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Polynomial expansions via embedded Pascal’s
triangles

Serge B. Provost and Wajdi M. Ratemi

Abstract. An expansion is given for polynomials of the form (ω +
λ1) · · · (ω+λn). The coefficients of the resulting polynomials are related
to their roots, and a system of equations that enables one to numerically
determine the roots in terms of the coefficients is specified. The case
where all the roots λi are equal is considered as well. A multinomial
extension to polynomials of the form (x1 + · · · + xI)n is then provided.
As it turns out, the coefficients of the monomials contained in the result-
ing polynomial expansion can be determined in terms of the coefficients
of the monomials included in the expansion of (x1 + · · · + xI−1)n and
the rows of embedded Pascal’s triangles of successive orders. An algo-
rithm is provided for generating and concatenating these rows, with the
particulars of its implementation by means of the symbolic computation
software Mathematica being discussed as well. Potential applications of
such expansions to combinatorics and genomics are also suggested.

1. Introduction

A generalized binomial expansion that has previously been introduced
by [9] and [8] for polynomials of the form

∏n
i=1(ω + λi), is presented in

Section 2. As mentioned in [6] and explained in Section 3, when all the
roots are equal, this expansion gives rise to an inverse problem, in the sense
that given the multiple root of the polynomial, one can directly determine
each of the coefficients of its expansion, and conversely, given any of the
coefficients, the root can be readily obtained. In the case of distinct roots
λi, the coefficients are obtained by summing all the combinations of the
products of k roots λi, k = 0, . . . , n. The number of such combinations is
determined by the binomial coefficient, Tn,k =

(
n
k

)
, where n represents the
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degree of the polynomial and k, the number of roots λi involved. Tn,k is in
fact the (k + 1)-th entry of the (n+ 1)-th row of Pascal’s triangle.

As it turns out, successive applications of the binomial expansion lead to
a general polynomial expansion of (x1 + · · ·+ xI)n whose coefficients can be
determined by taking the scalar product of those associated with the expan-
sion of (x1 + · · · + xI−1)n and a vector of concatenated rows of embedded
Pascal’s triangles. These results are summarized in [7] and developed in
Section 4.

For an exhaustive account of the properties of Pascal’s triangle, the reader
is referred to [5]. Several results of interest are also included in [10] and [3].
Certain recurrence relationships are discussed, for instance, in [4] and [2],
and some extensions, presented in [1].

2. A generalization of the binomial expansion

An expansion of the product
n∏

i=1

(ω + λi)

is obtained in this section.
For n = 1, 2 and 3, one has

1∏
i=1

(ω + λi) = w + λ1 ,

2∏
i=1

(ω + λi) = (ω + λ1)(ω + λ2) = ω2 + (λ1 + λ2)ω + λ1 λ2 ,

and
3∏

i=1

(ω + λi) = (ω + λ1)(ω + λ2)(ω + λ3)

= ω3 + (λ1 + λ2 + λ3)ω2 + (λ1 λ2 + λ1 λ3 + λ2 λ3)ω + λ1 λ2 λ3 ,

respectively. For a product of n terms, the following generalization, referred
to as the Guelph expansion in [8], applies:

n∏
i=1

(ω + λi) =
n∑

k=0

ωn−k
∑
Tn,k

λ . . .k . . . λ , (1)

where
∑

Tn,k
λ . . .k . . . λ denotes the sum of the products of each and every

possible combinations of k elements of the set λ1, . . . , λn . The number of
such combinations is in fact the binomial coefficient given by

Tn,k =
(
n

k

)
=

n!
k! (n− k)!

.
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For example, consider
∑

T4,3
λ . . .3 . . . λ. Since in this case, n = 4 and

k = 3, the number of possible combinations of three of the four elements of
the set λ1, λ2, λ3 , λ4 is T4,3 =

(
4
3

)
= 4!

