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Preliminary test almost unbiased ridge estimator in

a linear regression model with multivariate

Student-t errors

Jianwen Xu and Hu Yang

Abstract. In this paper, the preliminary test almost unbiased ridge es-
timators of the regression coefficients based on the conflicting Wald (W),
Likelihood ratio (LR) and Lagrangian multiplier (LM) tests in a multi-
ple regression model with multivariate Student-t errors are introduced
when it is suspected that the regression coefficients may be restricted to
a subspace. The bias and quadratic risks of the proposed estimators are
derived and compared. Sufficient conditions on the departure parameter
∆ and the ridge parameter k are derived for the proposed estimators
to be superior to the almost unbiased ridge estimator, restricted almost
unbiased ridge estimator and preliminary test estimator. Furthermore,
some graphical results are provided to illustrate theoretical results.

1. Introduction

It is known that the famous ordinary least square estimator (OLSE) is
the best linear unbiased estimator of the vector of unknown regression co-
efficients in a linear regression model. However, the OLSE will not be a
good estimator under a multicollinearity situation by the mean squares error
(MSE) criterion and many improved biased estimators have been proposed
in the literature when the criterion of unbiasedness can be dropped, such as
the principal component regression estimator (PCRE) by Massy (1965), the
ordinary ridge regression estimator (ORE) by Hoerl and Kennard (1970),
the r-k class estimator by Baye and Parker (1984), the Liu estimator by Liu
(1993), the r-d class estimator by Kaçıranlar and Sakallıoǧlu (2001) and the
Liu-type estimator by Liu (2003, 2004). Singh et al. (1986) introduced the
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almost unbiased generalized ridge estimator (AUGRE) using the jack-knife
procedure. As a special case of the AUGRE, Akdeniz and Erol (2003) ar-
gued that the almost unbiased ridge estimator could be regarded as a bias
corrected estimator of the ORE.

As an alternative accepted technique to deal with the multicollinearity
problem, many researchers have also considered the cases when some exact
or stochastic linear restrictions on the unknown parameters are assumed to
hold, such as the restricted ridge estimator by Sarkar (1992), the restricted
Liu estimator by Kaçıranlar et al. (1999), the stochastic restricted ridge es-
timator by Özkale (2009), the stochastic restricted Liu estimators by Hubert
and Wijekoon (2006) and Yang and Xu (2009). More recently, Yang et al.
(2009) considered mean squared error matrix performances of some restricted
almost unbiased estimators in linear regression.

However, when the restrictions considered are suspected, one may combine
the unrestricted estimators and restricted estimators to obtain new estima-
tors with better performances, which leads to the preliminary test estima-
tor (PTE). The preliminary test approach estimation was firstly proposed
by Bancroft (1944) and then has been studied by many researchers, such
as Judge and Bock (1978), Ahmed (1992), Saleh and Kibria (1993), Billah
and Saleh (1998), Ahmed and Rahbar (2000), Kim and Saleh (2003), Kibria
(2004). In much theoretical research work, the error terms in linear mod-
els are assumed to be normally and independently distributed. The question
how the performances of the PTE change under non-normally distributed dis-
turbances has received attention in the literature in various contexts. Kibria
and Saleh (2004) introduced the preliminary test ridge estimator and Arashi
and Tabatabaey (2008) considered the Stein-type estimators in linear models
with multivariate Student-t errors.

In this paper, we deal with the estimation of the regression coefficients
in a multiple regression model with multivariate Student-t errors and the
preliminary test almost unbiased ridge estimators based on the W, LR and
LM tests are introduced by combining the preliminary test approach and the
almost unbiased ridge estimator. The proposed estimators are compared with
some other competitors in the literature, such as the almost unbiased ridge
estimator (AURE), the restricted almost unbiased ridge estimator (RAURE)
and the PTE. The rest of the paper is organized as follows. In Section 2,
model specifications are given and various estimators are derived. Then, the
bias and risk expressions of the proposed estimators are derived in Section
3. Relative performances of the estimators with respect to the quadratic risk
analysis versus the departure parameter ∆ and the ridge parameter k are
discussed in Section 4 and Section 5, respectively. Finally, some concluding
remarks are provided in Section 6.
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2. Model specifications and the estimators

Let us consider the following multiple linear regression model:

y = Xβ + ε, (2.1)

where y is an n×1 vector of observations on the study variable, X is an n×p
known design matrix of rank p, β is a p × 1 vector of unknown regression
coefficients, ε = (ε1, · · · , εn)′ is the n × 1 error vector. It is assumed that
the error vector is distributed according to a law belonging to the class of
spherically symmetric distributions (SSD) with E(ε) = 0, E(εε′) = σ2

εIn,
where In is the n-dimensional identity matrix and σ2

ε is the common variance
of εi, i = 1, · · · , n. Then, the probability density function (pdf ) of ε can be
written as

f(ε) =

∞
∫

0

f(ε|τ)g(τ)dτ , (2.2)

where the function f(ε|τ) = (2πτ2)−n/2e−
ε′ε

2τ2 is the pdf of the normal distri-
bution Nn(0, τ2In) and g(τ) is the pdf of τ with support [0,∞).

