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Admissibility of linear predictor in the extended
growth curve model

Zhihong Xiao and Qiang Zhu

Abstract. In the present paper, we first give the definition of the ex-
tended growth curve model, then according to the definition of admissi-
ble linear predictor and some matrix properties, obtain the necessary and
sufficient conditions for a linear predictor to be admissible in the classes
of homogenous and inhomogeneous linear predictors, respectively.

1. Introduction

The growth curve model (GCM) was introduced by Potthoff and Roy
(1964) and equals

Yn×q = Xn×mBm×pZp×q + εn×q, E(ε) = 0, Cov(−→ε ) = Σq×q ⊗ In×n. (1.1)

The first paper on growth curves was presented by Wishart (1938), who
recommended that a general regression model should be fitted to each curve
and that the effects of the experimental treatments should be evaluated by
analyzing the coefficients of the model. Since then different aspects of the
model were analyzed by many authors including Khatri (1966), Krishnaiah
(1969), Gleser and Olkin (1970), Srivastava and Khatri (1979) and von Rosen
(1989). Von Rosen (1991) showed a very interesting and detailed review
on the GCM which included methods of estimating the parameters in the
model, tests, covariance structures, confidence intervals, results based on
a canonical version, restrictions to the parameter space of B, incomplete
data, Bayesian approaches and the use of the GCM in longitudinal studies.
Lee (1988) performed prediction and estimation of the growth curves with
special covariance structures. Jiang and Su (2003) presented two optimal
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linear predictions of the growth curve model. Zhang and Qin (2010) showed
the admissibility in the GCM with respect to the restricted parameter sets
under matrix loss function.

Verbyla and Venables (1988) added profiles to the GCM with some con-
crete problems and got the Extended Growth Curve Model (EGCM) which
was defined as follows:

Yn×q =
k∑

i=1

XiBiZi + εn×q, E(ε) = 0, Cov(−→ε ) = Σq×q ⊗ In×n. (1.2)

An algorithm which was used to obtain maximum likelihood estimators was
presented in their paper, some examples were given to illustrate how the
model was created and some remarks about the applications of the model
were made too. Von Rosen (1989) also introduced a model under a nested
subspace condition and gave the explicit form of the maximum likelihood es-
timators of the parameters in the model. He also indicated that the nested
structure was necessary and sufficient to obtain explicit expressions for the
estimators. Von Rosen (1990) showed that the maximum likelihood estima-
tor of Bi was unbiased and gave the expressions for D[B̂i] and E(Σ̂). Xiao
and Zhu (2006) showed the admissibility of the parameters in the EGCM
under some special restrictions.

In this paper, we define an admissible linear predictor of the EGCM (1.2),
and get the necessary and sufficient conditions for a linear predictor of the
linear predictable variable to be admissible in the classes of homogeneous
and inhomogeneous linear predictors, respectively.

2. Notation and main results

In the EGCM (1.2), let Xi : n ×mi and Zi : pi × q be the given design
matrix and structure matrix, respectively, let Bi : pi ×mi be an unknown
parameter matrix for i = 1, · · · , k. Let Y be an n × q observation matrix
and ε be an n × q random error matrix. Denote A′ the transpose of the
matrix A. Partition Y and ε into Y = (y1, · · · , yn)′ and ε = (ε1, · · · , εn)′,
where y1, · · · , yn are n independent observations. We make the following
assumptions:

E(ε) = 0, Cov(ε) ≡ Cov(−→ε ) = Σ⊗ In,
where −→ε denotes a vector consisting of the columns of ε, A1 ⊗ A2 is the
Kronecker product of A1 and A2, Σ(≥ 0) is an unknown q × q covariance
matrix and In is the nth identity matrix. The notation A ≥ 0 means that A
is a nonnegative definite symmetric matrix.

In the EGCM (1.2), we will use an observation matrix Y to predict the
unknown observation matrix Y0 =

∑k
i=1Xi0BiZi0 + ε0. Let E(ε0) = 0,

Cov(ε0) ≡ Cov(−→ε0) = Σ ⊗ Im. Let X = (X1, X2, · · · , Xk) and X0 =
(X10, X20, · · · , Xk0), we usually want to predict KY0L, where K and L are



ADMISSIBILITY OF LINEAR PREDICTOR 17

known s×m and q× l matrices. It is easy to prove that if µ(X ′0K
′) ⊆ µ(X ′)

and µ(Z0L) ⊆ µ(Z), then KY0L is linearly predictable, where µ(·) denotes
the vector space spanned by the columns of a matrix.

