_{i}, x_{1}\right)}{\left(x_{1}, x_{1}\right)} x_{1}=P_{\left\{x_{1}\right\}^{\perp}} x_{i}
$$

If $x_{2}^{(2)} \neq 0$ - otherwise β_{2} is arbitrary - we obtain

$$
\hat{\beta}_{2}=\frac{\left(y^{(2)}-\sum_{i=3}^{k} \beta_{i} x_{i}^{(2)}, x_{2}^{(2)}\right)}{\left(x_{2}^{(2)}, x_{2}^{(2)}\right)}=\frac{\left(y-\sum_{i=3}^{k} \beta_{i} x_{i}, x_{2}^{(2)}\right)}{\left(x_{2}^{(2)}, x_{2}^{(2)}\right)}
$$

and by plugging in the obtained estimate we get a new minimization problem with $y^{(3)}, x_{i}^{(3)}, \quad i=3, \ldots, k$. Continuing with this procedure we get successively the solutions $(j=3, \ldots, k)$

$$
\hat{\beta}_{j}=\frac{\left(y-\sum_{i=j+1}^{k} \beta_{i} x_{i}^{(j)}, x_{j}^{(j)}\right)}{\left(x_{j}^{(j)}, x_{j}^{(j)}\right)}, \text { if } x_{j}^{(j)} \neq 0
$$

and finally

$$
\hat{\beta}_{k}=\frac{\left(y, x_{k}^{(k)}\right)}{\left(x_{k}^{(k)}, x_{k}^{(k)}\right)}, \text { if } x_{k}^{(k)} \neq 0
$$

In order to simplify the notation we define

$$
q_{1}=x_{1}, q_{j}=x_{j}^{(j)}, j=2, \ldots, k
$$

Then

$$
\begin{aligned}
x_{i}^{(l)} & =x_{i}^{(l-1)}-\frac{\left(x_{i}^{(l-1)}, q_{l-1}\right)}{\left(q_{l-1}, q_{l-1}\right)} q_{i-1} \\
& =P_{\left\{q_{l-1}\right\}^{\perp}} x_{i}^{(l-1)}, i=l, \ldots, k, \quad l=1, \ldots, k_{i}
\end{aligned}
$$

where, of course, $x_{i}^{(1)}=x_{i}, i=1, \ldots, k$. Therefore

$$
q_{l}=P_{\left\{q_{i-1}\right\}^{\perp}} x_{i}^{(l-1)}
$$

and

$$
\begin{aligned}
x_{i}^{(l)} & =P_{\left\{q_{l-1}\right\}^{\perp}} P_{\left\{q_{l-2}\right\}^{\perp}} \ldots P_{\left\{q_{1}\right\}^{\perp}} x_{i} \\
q_{l} & =P_{\left\{q_{l-1}\right\}^{\perp}} \ldots P_{\left\{q_{l}\right\}^{\perp}} x_{l}, l=2, \ldots, k .
\end{aligned}
$$

The next step consists in proving that

$$
\prod_{j=1}^{i-1} P_{\left\{q_{i-j}\right\}^{\perp}}=P_{\left\{q_{1}, \ldots, q_{i-1}\right\}^{\perp}}
$$

By Achieser, Glasmann (1981), p. 97, the product of projections is a projector if and only if the projectors commute. By Rao, Mitra (1971), p. 189, the projection onto the intersection of the subspaces M and N is given by

$$
2 P(P+Q)^{-} Q
$$

where P is the projection onto M and Q the projection onto N. If P and Q commute, there must be a simple formula for the Moore-Penrose generalized inverse of $(P+Q)$, namely $(P+Q)^{+}$. This formula will be given by the following theorem.