Following Giles (1991) and Kibria and Saleh (2004), we can get the mul-
tivariate Student-t distribution if g(τ) is assumed to be the inverted gamma
density with scale parameter σ2 and degrees of freedom v, namely, g(τ) =

2
Γ(v/2) (

vσ2

2 )v/2 1
τv+1 e−

vσ2

2τ2 , 0 < τ, v, σ < ∞. Then, we can get that

f(ε) =

∞
∫

0

(2πτ2)−n/2 2e−
ε′ε

2τ2

Γ(v
2 )τv+1

(
vσ2

2
)v/2e−

vσ2

2τ2 dτ

=
Γ(n+v

2 )

Γ(v
2 )(πvσ2)

n
2

(1 +
ε′ε

vσ2
)−

n+v
2 , (2.3)

where 0 < v, σ < ∞,−∞ < εi < ∞. Note that E(εε′) = E[E(εε′|τ)] =
E(τ2I) = σ2

εI and E(ε) = 0, where σ2
ε = v

v−2σ2, v > 2. We can verify that
for v = 1, the pdf (2.3) becomes the pdf of the Cauchy distribution and as
v → ∞, the pdf approaches the pdf of the normal distribution.

In this paper, we mainly consider the estimation of β when it is suspected
that β may be restricted to the following subspace

Rβ = r, (2.4)

where R is a J × p known matrix of rank J(J < p) and r is a J × 1 known
vector. For the unrestricted model specified by Equation (2.1), the ordi-
nary ridge regression estimator (ORE) by Hoerl and Kennard (1970) and
almost unbiased ridge regression estimator (AURE) by Singh et al. (1986)
are defined as

β̂ORE(k) = S−1
k X ′y = Tkβ̂OLSE, (2.5)
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β̂AURE(k) = (I − k2S−2
k )β̂OLSE = Akβ̂OLSE, (2.6)

where k > 0, S = X ′X,Sk = S + kI, Tk = S−1
k S,Ak = I − k2S−2

k and
β̂OLSE = S−1X ′y is the OLSE of β. The restricted ridge estimator (RRE)
by Sarkar (1992) is given by

β̂RRE(k) = Tkβ̂RLSE , (2.7)

where β̂RLSE = β̂OLSE − S−1R′(RS−1R′)−1(Rβ̂OLSE − r).
Following the idea of Sarkar (1992), we can firstly structure the following

restricted almost unbiased ridge estimator (RAURE):

β̂RAURE(k) = Akβ̂RLSE . (2.8)

When the validity of the restrictions Rβ = r is suspected, we are to introduce
the preliminary test almost unbiased ridge estimators based on the well-
known W, LR and LM tests. The three test statistics for testing the null
hypothesis H0 : δ = Rβ−r = 0 against the alternative hypothesis H1 : δ 6= 0
are firstly derived by Ullah and Zinde-Walsh (1984) and given by

ζW = λ(Rβ̂−r)′(RS−1R′)−1(Rβ̂−r)

(y−Xβ̂)′(y−Xβ̂)/n
= λnJF

n−p ,

ζLR = n ln (y−Xβ̃)′(y−Xβ̃)

(y−Xβ̂)′(y−Xβ̂)
= n ln(1 + JF

n−p),

ζLM = (Rβ̂−r)′(RS−1R′)−1(Rβ̂−r)

λ(y−Xβ̃)′(y−Xβ̃)/n
= λ−1nJF

n−p+JF ,

where λ = n+v
n+v+2 and F = (Rβ̂−r)′(RS−1R′)−1(Rβ̂−r)/J

(y−Xβ̂)′(y−Xβ̂)/(n−p)
is just the familiar F -

statistics for testing H0 : δ = 0 under the normal theory. When the errors
follow multivariate Student-t distribution with v degrees of freedom, Giles
(1991) proved that the F -statistic has the following pdf :

gJ,n−p(F ;∆, v) =

∞
∑

i=0

( J
n−p)

J
2
+i( ∆

v−2 )i(1 + ∆
v−2 )−( v

2
+i)

B(v
2 − 1, i + 1)B(n−p

2 , J
2 + i)

2(2 − v)−1F
J
2
+i−1

(1 + J
n−pF )

J+n−p

2
+i

,

where ∆ = δ′(RS−1R′)−1δ/σ2
ε and B(·; ·) is the usual Beta function.