Without loss of generality, let k = 2 in the EGCM (1.2). Define the matrix
loss function and risk function of d(Y ) as follows:

L(d(Y ), B1, B2,Σ) = (d(Y )−KYoL)(d(Y )−KYoL)′,

and
R(d(Y ), B1, B2,Σ) = E[(d(Y )−KYoL)(d(Y )−KYoL)′].

Denote the parameter space Θ = {(B1, B2,Σ) : Σ ≥ 0, Bi is a real matrix,
i = 1, 2}. The definitions of admissibility will be presented in the following.

Definition 2.1. The homogeneous linear predictable class of predictable
function KY0L is

£0 = {DY F : D and F are s× n and q × l constant matrices,
ZiF = Zi0L = Hi, i = 1, 2} .

where Zi0 and Hi are pi × q and pi × l known matrices, i = 1, 2.

Definition 2.2. The predictor d1(Y ) of KY0L is called consistently
superior to another linear predictor d2(Y ), if R(d1(Y ), B1, B2,Σ) ≤
R(d2(Y ), B1, B2,Σ) for all (B1, B2,Σ) ∈ Θ, and there exists at least
one point (B10, B20,Σ0) ∈ Θ such that

R(d1(Y ), B10, B20,Σ0)−R(d2(Y ), B10, B20,Σ0) 6= 0.

Definition 2.3. For DY F ∈ £0, if there does not exist any linear pre-
dictor D1Y F ∈ £0 which is consistently superior to DY F , then DY F is
called the admissible predictor of KY0L in the class £0. For convenience,
we denote DY F £0∼ KY0L.

Let D̃ = DX(X ′X)+X ′, U = (DX−KX0)(X ′X)+(DX−KX0)′ and A =
DX(X ′X)+X ′D′ −KX0(X ′X)+X ′0K

′, where (X ′X)+ denotes the Moore–
Penrose inverse of X ′X.

Theorem 2.1. Suppose that DY F ∈ £0 and KY0L is linearly predictable.
Then DY F

£0∼ KY0L if and only if
(1) DD′ = D̃D̃′;
(2) DX = KX0; or DX 6= KX0, and for any a ∈ (−1, 1), the matrix

aU +A is not positive semi-definite.

However, sometimes one may consider a predictor with an intercept in-
cluded in KY0L, so the following notation will be introduced.

Definition 2.4. The inhomogeneous class of linear predictors of the pre-
dictable function KY0L is given by

£ = {DY F +M : DY F ∈ £0, M is a s× l constant matrix}.
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Definition 2.5. For DY F + M ∈ £, if there does not exist any linear
predictor D1Y F +M∗ ∈ £ which is consistently superior to DY F +M , then
DY F + M is called an admissible predictor of KY0L in the class £. For
convenience, we denote DY F +M

£∼ KY0L.

Theorem 2.2. Suppose that DY F + M ∈ £ and KY0L is linearly pre-
dictable. Then DY F +M

£∼ KY0L if and only if
(1) DD′ = D̃D̃′;
(2) DX = KX0, and M = 0; or DX 6= KX0, and for any a ∈ (−1, 1), the

matrix aU +A is not positive semi-definite.

From a statistical perspective, the importance of Theorem 2.1 and Theo-
rem 2.2 stems from the fact that one only needs to find D and easily check
if it can satisfy conditions (1) and (2) whether one wants to get a good
predictor of KY0L.

Remark 2.1. (1) From a decision theoretic perspective, the admissibility
is an essential property. In the viewpoint, a good predictor describes that
the predictor makes less loss than the other predictors.

(2) The model in the present paper has no restrictions to the probability
distribution, whereas the model in Verbyla and Venables (1988) requires a
normal distribution assumption.

(3) It is difficult to obtain these results if we cancel the restriction ZiF =
Zi0L = Hi for i = 1, 2 in £0. The problem can be regarded as an open
problem which needs further discussion.

3. Proof of Theorem 2.1

In order to prove Theorem 2.1, we first give the following lemmas.