3! (1)! = 4 , which yields∑
T4,3

λ . . .3 . . . λ = λ1λ2λ3 + λ1λ2λ4 + λ2λ3λ4 + λ3λ4λ1. (2)

Then according to Equation (1), one has for instance

4∏
i=1

(ω + λi) =
n∑

k=0

ω4−k
∑
T4,k

λ . . .k . . . λ

= ω4
∑
T4,0

λ . . .0 . . . λ + ω3
∑
T4,1

λ . . .1 . . . λ

+ ω2
∑
T4,2

λ . . .2 . . . λ + ω
∑
T4,3

λ . . .3 . . . λ

+ ω0
∑
T4,4

λ . . .4 . . . λ

where, in addition to (2),∑
T4,0

λ . . .0 . . . λ = 1,

∑
T4,1

λ . . .1 . . . λ = λ1 + λ2 + λ3 + λ4,∑
T4,2

λ . . .2 . . . λ = λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4,∑
T4,4

λ . . .4 . . . λ = λ1λ2λ3λ4 ,

that is,

4∏
i=1

(ω + λi) = ω4 + ω3(λ1 + λ2 + λ3 + λ4)

+ ω2(λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4)

+ ω (λ1λ2λ3 + λ1λ2λ4 + λ2λ3λ4 + λ3λ4λ1) + λ1λ2λ3λ4 .

Clearly, for single-valued roots λi this polynomial has the expansion

(ω + λ)4 = ω4 + 4λω3 + 6λ2ω2 + 4λ3 ω + λ4 ,
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and for any positive integer n, one can expand (ω + λ)n as follows:

(ω + λ)n =
n∑

k=0

ωn−k
∑
Tn,k

λ . . .k . . . λ

=
n∑

k=0

Tn,k λ
kωn−k =

n∑
k=0

n!
k!(n− k)!

λkωn−k , (3)

which is the well-known binomial expansion.
The entries of Pascal’s triangle, that is, the binomial coefficients Tn, k, are

displayed in Table 1 for n = 0, 1, 2, 3, 4.

Table 1. Pascal’s triangle (first five rows)

k=0 k=1 k=2 k=3 k=4
Tn,k =

(
n
k

)
= n!

k!(n−k)!

n=0 1
n=1 1 1
n=2 1 2 1
n=3 1 3 3 1
n=4 1 4 6 4 1

For example, one can readily expand (x+ y)4 as follows by making use of
the last row of Table 1:

4∑
k=0

T4,k y
kx4−k = x4 + 4 y x3 + 6 y2 x2 + 4y3 x+ y4.

3. From polynomial expansion to root identification

Consider the binomial expansion in ω specified by Equation (3), that is,

(ω + λ)n =
n∑

k=0

an−k ω
n−k =

n∑
k=0

Tn, k λ
kωn−k . (4)

In this case, −λ is a root of multiplicity n. Thus, for given n and k =
0, 1, 2, . . . , n, one has the identity,

an−k = Tn, k λ
k , (5)

which provides a means of determining the coefficients an−k in the expansion
of (ω + λ)n in terms of the k-th power of the multiple root. Conversely, the
following relationship expresses λ in terms of a given coefficient an−k:
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λ =
(
an−k

Tn, k

) 1
k

. (6)

For example, consider (ω+4)5, in which case λ = 4 and n = 5. According
to Equation (5), the coefficients of the expansion are

a5 =
(
5
0

)
40 = 5!

0!(5−0)! =1, a4 =
(
5
1

)
41 = 5!

1!(5−1)! 4=20,
a3 =

(
5
2

)
42 = 5!

2!(5−2)! 16=160, a2 =
(
5
3

)
43 = 5!

3!(5−3)! 64=640,
a1 =

(
5
4

)
44 = 5!

4!(5−4)! 256=1280, a0 =
(
5
5

)
45 = 5!

5!(5−5)! 1024=1024.

The resulting expansion in ω is

(ω + 4)5 = a5 ω
5 + a4 ω

4 + a3 ω
3 + a2 ω

2 + a1 ω + a0

= ω5 + 20ω4 + 160ω3 + 640ω2 + 1280ω + 1024 .

Table 2 summarizes the calculations for determining the coefficients an−k

in terms of Tn,k and λk when λ = 4 (the root being −4).