From Kibria and Saleh (2004) and Yang and Xu (2009), we know that
under the null hypothesis H0, the three test statistics ζW , ζLR and ζLM have
the same asymptotic central chi-square distribution with J degrees of free-
dom. Thus, the critical value for an α level test of H0 is approximated by
the central chi-square critical value χ2

J(α). Now, by combining the AURE
by Singh et al. (1986) and the RAURE given by (2.8), we are to consider
the following preliminary test almost unbiased ridge estimator (PTAURE)
based on the W, LR and LM tests:

β̂PTAURE(k, ζ∗) = Akβ̂PTE(ζ∗)

= β̂RAURE(k)I[0,χ2
J
(α))(ζ∗) + β̂AURE(k)I[χ2

J
(α),∞)(ζ∗),
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where β̂PTE(ζ∗) = β̂RLSEI[0,χ2
J
(α))(ζ∗) + β̂OLSEI[χ2

J
(α),∞)(ζ∗) is the PTE by

Billah and Saleh (1998), ζ∗ stands for either of ζW , ζLR or ζLM . Our object in
this paper is to examine the performances of the proposed estimators based
on the three large sample tests.

3. Bias and quadratic risks of the estimators

In this section, we will derive the expressions for the bias and quadratic
risks of the proposed estimators. It is known that for some regular weight
matrix K, the expectation, bias and weighted quadratic risks of the OLSE
and RLSE are given by

E(β̂OLSE) = β,

E(β̂RLSE) = β − S−1R′(RS−1R′)−1δ,

Bias(β̂OLSE) = 0,

Bias(β̂RLSE) = −S−1R′(RS−1R′)−1δ = −η,

Risk(β̂OLSE,K) = σ2
ε tr(S

−1K),

Risk(β̂RLSE ,K) = σ2
ε tr(S

−1K − AK) + η′Kη,

where A = S−1R′(RS−1R′)−1RS−1, η = S−1R′(RS−1R′)−1δ. Therefore, we
can calculate the expectation, bias and quadratic risks of the AURE and
RAURE as

E(β̂AURE(k)) = AkE(β̂OLSE) = Akβ, (3.1)

E(β̂RAURE(k)) = AkE(β̂RLSE) = Ak(β − η), (3.2)

Bias(β̂AURE(k)) = (Ak − I)β = −k2S−2
k β, (3.3)

Bias(β̂RAURE(k)) = (Ak − I)β − Akη = −k2S−2
k β − Akη, (3.4)

Risk(β̂AURE(k)) = Risk(β̂OLSE, A2
k) + β′(Ak − I)2β

+2β′(Ak − I)Ak · Bias(β̂OLSE)

= σ2
ε tr(S

−1A2
k) + β′(Ak − I)2β, (3.5)

Risk(β̂RAURE(k)) = Risk(β̂RLSE , A2
k) + β′(Ak − I)2β

+2β′(Ak − I)Ak · Bias(β̂RLSE)

= σ2
ε tr(S

−1A2
k) − σ2

ε tr(AA2
k) + β′(Ak − I)2β

+η′A2
kη − 2β′(Ak − I)Akη. (3.6)

Furthermore, according to Billah and Saleh (1998), the expectation, bias
and weighted quadratic risk of the PTE based on W, LR and LM tests are
given by

E(β̂PTE(ζ∗)) = β − ηG̃J+2,n−p,∆(l∗), (3.7)

Bias(β̂PTE(ζ∗)) = −ηG̃J+2,n−p,∆(l∗), (3.8)

Risk(β̂PTE(ζ∗),K) = σ2
εtr(S

−1K) − σ2
ε tr(AK)G̃

(1)
J+2,n−p,∆(l∗)
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+η′Kη[2G̃J+2,n−p,∆(l∗)−G̃J+4,n−p,∆(l∗)], (3.9)

where lW = χ2
J(α)/[nλ + χ2

J(α)], lLR = 1 − e−χ2
J (α)/n, lLM = λχ2

J(α)/n, l∗

stands for either of lW , lLR, lLM and

G̃J+2,n−p,∆(l∗) =
∞
∑

i=0

Γ( v
2
+i)

Γ(v/2)Γ(i+1) Il∗(
J+2

2 + i, n−p
2 )

( ∆

v−2
)i

(1+ ∆
v−2

)
v
2

+i
,

G̃
(1)
J+2,n−p,∆(l∗) =

∞
∑

i=0

Γ( v
2
+i−1)

Γ( v
2
−1)Γ(i+1)Il∗(

J+2
2 + i, n−p

2 )
( ∆

v−2
)i

(1+ ∆
v−2

)
v
2

+i−1
,

G̃J+4,n−p,∆(l∗) =
∞
∑

i=0

Γ( v
2
+i)