Lemma 3.1. If ξ and ξ0 are n× q and m× q stochastic matrices, respec-
tively, with Eξ = M , Cov(

−→
ξ ) = Σ ⊗ In, Eξ0 = M0, Cov(

−→
ξ0) = Σ ⊗ Im and

Cov(
−→
ξ ,
−→
ξ0) = O, where O is a matrix in which all elements are null. Then,

for any q × q constant matrix W , we have
(i) E(ξWξ′) = tr(WΣ)In +MWM ′;

(ii) E(ξ0Wξ′0) = tr(WΣ)Im +M0WM ′0;
(iii) E(ξWξ′0) = MWM ′0.

Lemma 3.2. Under the EGCM (1.2), for any DY F ∈ £0, we have
(i) R(DY F,B1, B2,Σ) =

∑2
i=1(DXiBiZiF −KXi0BiZi0L)
×
∑2

i=1(DXiBiZiF −KXi0BiZi0L)′

+tr(F ′ΣF )DD′ + tr(L′ΣL)KK ′

=
∑2

i=1(DXi −KXi0)(BiZiF )
×
∑2

i=1(BiZiF )′(DXi −KXi0)′

+tr(F ′ΣF )DD′ + tr(L′ΣL)KK ′;
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(ii) R(D̃Y F,B1, B2,Σ) =
∑2

i=1(DXi −KXi0)(BiZiF )
×
∑2

i=1(BiZiF )′(DXi −KXi0)′

+tr(F ′ΣF )DX(X ′X)+X ′D′ + tr(L′ΣL)KK ′;
(iii) R(DY F,B1, B2,Σ) ≥ R(D̃Y F,B1, B2,Σ) for all (B1, B2,Σ) ∈ Θ,

and the equality holds if and only if DD′ = DX(X ′X)+X ′D′.

Lemma 3.3. Let DY F ∈ £0 and DD′ = DX(X ′X)+X ′D′. For any
D1Y F ∈ £0, if there does not exist any constant a1 such that D1X1 −
KX10 = a1(DX1 −KX10) or there does not exist any constant a2 such that
D1X2 −KX20 = a2(DX2 −KX20), then D1Y F is not consistently superior
to DY F .

Proof. By assertion (iii) of Lemma 3.2, in order to obtain the assertion of
the present Lemma, we need only to show that D̃1Y F cannot be consistently
superior to DY F . We now consider the following cases.

Case 1: DX −KX0 = 0. It follows from the assumption of the present
Lemma that D1X −KX0 6= 0. Let Σ→ 0, and the conclusion is obvious.

Case 2: DX1 −KX10 6= 0 or DX2 −KX20 6= 0. In the present case, we
also can see that D1X−KX0 6= 0. Otherwise, D1X−KX0 = 0·(DX−KX0)
contradicts the assumption of the present Lemma. Furthermore, we again
consider the following three subcases.

Case 2 1: There does not exist constants a1 and a2 such that D1X1 −
KX10 = a1(DX1−KX10) and D1X2−KX20 = a2(DX2−KX20). Suppose
that the ranks of (DX1 −KX10) and (DX2 −KX20) are r1 and r2, respec-
tively. We perform a singular value decompositions of (DX1 −KX10) and
(DX2 −KX20) as

DX1 −KX10 = P1

(
∧1 0
0 0

)
Q1, DX2 −KX20 = P2

(
∧2 0
0 0

)
Q2,

where Pi and Qi are s × s and mi × mi, i = 1, 2, orthogonal matrices.
∧1 = diag(λ11, · · · , λ1r1) and ∧2 = diag(λ21, · · · , λ2r2) are diagonal matrices,
here λ1j > 0, j = 1, · · · , r1, are the singular values of (DX1 − KX10) and
λ2j > 0, j = 1, · · · , r2, are the singular values of (DX2 − KX20). Let

P = (P1 P2) and Q =
(

Q1
0

0
Q2

)
, and denote

Z2s×(m1+m2) = P ′(D1X1 −KX10 D1X2 −KX20)Q′.

Then,

(D1X1 −KX10 D1X2 −KX20) =
1
2
PZQ.