Table 2. Calculations for expanding (ω + 4)5: n = 5, λ = 4

k 0 1 2 3 4 5

Tn,k =
(
n
k

)
= n!

k!(n−k)! 1 5 10 10 5 1

λk 1 4 16 64 256 1024

an−k =
∑

T=(n
k) λ . . .

k . . . λ = Tn,k λ
k 1 20 160 640 1280 1024

Now, making use of Equation (6), one can determine λ from any of the
coefficients an−k, the multiple root of the polynomial being −λ. Table 3
summarizes the calculations.

Table 3. Calculations for the determination of −λ the root
of (ω + 4)5 = ω5 + 20ω4 + 160ω3 + 640ω2 + 1280ω + 1024

k 1 2 3 4 5

Tn,k =
(
n
k

)
= n!

k!(n−k)! 5 10 10 5 1

an−k =
∑

T=(n
k) λ . . .

k . . . λ = Tn,k λ
k 20 160 640 1280 1024

λ = k

√
an−k

Tn,k
, k 6= 0 4 4 4 4 4
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For expansions of the type
∏n

i=1(ω + λi), one can utilize the generalized
binomial expansion given in Equation (1) in order to identify the coefficients,
that is,

an−k =
∑
Tn, k

λ . . . k . . . λ, k = 0, . . . , n . (7)

Thus, in this case, if the roots λi are known, one can readily make use
of Equation (7) to determine the coefficients an−k. Conversely, when the
coefficients an−k are known, one obtains a system of algebraic equations
in the roots −λ1, . . . ,−λn. For example, when λ1 = 0.2, λ2 = 10, λ3 =
−2, λ4 = 0.5, the coefficients of the resulting polynomial can be determined
as indicated in Table 4.

Table 4. Determination of the coefficients of the expansion
when n = 4 and the roots are λ1 = 0.2, λ2 = 10, λ3 =
−2, λ4 = 0.5

k
∑

Tn,k
λ . . .k . . . λ Coefficients in terms of the λi’s a4−k

0
∑

T4,0
λ . . .0 . . . λ 1 1

1
∑

T4,1
λ . . .1 . . . λ λ1 + λ2 + λ3 + λ4 −8.7

2
∑

T4,2
λ . . .2 . . . λ λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4 −14.3

3
∑

T4,3
λ . . .3 . . . λ λ1λ2λ3 + λ1λ2λ4 + λ2λ3λ4 + λ3λ4λ1 13.2

4
∑

T4,4
λ . . .4 . . . λ λ1λ2λ3λ4 −2

Accordingly, the expansion is

ω4 − 8.7ω3 − 14.3ω2 + 13.2ω − 2 .

Conversely, if one wishes to determine the roots of this polynomial, one
could refer to Table 4, and attempt to solve the following system of equations
specified by Equation (7) (excluding k = 0):

λ1 + λ2 + λ3 + λ4 = −8.7

λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4 = −14.3

λ1λ2λ3 + λ1λ2λ4 + λ2λ3λ4 + λ3λ4λ1 = 13.2

λ1λ2λ3λ4 = −2 .
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Such a system of equations has to be solved numerically since it cannot
be represented as a linear system of the form

Aλ = b ,

where A is an n×n constant matrix, λ denotes the vector of unknown roots
λi and b is the vector of polynomial coefficients.

Making use of the solve command in MathLab, one can obtain the roots
as follows:

[ l1 l2 l3 l4 ] = solve(’l1+l2+l3+l4 =−8.7, l1*l2+l1*l3+l1*l4+l2*l3+l2*l4

+l3*l4 =−14.3, l1*l2*l3+l1*l2*l4+l2*l3*l4+l3*l4*l1= +13.2, l1*l2*l3*l4

=−2 ’);

r1=l1’;

r2=l2’;

r3=l3’;

r4=l4’;

% solve for one solution of possible ones, i,e; r1(1), r2(1),r3(1),r4(1)

root1=−r1(1)

root2=−r2(1)

root3=−r3(1)

root4=−r4(1)

As expected, the solution is −10, −0.5, −0.2 and 2. Note that since the
system of equations to be solved is not linear, this approach may not be
practical for determining the roots of polynomials of degrees greater than
five.