Γ(v/2)Γ(i+1) Il∗(
J+4

2 + i, n−p
2 )

( ∆
v−2

)i

(1+ ∆

v−2
)

v
2

+i
,

where I(, ; , ) is Pearson’s regularized incomplete beta function. Thus, using
(3.7), (3.8) and (3.9), we can calculate the expectation, bias and quadratic
risk of the PTAURE as

E(β̂PTAURE(k, ζ∗)) = AkE(β̂PTE(ζ∗))

= Akβ − AkηG̃J+2,n−p,∆(l∗), (3.10)

Bias(β̂PTAURE(k, ζ∗)) = −k2S−2
k β − (I − k2S−2

k )ηG̃J+2,n−p,∆(l∗), (3.11)

Risk(β̂PTAURE(k, ζ∗)) = Risk(β̂PTE(ζ∗), A
2
k) + β′(Ak − I)2β

+2β′(Ak − I)Ak · Bias(β̂PTE(ζ∗))

= σ2
ε tr(S

−1A2
k) − σ2

ε tr(AA2
k)G̃

(1)
J+2,n−p,∆(l∗)

+η′A2
kη[2G̃J+2,n−p,∆(l∗) − G̃J+4,n−p,∆(l∗)]

−2β′(Ak−I)AkηG̃J+2,n−p,∆(l∗)+β′(Ak−I)2β. (3.12)

4. Risk analysis of the estimators as a function of ∆

In this section, we focus on the quadratic risk comparisons among the
estimators as a function of the departure parameter ∆.

4.1. Risk comparison between the PTAURE and AURE. In this sub-
section, we will compare the PTAURE with the AURE under the quadratic
risk criterion. We can firstly get from (3.5) and (3.12) that

Risk(β̂AURE(k)) − Risk(β̂PTAURE(k, ζ∗))

= σ2
εtr(AA2

k)G̃
(1)
J+2,n−p,∆(l∗) − 2k2β′S−2

k AkηG̃J+2,n−p,∆(l∗)

−η′A2
kη[2G̃J+2,n−p,∆(l∗) − G̃J+4,n−p,∆(l∗)]. (4.1)

Note that the risk difference in Equation (4.1) is non-negative if and only if

η′A2
kη ≤

σ2
ε tr(AA2

k)G̃
(1)
J+2,n−p,∆(l∗) − 2k2β′S−2

k AkηG̃J+2,n−p,∆(l∗)

2G̃J+2,n−p,∆(l∗) − G̃J+4,n−p,∆(l∗)
. (4.2)

On the other hand, observing that

λp(A
2
kS

−1)σ−2
ε η′Sη ≤ σ−2

ε η′A2
kη ≤ λ1(A

2
kS

−1)σ−2
ε η′Sη, (4.3)
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where λ1(A
2
kS

−1) and λp(A
2
kS

−1) denote the largest and smallest eigenvalues
of the matrix A2

kS
−1, respectively, we can get that a sufficient condition for

the PTAURE β̂PTAURE(k, ζ∗) to be superior to the AURE β̂AURE(k) under
the quadratic risk criterion is that σ−2

ε η′Sη = ∆ ≤ ∆∗
1, where

∆∗
1 =

tr(AA2
k)G̃

(1)
J+2,n−p,∆(l∗) − 2k2σ−2

ε β′S−2
k AkηG̃J+2,n−p,∆(l∗)

[2G̃J+2,n−p,∆(l∗) − G̃J+4,n−p,∆(l∗)]λ1(A2
kS−1)

.

However, a sufficient condition for β̂AURE(k) to be superior to
β̂PTAURE(k, ζ∗) under the quadratic risk criterion is that σ−2

ε η′Sη = ∆ ≥ ∆∗
2,

where

∆∗
2 =

tr(AA2
k)G̃

(1)
J+2,n−p,∆(l∗) − 2k2σ−2

ε β′S−2
k AkηG̃J+2,n−p,∆(l∗)

[2G̃J+2,n−p,∆(l∗) − G̃J+4,n−p,∆(l∗)]λp(A
2
kS

−1)
.

Under the null hypothesis, we can get that η= 0 and the risk difference
(4.1) reduces to be σ2

εtr(AA2
k)G̃

(1)
J+2,n−p,∆(l∗), which is always positive for all

k > 0 and α ∈ (0, 1). Thus, the estimator β̂PTAURE(k, ζ∗) performs better
than the estimator β̂AURE(k) under the null hypothesis.

Based on the above analysis, we may state the following theorem.