(i) There exists at least zij 6= 0, where i 6= j or r1 < i = j < m1 or
m1 + r2 < i = j < m1 + m2, if Z 6=

(
G
O

O
O

)
, where G = diag(g1, · · · , gr) is a

rth diagonal matrix. Without loss of generality, we may assume i 6= j and
i, j < m1. Let ei denote the ith column of the 2sth identity matrix I2s, dj
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denote the jth column of the mth
1 identity matrix Im1 , fj denote the jth

column of the lth identity matrix Il. Let α = Pei, B1(m)H1 = mQ′1djf
′
j and

B2H2 = 0. We have

α′[R(D̃1Y F,B1(m), B2, Iq×q)−R(DY F,B1(m), B2, Iq×q)]α
= tr(F ′F )α′(DD′ −D1X(X ′X)+X ′D′1)α

+1
4α
′PZQ

(
B1(m)H1

B2H2

)(
B1(m)H1

B2H2

)′
(PZQ)′α− 0

= tr(F ′F )α′(DD′ −D1X(X ′X)+X ′D′1)α+ 1
4(mzij + c1)2

→ +∞, as m→ +∞,

where c1 is a constant.
(ii) If Z =

(
G
O

O
O

)
with G = diag(g1, · · · , gr), we can see that G 6= 0,

otherwise, D1X1 −KX10 = 0 and D1X2 −KX20 = 0, what contradicts the
assumption. Obviously r ≥ 2. We again take the following two subcases
into consideration.

(10) If there exists gi = 0 and gj 6= 0, j 6= i. Without loss of generality, we
might as well assume g1 6= 0 and g2 = 0. Taking α = (1, 1, 0, · · · , 0)′ ∈ R2s,
β = (1,−λ1/λ2, 0, · · · , 0)′ ∈ Rm1 and τ 6= 0 ∈ Rl, and setting B1(m)H1 =
mQ′1βτ

′ and B2H2 = 0, we have

α′[R(D̃1Y F,B1(m), B2, Iq×q)−R(DY F,B1(m), B2, Iq×q)]α
= tr(F ′F )α′(DD′ −D1X(X ′X)+X ′D′1)α

+1
4α
′PZQ

(
B1(m)H1

B2H2

)(
B1(m)H1

B2H2

)′
(PZQ)′α− 0

= tr(F ′F )α′(DD′ −D1X(X ′X)+X ′D′1)α+ 1
4m

2ττ ′

→ +∞, as m→ +∞.

(20) If all gi 6= 0 for i = 1, · · · , r, then there exist i and j with i 6= j such
that gi

λi
6= gj

λj
. We assume g1

λ1
6= g2
λ2

, then

α′[R(D̃1Y F,B1(m), B2, Iq×q)−R(DY F,B1(m), B2, Iq×q)]α
= tr(F ′F )α′(DD′ −D1X(X ′X)+X ′D′1)α

+1
4α
′PZQ

(
B1(m)H1

B2H2

)(
B1(m)H1

B2H2

)′
(PZQ)′α− 0

= tr(F ′F )α′(DD′ −D1X(X ′X)+X ′D′1)α

+1
4m

2ττ ′(g1λ2 − g2λ1)2/λ2
2 → +∞, as m→ +∞.

It can be concluded that D1Y F is not consistently superior to DY F .
Case 2 2: There does not exist a constant a1 such that D1X1−KX10 =

a1(DX1−KX10), but there exists a constant a2 such that D1X2−KX20 =
a2(DX2 −KX20). We can show that D1Y F is not consistently superior to
DY F , which is similar to the Case 2 1.
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Case 2 3: There does not exist a constant a2 such that D1X2−KX20 =
a2(DX2 − KX20), but we have a constant a1 such that D1X1 − KX10 =
a1(DX1 −KX10). Similarly, it can be seen that D1Y F is not consistently
superior to DY F .

Hence, the desired result is proved. �

Proof of Theorem 2.1. Necessity. Condition (1) holds because of (iii) in
Lemma 3.2. We suppose that condition (1) holds, but condition (2) does
not hold, that is, DX 6= KX0, and there exists a0 ∈ (−1, 1) such that

a0U +A ≥ 0. (3.1)

Let D0 = a0DX(X ′X)+X ′ + (1 − a0)KX0(X ′X)+X ′. Obviously, D0Y F ∈
£0, and D0 satisfies condition (1). For convenience, denote B =

(
B1H1
B2H2

)
. By

condition (1), Lemma 3.2 and (3.1), for any (B1, B2,Σ) ∈ Θ, we have

R(DY F,B1, B2,Σ)−R(D0Y F,B1, B2,Σ)

= (1− a2
0)(DX −KX0)BB′(DX −KX0)′

+ (1− a0)tr(F ′ΣF )(a0U +A) ≥ 0.

