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On the relationship between the method of least
squares and Gram–Schmidt orthogonalization

Hilmar Drygas

Abstract. A method for solving Least Squares Problems is developed
which automatically results in the appearance of the Gram–Schmidt or-
thogonalizers. Given these orthogonalizers an induction-proof is avail-
able for solving Least Squares Problems.

1. Introduction

The method of Least Squares consists in the following minimization prob-
lem. For given vectors y, x1, . . . xk ∈ Rn find numbers β1, . . . , βk such
that

‖ y −
k∑
i=1

βixi ‖

is minimized. The underlying linear model is

y = x1β1 + . . .+ xkβk + ε,

where ε is a disturbance term. Mostly, it is assumed that ε is a random
vector with expectation 0 and covariance matrix σ2In , where σ > 0 is an
unknown parameter. The method of Least Squares is therefore also described
by

‖ ε ‖= min .
The simplest linear model is y = a 1n + ε , where 1n is the vector of ones.
The Least Squares problem for estimating a can be solved by Steiner’s
theorem.

Steiner’s theorem is essentially a theorem in Mechanics (“Trägheits-
Momente”). The following theorem is a special case of the equation

E(X − a)2 = (a− EX)2 + Var (X)
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for a random variable X .

Theorem 1.1 (Steiner’s theorem). Let wi ≥ 0 ,
n∑
i=1

wi > 0 and

n∑
i=1

wi(yi − a)2 =
n∑
i=1

wi(yi − ywgh)2 + (
n∑
i=1

wi)(a− ywgh)2.

Then ywgh = (
n∑
i=1

wi)−1(
n∑
i=1

wiyi) .

Proof. The proof follows from the Pythagoras theorem since

n∑
i=1

wi(yi − ywgh)(a− ywgh) = 0 .

�

Thus a = ywgh solves the Least Squares problem

n∑
i=1

wi(yi − a)2 = min.

This theorem can also be used to find estimates for the regression model

yi = α+ βxi + εi , i = 1, . . . , n , y = α1n + βx+ ε.

The task consists in minimizing

Q =
n∑
i=1

(yi − α− βxi)2 .

By Steiner’s theorem we get the solution

α̂ = y − βx , x =
1
n

n∑
i=1

xi , y =
1
n

n∑
i=1

yi .

By plugging in the obtained estimates we get

Q =
n∑
i=1

(
yi − y − β(xi − x)

)2

=
∑

i=xi 6=x
(xi − x)2

(
yi − y
xi − x

− β
)2

+
∑
i:xi=x

(yi − y)2 .
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According to Steiner’s theorem the estimate of β from minimization is a
weighted mean of the slopes yi−y

xi−x , namely

β̂ =

∑
i=xi 6=x

(xi − x)2 (yi−y)
(xi−x)∑

i=xi 6=x
(xi − x)2

=

n∑
i=1

(xi − x)yi

n∑
i=1

(xi − x)2
.

If all xi are equal to x , then β is arbitrary since Q does not depend on
β .

This above used procedure can be extended to the general case as will be
shown in the next section.

2. Generalization of successive estimation

Theorem 2.1 (Generalized Steiner’s theorem). For vectors x and y the
following equality holds:

‖ y − ax ‖2=‖ y − (y, x)
(x, x)

x ‖2 + ‖ x ‖2
(
a− (x, y)

(x, x)

)2

if x 6= 0 .

Proof. The vectors
(
y − (y,x)

(x,x) x
)

and x are orthogonal. The Pythagoras
theorem therefore yields the result. �

Corollary 2.2. The Least Squares solution of

‖ y − ax ‖= min.

is obtained when a = (y,x)
(x,x) .

Now we want to minimize

‖ y −
k∑
i=1

βixi ‖2 . (2.1)

If x1 = 0 , then β1 does not appear in (2.1) and it is therefore arbitrary. If
x1 6= 0 , then according to Theorem 2.1

β̂1 =
(y −

k∑
i=2

βixi, x1)

(x1, x1)
.

By plugging in this estimate into (2.1) we get the new minimization problem

‖ y(2) −
k∑
i=2

βix
(2)
i ‖= min ,
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where

y(2) = y − (y, x1)
(x1, x1)

x1 = P{x1}⊥y, x
(2)
i = xi −

(xi, x1)
(x1, x1)

x1 = P{x1}⊥xi .