Theorem 2.3. If $P Q=Q P$, then $(P+Q)^{+}=P+Q-\frac{3}{2} P Q$.
Proof. The proof follows from verification of the defining equalities of the Moore-Penrose inverse. An alternative is that P and Q are jointly diagonalizable if $P Q=Q P$:

$$
P=C \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) C^{\prime}, Q=C \operatorname{diag}\left(\mu_{1}, \ldots, \mu_{n}\right) C^{\prime}
$$

and the eigenvalues λ_{i} and μ_{i} are either 0 or 1 . Then

$$
\begin{aligned}
P+Q & =C\left(\operatorname{diag}\left(\lambda_{1}+\mu_{i}\right), \ldots,\left(\lambda_{\mu}+\mu_{n}\right)\right) C^{\prime} \\
(P+Q)^{+} & =C \operatorname{diag}\left(\left(\lambda_{1}+\mu_{1}\right)^{+}, \ldots,\left(\lambda_{n}+\mu_{n}\right)^{+}\right) C^{\prime} .
\end{aligned}
$$

But

$$
\left(\lambda_{i}+\mu_{i}\right)^{+}=\lambda_{i}+\mu_{i}-\frac{3}{2} \lambda_{i} \mu_{i}
$$

in all possible cases.
Theorem 2.4. The product of projections $P Q$ is the projection onto $\operatorname{im}(P) \cap \operatorname{im}(Q)$ if and only if $Q M^{\perp} \subseteq M^{\perp}$. A sufficient condition for this is $M^{\perp} \subseteq N$.

Proof. The product of projections $P Q$ is the projection onto $M \cap N$ if and only if it is the identity on $N \cap M$ and vanishes on $(M \cap N)^{\perp}=M^{\perp}+N^{\perp}$, the other properties are satisfied straightforwardly, only $P Q M^{\perp}=0$ must be examined. This is equivalent to the inclusion $Q M^{\perp} \subset M^{\perp}$. This condition is met if $M^{\perp} \subseteq N$.

Theorem 2.5. In the previous notation the following equality holds:

$$
\prod_{j=1}^{i-1} P_{\left\{q_{i-j}\right\}^{\perp}}=P_{\left\{q_{1}, \ldots, q_{i-1}\right\}^{\perp}} \quad \text { and } \quad q_{i} \in\left\{q_{1}, \ldots, q_{i-1}\right\}^{\perp}
$$

Proof. The proof follows the mathematical induction method. The first assertion of the theorem is correct for $i=2$ and $q_{2}=P_{\left\{q_{1}\right\}^{\perp}} x_{2} \in\left\{q_{1}\right\}^{\perp}$. Let us assume by induction

$$
\prod_{j=1}^{i-1} P_{\left\{q_{j}\right\}^{\perp}}=P_{\left\{q_{1}, \ldots, q_{i-1}\right\}^{\perp}} \quad \text { and } \quad q_{i} \in\left\{q_{1}, \ldots, q_{i-1}\right\}^{\perp}
$$

Then

$$
\prod_{j=1}^{i} P_{\left\{q_{i-j}\right\}^{\perp}}=P_{\left\{q_{i}\right\}^{\perp}} P_{\left\{q_{1}, \ldots, q_{i-1}\right\}^{\perp}}
$$

Since $q_{i} \in\left\{q_{1}, \ldots, q_{i-1}\right\}^{\perp}$, it follows from Theorem $2.4\left(M=\left\{q_{i}\right\}^{\perp}, M^{\perp}=\right.$ $\left.\left\{\lambda q_{i} ; \lambda \in \mathbb{R}\right\}\right)$ that

$$
\prod_{j=1}^{i} P_{\left\{q_{j}\right\}^{\perp}}=P_{\left\{q_{i} \perp^{\perp}\right.} P_{\left\{q_{1}, \ldots, q_{i-1}\right\}^{\perp}}=P_{\left\{q_{i}\right\}^{\perp}\left\{\left\{q_{1}, \ldots, q_{i-1}\right\}^{\perp}\right.}=P_{\left\{q_{1}, \ldots, q_{i}\right\}^{\perp}} .
$$

Since $q_{i+1}=P_{\left\{q_{1}, \ldots, q_{i}\right\}} \leq x_{i+1} \in\left\{q_{1}, \ldots, q_{i}\right\}^{\perp}$, also the second assertion is proved.

Corollary 2.6. If $q_{0}=0$, then $q_{i}=P_{\left\{q_{0}, \ldots, q_{i-1}\right\}} \perp x_{i, i=1, \ldots, k}$ and $x_{i}^{(l)}=$ $P_{\left\{q_{0}, q_{1}, \ldots, q_{l-1}\right\}^{\perp}} x_{i}$.