Moreover, due to 1− a2
0 > 0 and DX 6= KX0, we know that there exists B0

such that

(1− a2
0)(DX −KX0)B0B′0(DX −KX0)′ 6= 0.

It follows from Definition 2.2 that D0Y F is consistently superior to DY F .
This contradicts DY F £0∼ KY0L, so condition (2) holds.

Sufficiency. Suppose that conditions (1) and (2) hold. To prove DY F £0∼
KY0L, we need only to prove that for any D1Y F ∈ £0, D1Y F cannot be
consistently superior to DY F . From Lemma 3.2 we get that we need only
to prove that D̃1Y F cannot be consistently superior to DY F .

If there does not exist a constant ai such that D1Xi −KXi0 = ai(DXi −
KXi0) for i = 1, 2, then from the proof of Lemma 3.3, we know that D̃1Y F
cannot be consistently superior to DY F . We now suppose that there exists
a constant a such that D1X −KX0 = a(DX −KX0).

If DX = KX0, we have D1X = KX0. Consequently,

R(D̃1Y F,B1, B2,Σ) = R(DY F,B1, B2,Σ),

which implies that D̃1Y F cannot be consistently superior to DY F .
If DX 6= KX0, we have the following cases.
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(1) |a| < 1. By simple calculations, we obtain

R(DY F, 0, 0, Iq×q)−R(D̃1Y F, 0, 0, Iq×q)
= tr(F ′F )(DX(X ′X)+X ′D′ −D1X(X ′X)+X ′D′1)
= tr(F ′F )[DX(X ′X)+X ′D′ − (aDX
−(a− 1)KX0)(X ′X)+(aDX − (a− 1)KX0)′]

= (1− a)tr(F ′F )[(1 + a)DX(X ′X)+X ′D′ − aDX(X ′X)+X ′0K
′

−aKX0(X ′X)+X ′D′ − (1− a)KX0(X ′X)+X ′0K
′]

= (1− a)tr(F ′F )[DX(X ′X)+X ′D′ −KX0(X ′X)+X ′0K
′

+a(DX −KX0)(X ′X)+(DX −KX0)′]
= (1− a)tr(F ′F )(aU +A).

The derivation above shows that D̃1Y F cannot be consistently superior to
DY F .

(2) |a| > 1. It follows from DX 6= KX0 that there exist α ∈ Rs and B0

such that
α′(DX −KX0)B0B′0(DX −KX0)′α > 0.

Then,

α′[R(D̃1Y F,mB0, Iq×q)−R(DY F,mB0, Iq×q)]α
= tr(F ′F )α′[D1X(X ′X)+X ′D′1 −DX(X ′X)+X ′D′]α

+m2(a2 − 1)α′(DX −KX0)
×B0B′0(DX −KX0)′α→ +∞, as m→∞,

which means that D̃1Y F cannot be consistently superior to DY F .
(3) a = 1. In this case, R(D̃1Y F,B,Σ) = R(DY F,B,Σ). Therefore,

D̃1Y F cannot be consistently superior to DY F .
(4) a = −1. It is easy to see that the matrix A is not positive semi-definite

and there exists α ∈ Rs such that α′Aα < 0. Hence, we have

α′[R(DY F, 0, Iq×q)−R(D̃1Y F, 0, Iq×q)]α = 2tr(F ′F )α′(A− U)α < 0,

which means that D̃1Y F cannot be consistently superior to DY F .
Thus, the desired assertion is shown. �

4. Proof of Theorem 2.2

In order to complete the proof of Theorem 2.2, we first give two Lemmas
as follows.

Lemma 4.1. Under the EGCM (1.4), let DY F +M ∈ £, and we have
(1) R(DY F +M,B,Σ)

= (DX −KX0)BB′(DX −KX0)′

+tr(F ′ΣF )DD′ + tr(L′ΣL)KK ′ + (DX −KX0)BM ′
+MB′(DX −KX0)′ +MM ′;
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(2) R(D̃Y F +M,B,Σ)
= (DX −KX0)BB′(DX −KX0)′ + tr(F ′ΣF )DX(X ′X)+X ′D′

+tr(L′ΣL)KK ′ + (DX −KX0)BM ′
+MB′(DX −KX0)′ +MM ′;

(3) R(DY F + M,B,Σ) ≥ R(D̃Y F + M,Σ,B) for any (B1, B2,Σ), and
the equality holds if and only if DD′ = D̃D̃′.