4. Polynomial expansions via embedded Pascal’s triangles

The expansion given in Equation (3) is now extended to expressions con-
sisting of powers of sums involving I terms. The resulting expansion for(∑I

i=1 xi

)n
is∑

k
k′
k′′

...
k(I−2)

(Tn,kTk,k′Tk′,k′′ · · ·Tk(I−3),k(I−2))xn−k
1 xk−k′

2 xk′−k′′

3 · · ·xk(I−3)−k(I−2)

I−1 xk(I−2)

I (8)
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where k, k′, k′′, k′′′, · · · , k(I−2) take on the values k = 0, . . . , n; k′ = 0, . . . , k;
k′′ = 0, . . . , k′; k′′′ = 0, . . . , k′′; . . . ; k(I−2) = 0, . . . , k(I−3). The expansion
given in Equation (8) is obtained by successive applications of the binomial
expansion specified by Equation (4), that is,

(ω + λ)n =
n∑

k=0

Tn,k ω
n−kλk .

For instance, when I = 4, one would first expand (x1 +(x2 +x3 +x4))n, then
expand (x2 +(x3 +x4))k and finally, (x3 +x4)k′ , resulting in a representation
expressed in terms of a triple sum involving the products (Tn,kTk,k′Tk′,k′′).
The range of the subscripts of such products can be represented by so-called
k-Tree diagrams. Figure 1 contains a k-Tree diagram which shows the array
of possible values of the subscripts k, k′ and k′′ for n = 0, 1, 2, 3, 4. Figure
2 presents symbolically the required entries of Pascal’s triangle, namely,
(Tn,k, Tk,k′ , Tk′,k′′), which form a so-called T-Tree, the numerical values of
these binomial coefficients being shown in Figure 3. Letting rk denote a
vector representing the (k + 1)-th row of Pascal’s triangle, a triangle that
comprises r0, r1, . . . , rc as its rows shall be referred to as a Pascal’s triangle
of order c, and denoted 4c. Observe that the rows appearing in T-Trees are
composed of the rows of embedded Pascal’s triangles of successive orders.

Table 5 illustrates how the rows of embedded Pascal’s triangles are ap-
pended in order to determine the coefficients of the expansions. Note that a
basic Pascal’s triangle is often generated vertically and that the components
of rn are in fact the coefficients of the binomial expansion of (x+y)n. As seen
from Table 5, when n is equal to 3 or 4, the expansions for trinomials and
quadrinomials raised to the power n, that is, (x+y+z)n and (x+y+z+w)n,
are obtained by making use of the concatenated rows of Pascal’s triangles of
orders 1, 2, . . . , n. Consider for instance (x+ y + z + w)3. Observe that the
entries appearing on the upper line are (r0, r0, r1, r0, r1, r2, r0, r1, r2, r3) ≡ u3

and that this vector contains the appended rows of the embedded trian-
gles, 40, 41, 42, 43. The coefficients of the monomials in the expansion
of (x + y + z + w)3, which appear on the lower line, are then obtained
by multiplying the ten coefficients of the expansion of (x + y + z)3 by
the components of the ten corresponding subvectors comprising u3, that
is, (1× r0, 3× r0, 3× r1, 3× r0, 6× r1, 3× r2, 1× r0, 3× r1, 3× r2, 1× r3) =
(1, 3, 3, 3, 3, 6, 6, 3, 6, 3, 1, 3, 3, 3, 6, 3, 1, 3, 3, 1).

For the following quadrinomial expression raised to the power 4, one has

(x+ y + z + w)4 =
∑

k=0,...,4
k′=0,...,k
k′′=0,...,k′

(T4,k Tk,k′ Tk′,k′′)x4−kyk−k′zk′−k′′wk′′ . (9)
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                                                                     The  k-Tree 

Number of variables 

2 (binomial- level)        k:        0         1                 2                   3                                         4                      …     n 

 

3 (trinomial-level)         k':      0      0      1     0     1     2       0    1       2     3                   0   1  2  3     4            …                                       

 

 