Since

$$
q_{i}=P_{\left\{q_{0}, \ldots, q_{i-1}\right\}^{\perp}} x_{i}=x_{i}-P_{\operatorname{Span}\left\{q_{1}, \ldots, q_{i-1}\right\}} x_{i}=x_{i}-\sum_{j: q_{j} \neq 0}^{i-1} \frac{\left(q_{j}, x_{i}\right)}{\left(q_{j}, q_{j}\right)} q_{j}
$$

the q_{i} describe the Gram-Schmidt orthogonalization procedure. It follows that from the principle of Least Squares the Gram-Schmidt orthogonalization procedure could be invented.

3. An induction argument for the Least Squares method

Since the Gram-Schmidt orthogonalization procedure is well-known, the estimates by the Least Squares method can also be obtained by mathematical induction. We determine by the induction method m linearly independent vectors among x_{1}, \ldots, x_{k}. We assume that x_{1}, \ldots, x_{m} are linearly independent and $\operatorname{Rank}\left(x_{1}, \ldots, x_{k}\right)=m$. Therefore x_{m+1}, \ldots, x_{k} are linear combinations of x_{1}, \ldots, x_{m}. As we have seen in the last section

$$
\hat{\beta}_{1}=\frac{\left(y-\sum_{i=2}^{k} \beta_{i} x_{i}, x_{1}\right)}{\left(x_{1}, x_{1}\right)} .
$$

After plugging into we get the new minimization problem: minimize

$$
\left\|y^{(2)}-\sum_{i=2}^{k} \beta_{i} x_{i}^{(2)}\right\|^{2}
$$

where

$$
y^{(2)}=P_{\left\{x_{1}\right\}^{\perp y}}, x_{i}^{(2)}=P_{\left\{x_{1}\right\}}^{\perp} x_{i}, i=2, \ldots, k .
$$

In the following $\operatorname{span}\left\{x_{1}, \ldots, x_{k}\right\}$ denotes the subspace generated by the vectors x_{1}, \ldots, x_{k}.

Lemma 3.1. Let $\operatorname{Rank}\left(x_{1}, \ldots, x_{k}\right)=m$ and let x_{1}, \ldots, x_{m} be linearly independent. Then $x_{i}^{(2)}, i=2, \ldots, m$, are linearly independent and $x_{i}^{(2)}, i>m$, are linear combinations of the $x_{i}^{(2)}, i=2, \ldots, m$.

Proof. We write P for short instead of $P_{\left\{x_{1}\right\}^{\perp}}$. From

$$
\sum_{i=2}^{m} \lambda_{i} x_{i}^{(2)}=P\left(\sum_{i=2}^{m} \lambda_{i} x_{i}\right)=0
$$

it follows that $\sum_{i=2}^{m} \lambda_{i} x_{i} \in \operatorname{span}\left\{x_{1}\right\}$ and hence $\lambda_{2}=\ldots=\lambda_{m}=0$ from the linear independence of x_{1}, \ldots, x_{m}.

For $i>m$ we get $x_{i}^{(2)}=\sum_{j=2}^{m} \lambda_{i j} x_{j}^{(2)}$ if $x_{i}=\sum_{j=1}^{m} \lambda_{i j} x_{j}$.
Theorem 3.2. Let $\operatorname{Rank}\left(x_{1}, \ldots, x_{k}\right)=m$ and let, moreover, x_{1}, \ldots, x_{m} be linearly independent. Futhermore, let q_{1}, \ldots, q_{m} be the pairwise orthogonal vectors obtained from $\left(x_{1}, \ldots, x_{m}\right)$ by applying the Gram-Schmidt orthogonalization procedure. Then the Least Squares solutions $\hat{\beta}_{1}, \ldots, \hat{\beta}_{m}$ are recursively given by

$$
\begin{aligned}
\hat{\beta}_{m} & =\frac{\left(q_{m}, y-\sum_{i=m+1}^{k} \beta_{i} x_{i}\right)}{\left(q_{m}, q_{m}\right)}, \\
\hat{\beta}_{i} & =\frac{\left(q_{i}, y-\sum_{j=i+1}^{m} \hat{\beta}_{j} x_{j}-\sum_{j=m+1}^{k} \beta_{j} x_{j}\right)}{\left(q_{i}, q_{i}\right)},
\end{aligned}
$$