Theorem 1. (1) Under the null hypothesis, the PTAURE β̂PTAURE(k, ζ∗)
based on W, LR and LM tests have smaller quadratic risks than the AURE

β̂AURE(k);
(2) Under the alternative hypothesis, when 0 < ∆ ≤ ∆∗

1, we have

Risk(β̂AURE(k)) ≥ Risk(β̂PTAURE(k, ζ∗)),

while if ∆ ≥ ∆∗
2, we have Risk(β̂AURE(k)) ≤ Risk(β̂PTAURE(k, ζ∗)).

4.2. Risk comparison between the PTAURE and RAURE. In this
subsection, we will compare the PTAURE with the RAURE according to the
quadratic risk criterion. According to (3.6) and (3.12), we have

Risk(β̂RAURE(k)) − Risk(β̂PTAURE(k, ζ∗))

= η′A2
kη[1 + G̃J+4,n−p,∆(l∗) − 2G̃J+2,n−p,∆(l∗)]

−σ2
εtr(AA2

k)[1 − G̃
(1)
J+2,n−p,∆(l∗)]

+2k2β′S−2
k Akη[1 − G̃J+2,n−p,∆(l∗)]. (4.4)

Thus, we can similarly get that a sufficient condition for β̂PTAURE(k, ζ∗) to
be superior to β̂RAURE(k) under the quadratic risk criterion is that ∆ ≥ ∆∗

3,
where

∆∗
3 =

σ2
εtr(AA2

k)[1 − G̃
(1)
J+2,n−p,∆(l∗)] − 2k2β′S−2

k Akη[1 − G̃J+2,n−p,∆(l∗)]

[1 + G̃J+4,n−p,∆(l∗) − 2G̃J+2,n−p,∆(l∗)]λp(A2
kS

−1)
.
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Also a sufficient condition for β̂RAURE(k) to be superior to β̂PTAURE(k, ζ∗)
under the quadratic risk criterion is that ∆ ≤ ∆∗

4, where

∆∗
4 =

σ2
εtr(AA2

k)[1 − G̃
(1)
J+2,n−p,∆(l∗)] − 2k2β′S−2

k Akη[1 − G̃J+2,n−p,∆(l∗)]

[1 + G̃J+4,n−p,∆(l∗) − 2G̃J+2,n−p,∆(l∗)]λ1(A2
kS

−1)
.

Observing that under the null hypothesis, the risk difference (4.4) reduces to

be −σ2
εtr(AA2

k)[1 − G̃
(1)
J+2,n−p,∆(l∗)], which is always negative for all k > 0

and α ∈ (0, 1). Therefore, β̂RAURE(k) performs better than β̂PTAURE(k, ζ∗)
under the null hypothesis.

Based on the above analysis, we may state the following theorem.

Theorem 2. (1) Under the null hypothesis, the RAURE β̂RAURE(k) out-

performs the PTAURE β̂PTAURE(k, ζ∗) based on the W, LR and LM tests.

(2) Under the alternative hypothesis, when ∆ ≥ ∆∗
3, we have

Risk(β̂RAURE(k)) ≥ Risk(β̂PTAURE(k, ζ∗)),

while if 0 ≤ ∆ ≤ ∆∗
4, we have Risk(β̂RAURE(k)) ≤ Risk(β̂PTAURE(k, ζ∗)).

4.3. Risk comparison between the PTAURE and PTE. In this sub-
section, we shall compare the PTAURE with PTE by Billah and Saleh (1998)
according to the quadratic risk criterion as a function of ∆. We can firstly
get from (3.9) and (3.12) that

Risk(β̂PTE(ζ∗)) − Risk(β̂PTAURE(k, ζ∗))

= σ2
ε tr[S

−1(I − A2
k)] − σ2

ε tr[A(I − A2
k)]G̃

(1)
J+2,n−p,∆(l∗)

+η′(I − A2
k)η[2G̃J+2,n−p,∆(l∗) − G̃J+4,n−p,∆(l∗)]

−2k2β′S−2
k AkηG̃J+2,n−p,∆(l∗) − k4β′S−4

k β. (4.5)

Note that I −A2
k = (I −Ak)(I + Ak) = k2S−2

k (I + Ak) > 0, we can similarly
get that a sufficient condition for β̂PTAURE(k, ζ∗) to be superior to β̂PTE(ζ∗)
under the quadratic risk criterion is that ∆ ≥ ∆∗

5, where

∆∗
5 =

f(k, l∗)

[2G̃J+2,n−p,∆(l∗) − G̃J+4,n−p,∆(l∗)]λp[S−1(I − A2
k)]

,

and
f(k, l∗) = σ2

ε tr[A(I − A2
k)]G̃

(1)
J+2,n−p,∆(l∗) + k4β′S−4

k β

+2k2β′S−2
k AkηG̃J+2,n−p,∆(l∗) − σ2

ε tr[S
−1(I − A2

k)].