Lemma 4.2. Let DY F + M ∈ £, and DD′ = D̃D̃′. For any D1Y F +
M∗ ∈ £, if there does not exist constant a1 such that D1X1 − KX10 =
a1(DX1 − KX10), or there does not exist constant a2 such that D1X2 −
KX20 = a2(DX2 −KX20), then D1Y F +M∗ is not consistently superior to
DY F +M .

It is easy to obtain the proofs of the two lemmas by imitating the proofs
of Lemma 3.2 and Lemma 3.3, respectively.

Proof of Theorem 2.2. Necessity. According to Lemma 4.1, it is clear that
condition (1) holds. Suppose that condition (1) holds, but condition (2) does
not hold.

If DX = KX0 and M 6= 0, we see from Theorem 2.1 that DY F is
consistently superior toDY F+M . However, it contradicts withDY F+M £∼
KY0L and implies DX = KX0 and M = 0.

If DX 6= KX0, and there exists a0 ∈ (−1, 1) such that a0U + A ≥ 0, we
have

R(DY F +M,B,Σ)−R(D0Y F + a0M,B,Σ)
= (DX −KX0)BB′(DX −KX0)′

+tr(F ′ΣF )DX(X ′X)+X ′D′ + tr(L′ΣL)KK ′

+MM ′ + (DX −KX0)BM ′ +MB′(DX −KX0)′

−[(D0X −KX0)BB′(D0X −KX0)′ + tr(F ′ΣF )D0D
′
0

+tr(L′ΣL)KK ′ + a0(D0X −KX0)BM ′
+a0MB′(D0X −KX0)′ + a2

0MM ′]
= (1− a2

0)(DX −KX0)BB′(DX −KX0)′

+(1− a2
0)tr(F ′ΣF )DX(X ′X)+X ′D′ + (1− a2

0)(DX −KX0)BM ′
+(1− a2

0)MB′(DX−KX0)′ − a0(1−a0)tr(F ′ΣF )DX(X ′X)+X ′0K
′

−a0(1− a0)tr(F ′ΣF )KX0(X ′X)+X ′D′

−(1− a0)2tr(F ′ΣF )KX0(X ′X)+X ′0K
′ + (1− a2

0)MM ′

= (1− a2
0)[(DX −KX0)B +M ][(DX −KX0)B +M ]′

+(1− a0)tr(F ′ΣF )(a0U +A) ≥ 0,

where the definition of D0 is the same as that in the proof of Theorem 2.1,
that is, D0 = a0DX(X ′X)+X ′ + (1 − a0)KX0(X ′X)+X ′. Moreover, there
exists B0 such that

(1− a2
0)[(DX −KX0)B0 +M ][(DX −KX0)B0 +M ]′ 6= 0.
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This means by Definition 2.2 that D0Y F + a0M is consistently superior to
DY F +M . The above two cases contradict DY F +M

£∼ KY0L, and hence
condition (2) also holds.

Sufficiency. We suppose that conditions (1) and (2) hold. To prove
DY F + M

£∼ KY0L, we only need to show that for any D1Y F + M∗ ∈ £,
D1Y F +M∗ cannot be consistently superior to DY F +M . By Lemma 4.1,
we only need to prove that D̃1Y F + M∗ cannot be consistently superior to
DY F +M .

If there does not exist a constant ai such that D1Xi −KXi0 = ai(DXi −
KXi0) for i = 1, 2, then from Lemma 4.2 we know that D̃1Y F +M∗ cannot
be consistently superior to DY F +M .

If DX 6= KX0, we now discuss the following cases.
(1) DD′ = D̃D̃′, DX = KX0 and M = 0. In this case, we have

R(DY F +M,B1, B2,Σ) = tr(F ′ΣF )DX(X ′X)+X ′D′ + tr(L′ΣL)KK ′.

If D1X 6= KX0 or D1X = KX0, but M∗ 6= 0, then it easily follows that
D̃1Y F +M∗ cannot be consistently superior to DY F +M .