If x(2)
2 6= 0 – otherwise β2 is arbitrary – we obtain

β̂2 =
(y(2) −

k∑
i=3

βix
(2)
i , x

(2)
2 )

(x(2)
2 , x

(2)
2 )

=
(y −

k∑
i=3

βixi, x
(2)
2 )

(x(2)
2 , x

(2)
2 )

.

and by plugging in the obtained estimate we get a new minimization prob-
lem with y(3), x

(3)
i , i = 3, . . . , k . Continuing with this procedure we get

successively the solutions (j = 3, . . . , k)

β̂j =

(y −
k∑

i=j+1
βix

(j)
i , x

(j)
j )

(x(j)
j , x

(j)
j )

, if x(j)
j 6= 0

and finally

β̂k =
(y, x(k)

k )

(x(k)
k , x

(k)
k )

, if x(k)
k 6= 0 .

In order to simplify the notation we define

q1 = x1 , qj = x
(j)
j , j = 2, . . . , k .

Then

x
(l)
i = x

(l−1)
i −

(x(l−1)
i , ql−1)

(ql−1, ql−1)
qi−1

= P{ql−1}⊥x
(l−1)
i , i = l, . . . , k , l = 1, . . . , ki

where, of course, x(1)
i = xi , i = 1, . . . , k . Therefore

ql = P{qi−1}⊥x
(l−1)
i

and

x
(l)
i = P{ql−1}⊥P{ql−2}⊥ . . . P{q1}⊥xi

ql = P{ql−1}⊥ . . . P{ql}⊥xl , l = 2, . . . , k .

The next step consists in proving that
i−1∏
j=1

P{qi−j}⊥ = P{q1,...,qi−1}⊥ .
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By Achieser, Glasmann (1981), p. 97, the product of projections is a pro-
jector if and only if the projectors commute. By Rao, Mitra (1971), p. 189,
the projection onto the intersection of the subspaces M and N is given by

2P (P +Q)−Q

where P is the projection onto M and Q the projection onto N . If P
and Q commute, there must be a simple formula for the Moore–Penrose
generalized inverse of (P + Q) , namely (P + Q)+ . This formula will be
given by the following theorem.

Theorem 2.3. If PQ = QP , then (P +Q)+ = P +Q− 3
2PQ .

Proof. The proof follows from verification of the defining equalities of
the Moore–Penrose inverse. An alternative is that P and Q are jointly
diagonalizable if PQ = QP :

P = C diag(λ1, . . . , λn)C ′ , Q = C diag(µ1, . . . , µn)C ′

and the eigenvalues λi and µi are either 0 or 1 . Then

P +Q = C (diag(λ1 + µi), . . . ,
(
λµ + µn)

)
C ′ ,

(P +Q)+ = C diag
(
(λ1 + µ1)+, . . . , (λn + µn)+

)
C ′.

But

(λi + µi)+ = λi + µi −
3
2
λiµi

in all possible cases. �

Theorem 2.4. The product of projections PQ is the projection onto
im(P )∩im(Q) if and only if QM⊥ ⊆ M⊥ . A sufficient condition for this
is M⊥ ⊆ N .

Proof. The product of projections PQ is the projection onto M∩N if and
only if it is the identity on N ∩M and vanishes on (M ∩N)⊥ = M⊥+N⊥,
the other properties are satisfied straightforwardly, only PQM⊥ = 0 must
be examined. This is equivalent to the inclusion QM⊥ ⊂ M⊥ . This
condition is met if M⊥ ⊆ N . �

Theorem 2.5. In the previous notation the following equality holds:
i−1∏
j=1

P{qi−j}⊥ = P{q1,...,qi−1}⊥ and qi ∈ {q1, . . . , qi−1}⊥ .

Proof. The proof follows the mathematical induction method. The first
assertion of the theorem is correct for i = 2 and q2 = P{q1}⊥x2 ∈ {q1}⊥ .
Let us assume by induction

i−1∏
j=1

P{qj}⊥ = P{q1,...,qi−1}⊥ and qi ∈ {q1, . . . , qi−1}⊥ .
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Then
i∏

j=1

P{qi−j}⊥ = P{qi}⊥P{q1,...,qi−1}⊥ .

Since qi ∈ {q1, . . . , qi−1}⊥, it follows from Theorem 2.4 (M = {qi}⊥ , M⊥ =
{λqi ; λ ∈ R}) that

i∏
j=1

P{qj}⊥ = P{qi}⊥P{q1,...,qi−1}⊥ = P{qi}⊥∩{q1,...,qi−1}⊥ = P{q1,...,qi}⊥ .

Since qi+1 = P{q1,...,qi}⊥xi+1 ∈ {q1, . . . , qi}⊥, also the second assertion is
proved. �

Corollary 2.6. If q0 = 0 , then qi = P{q0,...,qi−1}⊥xi,i=1,...,k and x
(l)
i =

P{q0,q1,...,ql−1}⊥xi .