$i=m-1, m-2, \ldots, 1$. Here $\beta_{m+1}, \ldots, \beta_{k}$ are arbitrary and

$$
y-\sum_{i=1}^{m} \hat{\beta}_{i} x_{i}-\sum_{j=m+1}^{k} \beta_{i} x_{i}
$$

does not depend on $\beta_{m+1}, \ldots, \beta_{k}$.
Proof. We shall follow mathematical induction on m. If $m=1$, then

$$
\hat{\beta}_{1}=\frac{\left(x_{1}, y-\sum_{i=2}^{k} \beta_{i} x_{i}\right)}{\left(x_{1}, x_{1}\right)}
$$

and

$$
y-\hat{\beta}_{1} x_{1}-\sum_{i=2}^{k} \beta_{i} x_{i}=y^{(2)}-\sum_{i=2}^{k} \beta_{i} x_{i}^{(2)} .
$$

Since $x_{i} \in \operatorname{span}\left\{x_{1}\right\}$, it follows that $x_{i}^{(2)}=0, i=2, \ldots, k$, and therefore

$$
y-\hat{\beta}_{1} x_{1}-\sum_{i=2}^{k} \beta_{i} x_{i}=y^{(2)}
$$

which does not depend on $\beta_{2}, \ldots, \beta_{k}$.
We now arrive at the problem of minimizing

$$
\left\|y^{(2)}-\sum_{i=2}^{k} \beta_{i} x_{i}^{(2)}\right\|
$$

By the induction assumption we use that $x_{2}^{(2)}, \ldots, x_{2}^{(m)}$ are linearly independent and $\operatorname{Rank}\left(x_{2}^{(2)}, \ldots, x_{k}^{(2)}\right)=m-1$. Then the solutions are

$$
\left(q_{m}^{(2)}, q_{m}^{(2)}\right) \hat{\beta}_{m}=\left(q_{m}^{(2)}, y^{(2)}-\sum_{i=m+1}^{k} \beta_{i} x_{i}^{(2)}\right)
$$

and

$$
\left(q_{i}^{(2)}, q_{i}^{(2)}\right) \hat{\beta}_{i}=\left(q_{i}^{(2)}, y^{(2)}-\sum_{j=i+1}^{m} \hat{\beta}_{j} x_{j}-\sum_{j=m+1}^{k} \beta_{j} x_{j}\right),
$$

$i=m-1, \ldots, 2$. Here $\beta_{m+1}, \ldots, \beta_{k}$ are arbitrary numbers and $q_{2}^{(2)}, \ldots, q_{m}^{(2)}$ are obtained by applying the Gram-Schmidt orthogonalization procedure to $x_{2}^{(2)}, \ldots, x_{m}^{(2)}$. Moreover, $y^{(2)}-\sum_{i=2}^{m} \hat{\beta}_{i} \hat{x}_{i}-\sum_{i=m+1}^{k} \beta_{i} x_{i}$ does not depend on $\beta_{m+1}, \ldots, \beta_{k}$. From this it follows that

$$
y-\sum_{i=1}^{m} \hat{\beta}_{i} x_{i}-\sum_{j=m+1}^{k} \beta_{i} x_{i}=y^{(2)}-\sum_{i=2}^{k} \hat{\beta}_{i} x_{i}^{(2)}-\sum_{i=m+1}^{k} \beta_{i} x_{i}^{(2)}
$$

does not depend on $\beta_{m+1}, \ldots, \beta_{k}$ either.
We now prove by mathematical induction that $q_{i}^{(2)}=q_{i}, i=2, \ldots, m$. This is correct for $i=2$ since $x_{2}^{(2)}=q_{2}^{(2)}=x_{2}-\frac{\left(x_{1}, x_{2}\right)}{\left(x_{1}, x_{1}\right)} x_{1}=q_{2}$ and by using the induction assumption we get

$$
q_{i}^{(2)}=x_{2}^{(2)}-\sum_{j=2}^{i-1} \frac{\left(x_{i}^{(2)}, q_{j}^{(2)}\right)}{\left(q_{j}^{(2)}, q_{j}^{(2)}\right.} q_{j}^{(2)}=x_{i}-\frac{\left(x_{i}, x_{1}\right)}{\left(x_{1}, x_{1}\right)} x_{1}-\sum_{j=2}^{i-1} \frac{\left(x_{i}^{(2)}, q_{j}\right)}{\left(q_{j}, q_{j}\right)} q_{j} .
$$