Also a sufficient condition for β̂PTE(ζ∗) to be superior to β̂PTAURE(k, ζ∗)
under the quadratic risk criterion is that ∆ ≤ ∆∗

6, where

∆∗
6 =

f(k, l∗)

[2G̃J+2,n−p,∆(l∗) − G̃J+4,n−p,∆(l∗)]λ1[S−1(I − A2
k)]

.

Based on the above analysis, we may state the following theorem.
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Theorem 3. Under the alternative hypothesis, when ∆ ≥ ∆∗
5, we have

Risk(β̂PTE(ζ∗)) ≥ Risk(β̂PTAURE(k, ζ∗)),

while if 0 ≤ ∆ ≤ ∆∗
6, we have Risk(β̂PTE(ζ∗)) ≤ Risk(β̂PTAURE(k, ζ∗)).

5. Risk analysis of the estimators as a function of k

In this section, we focus on the quadratic risk comparisons among the
estimators as a function of the ridge parameter k. Let P be the orthogonal
matrix such that P ′SP = Λ = diag(λ1, · · · , λp), where λ1 ≥ · · · ≥ λp

denote the ordered eigenvalues of the matrix S. Then we can get that Sk =
P (Λ + kI)P ′, Ak = I − k2S−2

k = P [I − k2(Λ + kI)−2]P ′ and

tr(S−1A2
k) = tr{Λ−1[I − k2(Λ + kI)−2]2} =

p
∑

i=1

λi(λi+2k)2

(λi+k)4 ,

tr(AA2
k) = tr{AP [I − k2(Λ + kI)−2]2P ′]} =

p
∑

i=1

ãiiλ
2
i (λi+2k)2

(λi+k)4
,

η′A2
kη = η′P [I − k2(Λ + kI)−2]2P ′η =

p
∑

i=1

η̃2
i λ2

i (λi+2k)2

(λi+k)4
,

β′(Ak − I)Akη =
p
∑

i=1

−k2γiη̃i

(λi+k)2
[1 − k2

(λi+k)2
] =

p
∑

i=1

−k2γiη̃iλi(λi+2k)
(λi+k)4

,

β′(Ak − I)2β = k4β′P (Λ + kI)−4P ′β =
p

∑

i=1

k4γ2
i

(λi+k)4 ,

where Ã = P ′AP, ãii ≥ 0 is the i-th diagonal element of the matrix Ã,
γ = P ′β = (γ1, · · · , γp)

′ and η̃ = P ′η = (η̃1, · · · , η̃p)
′. Therefore, the risk

differences (4.1) and (4.4) can be rewritten as

Risk(β̂AURE(k)) − Risk(β̂PTAURE(k, ζ∗))

= −

p
∑

i=1

η̃2
i λ

2
i (λi + 2k)2[2G̃J+2,n−p,∆(l∗) − G̃J+4,n−p,∆(l∗)]

(λi + k)4

+

p
∑

i=1

σ2
ε ãiiλ

2
i (λi + 2k)2G̃

(1)
J+2,n−p,∆(l∗)

(λi + k)4

−

p
∑

i=1

2k2γiη̃iλi(λi + 2k)G̃
(1)
J+2,n−p,∆(l∗)

(λi + k)4

=

p
∑

i=1

(λi + 2k)fi − gik
2

(λi + 2k)−1λ−1
i (λi + k)4

, (5.1)

Risk(β̂RAURE(k)) − Risk(β̂PTAURE(k, ζ∗))

=

p
∑

i=1

η̃2
i λ

2
i (λi + 2k)2[1 + G̃J+4,n−p,∆(l∗) − 2G̃J+2,n−p,∆(l∗)]

(λi + k)4
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−

p
∑

i=1

σ2
ε ãiiλ

2
i (λi + 2k)2[1 − G̃

(1)
J+2,n−p,∆(l∗)]

(λi + k)4

+

p
∑

i=1

2k2γiη̃iλi(λi + 2k)[1 − G̃
(1)
J+2,n−p,∆(l∗)]

(λi + k)4

=

p
∑

i=1

g̃ik
2 − (λi + 2k)f̃i

(λi + 2k)−1λ−1
i (λi + k)4

, (5.2)

where
fi = σ2

ε ãiiλiG̃
(1)
J+2,n−p,∆(l∗)

−η̃2
i λi[2G̃J+2,n−p,∆(l∗) − G̃J+4,n−p,∆(l∗)],

f̃i = σ2
ε ãiiλi[1 − G̃

(1)
J+2,n−p,∆(l∗)]

−η̃2
i λi[1 + G̃J+4,n−p,∆(l∗) − 2G̃J+2,n−p,∆(l∗)],

gi = 2γiη̃iG̃
(1)
J+2,n−p,∆(l∗), g̃i = 2γiη̃i[1 − G̃

(1)
J+2,n−p,∆(l∗)].