Since

qi = P{q0,...,qi−1}⊥xi = xi − Pspan{q1,...,qi−1}xi = xi −
i−1∑
j:qj 6=0

(qj , xi)
(qj , qj)

qj ,

the qi describe the Gram–Schmidt orthogonalization procedure. It follows
that from the principle of Least Squares the Gram–Schmidt orthogonaliza-
tion procedure could be invented.

3. An induction argument for the Least Squares method

Since the Gram–Schmidt orthogonalization procedure is well-known, the
estimates by the Least Squares method can also be obtained by mathemat-
ical induction. We determine by the induction method m linearly indepen-
dent vectors among x1, . . . , xk . We assume that x1, . . . , xm are linearly
independent and Rank(x1, . . . , xk) = m . Therefore xm+1, . . . , xk are linear
combinations of x1, . . . , xm . As we have seen in the last section

β̂1 =
(y −

k∑
i=2

βixi, x1)

(x1, x1)
.

After plugging into we get the new minimization problem: minimize

‖ y(2) −
k∑
i=2

βix
(2)
i ‖

2,

where

y(2) = P{x1}⊥y , x
(2)
i = P⊥{x1}xi , i = 2, . . . , k .
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In the following span{x1, . . . , xk} denotes the subspace generated by the
vectors x1, . . . , xk.

Lemma 3.1. Let Rank(x1, . . . , xk) = m and let x1, . . . , xm be linearly
independent. Then x

(2)
i , i = 2, . . . ,m , are linearly independent and

x
(2)
i , i > m , are linear combinations of the x

(2)
i , i = 2, . . . ,m .

Proof. We write P for short instead of P{x1}⊥ . From

m∑
i=2

λix
(2)
i = P (

m∑
i=2

λixi) = 0

it follows that
m∑
i=2

λixi ∈ span{x1} and hence λ2 = . . . = λm = 0 from the

linear independence of x1, . . . , xm .

For i > m we get x
(2)
i =

m∑
j=2

λijx
(2)
j if xi =

m∑
j=1

λijxj . �

Theorem 3.2. Let Rank(x1, . . . , xk) = m and let, moreover, x1, . . . , xm
be linearly independent. Futhermore, let q1, . . . , qm be the pairwise orthog-
onal vectors obtained from (x1, . . . , xm) by applying the Gram–Schmidt or-
thogonalization procedure. Then the Least Squares solutions β̂1, . . . , β̂m are
recursively given by

β̂m =
(qm, y −

k∑
i=m+1

βixi)

(qm, qm)
,

β̂i =

(qi, y −
m∑

j=i+1
β̂jxj −

k∑
j=m+1

βjxj)

(qi, qi)
,

i = m− 1 , m− 2, . . . , 1 . Here βm+1, . . . , βk are arbitrary and

y −
m∑
i=1

β̂ixi −
k∑

j=m+1

βixi

does not depend on βm+1, . . . , βk .

Proof. We shall follow mathematical induction on m . If m = 1 , then

β̂1 =
(x1, y −

k∑
i=2

βixi)

(x1, x1)
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and

y − β̂1x1 −
k∑
i=2

βixi = y(2) −
k∑
i=2

βix
(2)
i .

Since xi ∈ span {x1} , it follows that x
(2)
i = 0 , i = 2, . . . , k , and therefore

y − β̂1x1 −
k∑
i=2

βixi = y(2)

which does not depend on β2, . . . , βk .

We now arrive at the problem of minimizing

‖ y(2) −
k∑
i=2

βix
(2)
i ‖ .

By the induction assumption we use that x
(2)
2 , . . . , x

(m)
2 are linearly inde-

pendent and Rank(x(2)
2 , . . . , x

(2)
k ) = m− 1 . Then the solutions are

(q(2)
m , q(2)

m ) β̂m = (q(2)
m , y(2) −

k∑
i=m+1

βix
(2)
i )

and

(q(2)
i , q

(2)
i ) β̂i = (q(2)

i , y(2) −
m∑

j=i+1

β̂jxj −
k∑

j=m+1

βjxj) ,

i = m−1, . . . , 2 . Here βm+1, . . . , βk are arbitrary numbers and q
(2)
2 , . . . , q

(2)
m

are obtained by applying the Gram–Schmidt orthogonalization procedure to

x
(2)
2 , . . . , x

(2)
m . Moreover, y(2) −

m∑
i=2

β̂ix̂i −
k∑

i=m+1
βixi does not depend on

βm+1, . . . , βk . From this it follows that

y −
m∑
i=1

β̂ixi −
k∑

j=m+1

βixi = y(2) −
k∑
i=2

β̂ix
(2)
i −

k∑
i=m+1

βix
(2)
i

does not depend on βm+1, . . . , βk either.