If D1X = KX0 and M∗ = 0, then we get

R(DY F +M,B1, B2,Σ) ≡ R(D̃1Y F +M∗, B1, B2,Σ),

which also means that D̃1Y F+M∗ cannot be consistently superior to DY F+
M .

(2) DD′ = D̃D̃′, DX 6= KX0, and for any a ∈ (−1, 1) the matrix aU +A
is not positive semi-definite. From Lemma 4.2, we only need to consider the
case when there exists a constant a such that D1X−KX0 = a(DX−KX0).
We take the following four steps.

(I) |a| > 1. Since DX 6= KX0, there exist α ∈ Rs, B10 and B20 such that

α′(DX −KX0)B0B′0(DX −KX0)′α > 0.

Thus we get

α′[R(D̃1Y F +M∗,mB10,mB20, Iq×q)
−R(DY F +M,mB10,mB20, Iq×q)]α

= tr(F ′F )α′(D1X(X ′X)+X ′D′1 −DX(X ′X)+X ′D′)α
+(a2 − 1)m2α′(DX −KX0)B0B′0(DX −KX0)′α
+2mα′(DX −KX0)B0(aM∗ −M)′α
+α′(M∗M ′∗ −MM ′)α → +∞, as m → ∞,

which implies that D̃1Y F +M∗ cannot be superior to DY F +M .
(II) |a| < 1. By condition (2) we know that there exists α ∈ Rs such that

α′(aU + A)α < 0, which means that α′(DX −KX0) 6= 0, and hence there
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exists B0 such that α′(DX −KX0)B0 = −α′M . Thus,

α′[R(DY F +M,B10, B20, Iq×q)
−R(D̃1Y F +M∗, B10, B20, Iq×q)]α

= tr(F ′F )α′[DX(X ′X)+X ′D′ −D1X(X ′X)+X ′D′1]α
−α′[(D1X −KX0)B0 +M∗][(D1X −KX0)B0 +M∗]′α

= (1− a)tr(F ′F )α′(aU +A)α
−α′[(D1X −KX0)B0 +M∗][(D1X −KX0)B0 +M∗]′α < 0.

Consequently, D̃1Y F +M∗ cannot be consistently superior to DY F +M .
(III) a = −1. By condition (2) we know that there exists α ∈ Rs such that

α′(aU + A)α < 0, which means that α′(DX −KX0) 6= 0, and hence there
exists B0 such that α′(DX −KX0)B0 = −α′M . We get

α′[R(DY F +M,B10, B20, Iq×q)
−R(D̃1Y F +M∗, B10, B20, Iq×q)]α

= tr(F ′F )α′[DX(X ′X)+X ′D′ −D1X(X ′X)+X ′D′1]α
−α′[(D1X −KX0)B0 +M∗][(D1X −KX0)B0 +M∗]′α

= 2tr(F ′F )α′(aU +A)α
−α′[(D1X −KX0)B0 +M∗][(D1X −KX0)B0 +M∗]′α < 0.

Therefore, D̃1Y F +M∗ cannot be superior to DY F +M .
(IV) a = 1. We can easily see that

R(DY F +M,B1, B2,Σ)−R(D̃1Y F +M∗, B1, B2,Σ)
= [(DX −KX0)B +M ][(DX −KX0)B +M ]′

−[(DX −KX0)B +M∗][(DX −KX0)B +M∗]′

= MM ′ −M∗M ′∗ + (DX −KX0)B(M −M∗)′
+(M −M∗)B′(DX −KX0)′.

If M = M∗, then D̃1Y F +M∗ cannot be superior to DY F +M .
If M 6= M∗, since DX 6= KX0, then there exist α ∈ Rs and B0 such that

α′(DX −KX0)B0(M −M∗)′α = f 6= 0.

Let

Bi(m) =
{

mBi0, as f < 0,
−mBi0, as f > 0, i = 1, 2,

where m is a positive constant. It then follows that

α′[R(DY F +M,B1(m), B2(m),Σ)
−R(D̃1Y F +M∗, B1(m), B2(m),Σ)]α

= α′(MM ′ −M∗M ′∗)α− 2m|f | → −∞, as m→ +∞,

which means that D̃1Y F+M∗ cannot be consistently superior to DY F+M .
Hence, we completed the proof of Theorem 2.2. �
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