It is easy to verify that the risk difference (5.1) is nonnegative if 0 ≤ k ≤ k∗
1,

where

k∗
1 = min

1≤i≤p
{
fi +

√

f2
i + figiλi

gi
}. (5.3)

While we can similarly get that the AURE would have smaller quadratic risk
than the PTAURE if k ≥ k∗

2 , where

k∗
2 = max

1≤i≤p
{
fi +

√

f2
i + figiλi

gi
}. (5.4)

Thus, we may state the following theorem.

Theorem 4. The PTAURE dominates the AURE if 0 ≤ k ≤ k∗
1, while if

k ≥ k∗
2, then the AURE would outperform the PTAURE with respect to the

quadratic risk criterion.

Let us further compare the PTAURE with the RAURE. We can get from
(5.2) that the PTAURE would outperform the RAURE if k ≥ k∗

3 , where

k∗
3 = max

1≤i≤p
{
f̃i +

√

f̃2
i + f̃ig̃iλi

g̃i
}. (5.5)

While the RAURE has smaller quadratic risk than the PTAURE if 0 ≤ k ≤
k∗
4, where

k∗
4 = min

1≤i≤p
{
f̃i +

√

f̃2
i + f̃ig̃iλi

g̃i
}. (5.6)

Thus, we have the following result.
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Theorem 5. The PTAURE dominates the RAURE if k ≥ k∗
3, while if

0 ≤ k ≤ k∗
4, then the RAURE would outperform the PTAURE with respect

to the quadratic risk criterion.

Finally, let us further compare the PTAURE with the PTE. Note that the
risk function (3.12) of the PTAURE can be rewritten as

Risk(β̂PTAURE(k, ζ∗)) =

p
∑

i=1

σ2
ελi(λi + 2k)2

(λi + k)4
+

p
∑

i=1

k4γ2
i

(λi + k)4

+

p
∑

i=1

η̃2
i λ

2
i (λi + 2k)2[2G̃J+2,n−p,∆(l∗) − G̃J+4,n−p,∆(l∗)]

(λi + k)4

−

p
∑

i=1

σ2
ε ãiiλ

2
i (λi + 2k)2G̃

(1)
J+2,n−p,∆(l∗)

(λi + k)4

+

p
∑

i=1

2k2γiη̃iλi(λi + 2k)G̃
(1)
J+2,n−p,∆(l∗)

(λi + k)4

=

p
∑

i=1

γ2
i k4 + k2(λi + 2k) · λigi + (λi + 2k)2 · λi(σ

2
ε − fi)

(λi + k)4
. (5.7)

Differentiating the risk function of the PTAURE with respect to k, we have

∂Risk(β̂PTAURE(k, ζ∗))

∂k
=

p
∑

i=1

hi(k)

(λi + k)5
, (5.8)

where

hi(k) = [γ2
i k4 + (k2λi + 2k3) · λigi + (λi + 2k)2 · λi(σ

2
ε − fi)]

′(λi + k)

−4[γ2
i k4 + k2(λi + 2k) · λigi + (λi + 2k)2 · λi(σ

2
ε − fi)]

= 4γ2
i λik

3 + 2kλigi · [(λi + 3k)λi + (λi + 3k)k − 2k(λi + 2k)]

+(λi + 2k)4λi(σ
2
ε − fi) · [λi + k − (λi + 2k)]

= 4γ2
i λik

3 + 2kλigi · (λ
2
i + 2kλi − k2) − 4k(λi + 2k)λi(σ

2
ε − fi)

= 2kλi · {(2γ
2
i − gi)k

2 + 2[λigi − 2(σ2
ε − fi)]k + λi[λigi − 2(σ2

ε − fi)]}.

Therefore, a sufficient condition for (5.8) to be negative is that 0 < k < k∗
5,

where

k∗
5 = min

1≤i≤p
{

√

2qi[λi(gi − γ2
i ) − (σ2

ε − fi)] − qi

2γ2
i − gi

}. (5.9)

and qi = λigi − 2(σ2
ε − fi). While we can similarly get that a sufficient

condition for (5.8) to be nonnegative is that k ≥ k∗
6 , where

k∗
6 = max

1≤i≤p
{

√

2qi[λi(gi − γ2
i ) − (σ2

ε − fi)] − qi

2γ2
i − gi

}. (5.10)
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Note that under the null hypothesis, we have fi = σ2
ε ãiiλiG̃

(1)
J+2,n−p,∆(l∗) and

gi = 0. Thus, ∂Risk(β̂PTAURE(k,ζ∗))
∂k < 0 if 0 < k < k∗

7, where

k∗
7 = min

1≤i≤p
{
(σ2

ε − fi) +
√

(σ2
ε − fi)[λiγ2

i + (σ2
ε − fi)]

γ2
i

}. (5.11)

On the other hand, we can similarly get that ∂Risk(β̂PTAURE(k,ζ∗))
∂k ≥ 0 if

k ≥ k∗
8 , where

k∗
8 = max

1≤i≤p
{
(σ2

ε − fi) +
√

(σ2
ε − fi)[λiγ

2
i + (σ2

ε − fi)]

γ2
i

}. (5.12)

Therefore, we have the following result.