We now prove by mathematical induction that q
(2)
i = qi , i = 2, . . . ,m .

This is correct for i = 2 since x
(2)
2 = q

(2)
2 = x2 − (x1,x2)

(x1,x1) x1 = q2 and by
using the induction assumption we get

q
(2)
i = x

(2)
2 −

i−1∑
j=2

(x(2)
i , q

(2)
j )

(q(2)
j , q

(2)
j

q
(2)
j = xi −

(xi, x1)
(x1, x1)

x1 −
i−1∑
j=2

(x(2)
i , qj)

(qj , qj)
qj .
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Since (x(2)
i , qj) = (xi, qj) for j ≥ 2 , it follows that q

(2)
i = qi , i = 2, . . . ,m .

From (qm, q1) = 0 for i ≥ 2 we finally get

β̂m =
(qm, y(2) −

k∑
i=m+1

βix
(2)
i )

(qm, qm)
=

(qm, y −
k∑

i=m+1
βixi)

(qm, qm)

and for i = 2, . . . ,m− 1 ,

β̂i =

(qi, y(2) −
m∑

j=i+1
β̂jx

(2)
j −

k∑
j=m+1

βjx
(2)
j )

(qi, qi)

=

(qi, y −
m∑

j=i+1
β̂jxj −

k∑
j=m+1

βjxj)

(qi, qi)
.

This is completed by

β̂1 =

(x1, y −
m∑
j=2

β̂jxj −
k∑

j=m+1
βjxj)

(x1, x1)

=

(q1, y −
m∑
j=2

β̂jxj −
k∑

j=m+1
βjxj)

(q1, q1)
.

�

4. Historical remarks

The Gram–Schmidt procedure goes back to the papers by Gram (1883)
and Schmidt (1907). Since the paper of Wong (1935), the name “Gram–
Schmidt orthogonalization” has become common in mathematical literature.
However, already Laplace (1812, 1814 and 1820) has invented this algorithm
though he did not recognize it as an orthogonalization procedure. What
Laplace did, was the following. He considered the linear model

y = β1x1 + . . .+ βkxk + ε

under the usual standard assumptions. He was only interested in the esti-
mation of one of the βi . Without loss of generality it can be assumed that
βk is the parameter to be estimated. In Drygas (1976) and Drygas (2008)
it was shown that this estimator is given by

(y, (I − P )xk)
‖ (I − P )xk ‖2
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where P is the orthogonal projection onto span {x1, . . . , xk−1} and the vari-
ance of the estimator is equal to

σ2

‖ (I − P )xk ‖2
.

The parameter βk is estimable if and only if xk /∈ span{x1, . . . , xk−1}. Laplace
proceeded as follows: he formed the orthogonal projection P1 onto the or-
thogonal complement of span {x1} and arrived at the model

P1y = β2P1x2 + . . .+ βkP1xk + P1ε .

In order to eliminate x2 he formed P2 , the projection onto the orthogonal
complement of span {P1x2} =: span {q2} . Continuing in this way he finally
arrived at the model

Pk−1 . . . P2P1y = βkPk−1 . . . P2P1xk + Pk−1 . . . P1ε .

The estimator of βk was then

(y, Pk−1 . . . , P2P1xk)
‖ Pk−1 . . . P2P1xk ‖2

and the variance was
σ2

‖ Pk−1 . . . P2P1xk ‖2
.

It is evident that Pk−1 . . . , P2P1 = (I − P ) . This is proved by show-
ing that Pk−1 . . . P1 y = y if y ∈ {x1, . . . , xk−1}⊥ = {q1, . . . , qk−1}⊥ and
Pk−1 . . . P1y = 0 if y ∈ span {x1, . . . , xk−1} = span {q1, . . . , qk−1} . In the
same way it can be shown that

Pi . . . P1 = P{q1,...qi}⊥ .

The vectors x1 = q1, q2, . . . , qk−1 and qk = (I−P )xk constitute the orthog-
onalizers of {x1, . . . , xk} .

A translation of the work by Laplace together with a detailed discussion
can be found in Langou (2009).

A comprehensive discussion of the history of Gram–Schmidt procedure
can be found in Leon, Björck and Gander (2009) and also in Björck (2010).

It is generally said that the Method of Least Squares is due to Carl
Friedrich Gauss (see Gauss (1973)) but also Legendre (1805) published a
paper about this method.
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