Since $\left(x_{i}^{(2)}, q_{j}\right)=\left(x_{i}, q_{j}\right)$ for $j \geq 2$, it follows that $q_{i}^{(2)}=q_{i}, i=2, \ldots, m$.
From $\left(q_{m}, q_{1}\right)=0$ for $i \geq 2$ we finally get

$$
\hat{\beta}_{m}=\frac{\left(q_{m}, y^{(2)}-\sum_{i=m+1}^{k} \beta_{i} x_{i}^{(2)}\right)}{\left(q_{m}, q_{m}\right)}=\frac{\left(q_{m}, y-\sum_{i=m+1}^{k} \beta_{i} x_{i}\right)}{\left(q_{m}, q_{m}\right)}
$$

and for $i=2, \ldots, m-1$,

$$
\begin{aligned}
\hat{\beta}_{i} & =\frac{\left(q_{i}, y^{(2)}-\sum_{j=i+1}^{m} \hat{\beta}_{j} x_{j}^{(2)}-\sum_{j=m+1}^{k} \beta_{j} x_{j}^{(2)}\right)}{\left(q_{i}, q_{i}\right)} \\
& =\frac{\left(q_{i}, y-\sum_{j=i+1}^{m} \hat{\beta}_{j} x_{j}-\sum_{j=m+1}^{k} \beta_{j} x_{j}\right)}{\left(q_{i}, q_{i}\right)}
\end{aligned}
$$

This is completed by

$$
\begin{aligned}
\hat{\beta}_{1} & =\frac{\left(x_{1}, y-\sum_{j=2}^{m} \hat{\beta}_{j} x_{j}-\sum_{j=m+1}^{k} \beta_{j} x_{j}\right)}{\left(x_{1}, x_{1}\right)} \\
& =\frac{\left(q_{1}, y-\sum_{j=2}^{m} \hat{\beta}_{j} x_{j}-\sum_{j=m+1}^{k} \beta_{j} x_{j}\right)}{\left(q_{1}, q_{1}\right)} .
\end{aligned}
$$

4. Historical remarks

The Gram-Schmidt procedure goes back to the papers by Gram (1883) and Schmidt (1907). Since the paper of Wong (1935), the name "GramSchmidt orthogonalization" has become common in mathematical literature. However, already Laplace (1812, 1814 and 1820) has invented this algorithm though he did not recognize it as an orthogonalization procedure. What Laplace did, was the following. He considered the linear model

$$
y=\beta_{1} x_{1}+\ldots+\beta_{k} x_{k}+\epsilon
$$

under the usual standard assumptions. He was only interested in the estimation of one of the β_{i}. Without loss of generality it can be assumed that β_{k} is the parameter to be estimated. In Drygas (1976) and Drygas (2008) it was shown that this estimator is given by

$$
\frac{\left(y,(I-P) x_{k}\right)}{\left\|(I-P) x_{k}\right\|^{2}}
$$

where P is the orthogonal projection onto span $\left\{x_{1}, \ldots, x_{k-1}\right\}$ and the variance of the estimator is equal to

$$
\frac{\sigma^{2}}{\left\|(I-P) x_{k}\right\|^{2}}
$$

The parameter β_{k} is estimable if and only if $x_{k} \notin \operatorname{span}\left\{x_{1}, \ldots, x_{k-1}\right\}$. Laplace proceeded as follows: he formed the orthogonal projection P_{1} onto the orthogonal complement of $\operatorname{span}\left\{x_{1}\right\}$ and arrived at the model

$$
P_{1} y=\beta_{2} P_{1} x_{2}+\ldots+\beta_{k} P_{1} x_{k}+P_{1} \epsilon
$$

In order to eliminate x_{2} he formed P_{2}, the projection onto the orthogonal complement of $\operatorname{span}\left\{P_{1} x_{2}\right\}=$: span $\left\{q_{2}\right\}$. Continuing in this way he finally arrived at the model

$$
P_{k-1} \ldots P_{2} P_{1} y=\beta_{k} P_{k-1} \ldots P_{2} P_{1} x_{k}+P_{k-1} \ldots P_{1} \epsilon
$$