Theorem 6. (1) Under the null hypothesis, the PTAURE dominates the

PTE if 0 ≤ k ≤ k∗
7, while if k ≥ k∗

8, then the PTE would outperform the

PTAURE with respect to the quadratic risk criterion.

(2) Under the alternative hypothesis, the PTAURE dominates the PTE if

0 ≤ k ≤ k∗
5, while if k ≥ k∗

6, then the PTE would outperform the PTAURE

with respect to the quadratic risk criterion.

We can find from the risk analysis in Section 4 and Section 5 that for
fixed ridge parameter k, the performances of the PTAURE heavily depend
on the departure parameter ∆. While for fixed departure parameter ∆, the
performances of the proposed estimators also depend on the ridge parameter
k. For an illustrative purpose, we are to give some graphical representation
of the relative risks of the estimators following Kibria and Saleh (2004) and
Arashi and Tabatabaey (2008). On the one hand, for the case when n =
20, p = 4, J = 3, v = 5, α = 0.05, 0.10 and fixed k = 0.2, the quadratic risks
of the AURE, RAURE, PTE and PTAURE based on the W, LR and LM
tests versus the departure parameter ∆ are presented in Figure 1 –Figure
3, respectively. On the other hand, for the case when n = 20, p = 4, J =
3, v = 5, α = 0.05, 0.10 and fixed ∆ = 2, the quadratic risks of the AURE,
RAURE, PTE and PTAURE based on the W, LR and LM tests versus
the ridge parameter k are presented in Figure 4 –Figure 6, respectively. In
order to facilitate the numerical computation of the quadratic risks of the
estimators, we consider the orthonormal regression case following Kibria and
Saleh (2004) and similar results can also be obtained for other combinations
of n, p, J, v and α.

As shown in Figure 1 –Figure 3, we can find that for fixed ridge parameter,
the quadratic risk of the RAURE increases quickly and becomes unbounded
as ∆ increases, while the risk of the PTAURE converges to the risk of the
AURE as ∆ approaches infinity. When ∆ is relatively small and near 0, the
risks of the PTAURE and PTE are smaller than that of the AURE, but larger
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Figure 1(a):Wald test:v=5,alpha=0.05
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Figure 1(b):Wald test,v=5,alpha=0.10

PTAURE
PTE
RAURE
AURE

Figure 1. Risks of the estimators based on Wald test for
fixed k = 0.2.
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Figure 2(a):LR test:v=5,alpha=0.05
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Figure 2(b):LR test,v=5,alpha=0.10
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Figure 2. Risks of the estimators based on LR test for fixed
k = 0.2.

than that of the RAURE. However, when ∆ becomes relatively large, both
the PTAURE and PTE have larger risks than the AURE but smaller risks
than the RAURE. Furthermore, the theoretical findings for the case when
the departure parameter is fixed are also well supported by the graphical
results shown in Figure 4 –Figure 6.
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Figure 3(a):LM test:v=5,alpha=0.05
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Figure 3(b):LM test,v=5,alpha=0.10
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Figure 3. Risks of the estimators based on LM test for fixed
k = 0.2.
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Figure 4(a):Wald test:v=5,alpha=0.05
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Figure 4(b):Wald test:v=5,alpha=0.10
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Figure 4. Risks of the estimators based on Wald test for
fixed ∆ = 2.

6. Concluding remarks

In this paper, we studied the performances of the preliminary test almost
unbiased estimators based on the W, LR and LM tests when it is suspected
that the regression coefficients may be restricted to a subspace and the errors
are assumed to follow multivariate Student-t distribution. We have effectively
determined some sufficient conditions on the departure parameter ∆ and
the ridge parameter k for the superiority of the proposed estimators over
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the competitors in the literature and some graphical results are provided to
illustrate the theoretical results.
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Figure 5(a):LR test:v=5,alpha=0.05
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Figure 5(b):LR test:v=5,alpha=0.10
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Figure 5. Risks of the estimators based on LR test for fixed
∆ = 2.
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Figure 6(a):LM test:v=5,alpha=0.05
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Figure 6(b):LM test:v=5,alpha=0.10
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Figure 6. Risks of the estimators based on LM test for fixed
∆ = 2.
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