The estimator of β_{k} was then

$$
\frac{\left(y, P_{k-1} \ldots, P_{2} P_{1} x_{k}\right)}{\left\|P_{k-1} \ldots P_{2} P_{1} x_{k}\right\|^{2}}
$$

and the variance was

$$
\frac{\sigma^{2}}{\left\|P_{k-1} \ldots P_{2} P_{1} x_{k}\right\|^{2}}
$$

It is evident that $P_{k-1} \ldots, P_{2} P_{1}=(I-P)$. This is proved by showing that $P_{k-1} \ldots P_{1} y=y$ if $y \in\left\{x_{1}, \ldots, x_{k-1}\right\}^{\perp}=\left\{q_{1}, \ldots, q_{k-1}\right\}^{\perp}$ and $P_{k-1} \ldots P_{1} y=0$ if $y \in \operatorname{span}\left\{x_{1}, \ldots, x_{k-1}\right\}=\operatorname{span}\left\{q_{1}, \ldots, q_{k-1}\right\} . \quad$ In the same way it can be shown that

$$
P_{i} \ldots P_{1}=P_{\left\{q_{1}, \ldots q_{i}\right\}^{\perp}}
$$

The vectors $x_{1}=q_{1}, q_{2}, \ldots, q_{k-1}$ and $q_{k}=(I-P) x_{k}$ constitute the orthogonalizers of $\left\{x_{1}, \ldots, x_{k}\right\}$.

A translation of the work by Laplace together with a detailed discussion can be found in Langou (2009).

A comprehensive discussion of the history of Gram-Schmidt procedure can be found in Leon, Björck and Gander (2009) and also in Björck (2010).

It is generally said that the Method of Least Squares is due to Carl Friedrich Gauss (see Gauss (1973)) but also Legendre (1805) published a paper about this method.

Acknowledgements. I thank the anonymous referee for the constructive comments and the additional literature, in particular the hint to the work of Laplace. I also thank the organizers of the XVIII International Workshop on Matrices and Statistics, Julia Volaufova and Viktor Witkovsky for their support.

References

Achieser, N. I. and Glasmann, I. M. (1981), Theorie der linearen Operatoren im HilbertRaum, Verlag Harri Deutsch, Thun.
Björck, Å. (2010), Gram-Schmidt orthogonalization, 100 years and more, Paper presented at IWMS, Shanghai (China), 5. - 8. Janue, 2010.
Drygas, H. (1976), Weak and strong consistency of the least squares estimators in regression models, Z. Wahrscheinlichkeitstheorie Verw. Gebiete 34, 119-127.
Drygas, H. (2008), QR-decomposition from the statistical point of view; In: Recent Advances in Linear Models and Related Areas, Essays in Honour of Helge Toutenburg, Shalab and Heumann (Eds), Physica-Verlag, Springer, Heidelberg, pp. 293-311.
Gauss, C.F. (1973), Werke. Band IV, Reprinted of the 1873 original, Georg Olms Verlag, Hildesheim.
Gram, J. P. (1883), Über die Entwickelung reeller Funktionen in Reihen mittelst der Methode der kleinsten Quadrate, J. Reine Angew. Math. 94, 41-73.
Langou, J. (2009), Translation and modern interpretation of Laplace's théorie analytique des probabilités, Technical Report CCM 280, UC Denver, Denver, Colerado, pp. 505512, 516-520.
Laplace, P.-S. (1812, 1814, 1820), Théorie Analytique des Probabilités, Troisième Edition, Premier Supplément Sur l'application du calcul des probabilités à la philosophie naturelle, Paris, Courcier.
Legendre, A. M. (1805), Nouvelles méthodes pour la détermination des orbites des comètes, Paris.
Leon, S. J. Björck, A., and Gander, W. (2009), Gram-Schmidt orthogonalization: 100 years and more, SIAM Review, submitted.
Rao, C. R. and Mitra, S. K. (1971), Generalized Inverse of Matrices and its Applications, Wiley, New York - London-Sydney - Toronto.
Schmidt, E. (1907), Zur Theorie der linearen und nichtlinearen Integralgleichungen, Math. Ann. 4, 161-174.
Wong, Y. K. (1935), An application of orthogonalization to the theory of least squares, Ann. Math. Stat. 6, 53-75.

University of Kassel, Fachbereich 10, Institut für Mathematik, 34109 Kassel, Germany

E-mail address: hilmar.drygas@onlinehome.de