4 (quadrinomial-level)    k'':     0       0    0  1  0   0  1   0 1  2  0  0  1   0  1 2  0  1   2  3   0  0 1  0 1  2  0  1  2  3   0   1 2  3  4   

                              

Figure 1. The k-Tree diagram

The T-Tree  (symbolically) 

Number of variables 

2 (binomial-level)         Tn,k:   Tn,0        Tn,1              Tn,2               Tn,3                                   Tn,4                   …     Tn,n 

 

 

3 (trinomial-level)        Tk;k':   T00   T10  T11  T20  T21  T22     T30  T31  T32  T33               T40  T41  T42  T43   T44                      … 

                                               

                                                  

 

4 (quadrinomial-level)  T k'; k'': T00   T00  T10 T11  T00  T10 T11  T20 T21 T22   T00  T10 T11  T20 T21 T22 T30  T31  T32  T33    T00  T10 T11      

                              

Figure 2. The T-Tree diagram (symbolically)

The T-Tree  (numerical values) 

Number of variables 

2 (binomial- level)        Tn,k :   Tn,0     Tn,1              Tn,2              Tn,3                                   Tn,4                   …        Tn,n 

  

 

3 (trinomial-level)        Tk,k' :   1      1       1    1     2     1        1    3     3    1                 1      4     6         4            1                   …  

                                               

                                                  

 

4 (quadrinomial-level) Tk', k'':  1       1    1    1     1    1     1    1    2    1      1    1    1    1    2    1     1     3     3       1       1     1   1       

                              

Figure 3. The T-Tree diagram (numerical values)
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Table 5. Embedded Pascal’s triangles and the determina-
tion of the coefficients of the polynomial expansions
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Table 6. Detailed tabular coding of the expansion of (x +
y + z + w)4 and the probabilities corresponding to the coef-
ficients

 

n k k’ k’’ Tnk Tkk' Tk'k'' Coefficients 
Ti=TnkTkk'Tk'k'' 

Terms of the  expansion:  
                          

Probability 

Pi=Ti/iTi

4 

0 0 0 1 1 1 1 x4 0.00390625 

1 

0 0 4 1 1 4 x3y 0.015625 

1 
0 4 1 1 4 x3z 0.015625 

1 4 1 1 4 x3w 0.015625 

2 

0 0 6 1 1 6 x2y2 0.023438 

1 
0 6 2 1 12 x2yz 0.046875 

1 6 2 1 12 x2yw 0.046875 

2 

0 6 1 1 6 x2z2 0.023438 

1 6 1 2 12 x2zw 0.046875 

2 6 1 1 6 x2w2 0.023438 

3 

0 0 4 1 1 4 xy3 0.015625 

1 
0 4 3 1 12 xy2z 0.046875 

1 4 3 1 12 xy2w 0.046875 

2 

0 4 3 1 12 xyz2 0.046875 

1 4 3 2 24 xyzw 0.09375 

2 4 3 1 12 xyw2 0.046875 

3 

0 4 1 1 4 xz3 0.015625 

1 4 1 3 12 xz2w 0.046875 

2 4 1 3 12 xzw2 0.046875 

3 4 1 1 4 xw3 0.015625 

4 

0 0 1 1 1 1 y4 0.00390625 

1 
0 1 4 1 4 y3z 0.015625 

1 1 4 1 4 y3w 0.015625 

2 

0 1 6 1 6 y2z2 0.023438 

1 1 6 2 12 y2zw 0.046875 

2 1 6 1 6 y2w2 0.023438 

3 

0 1 4 1 4 yz3 0.015625 

1 1 4 3 12 yz2w 0.046875 

2 1 4 3 12 yzw2 0.046875 

3 1 4 1 4 yw3 0.015625 

4 

0 1 1 1 1 z4 0.00390625 

1 1 1 4 4 z3w 0.015625 

2 1 1 6 6 z2w2 0.023438 

3 1 1 4 4 zw3 0.015625 

4 1 1 1 1 w4 0.00390625 

Table 6 provides a tabular coding for the expansion given in Equation (9)
as well as numerical values for the coefficients (T4,kTk,k′Tk′,k′′) ≡ Ti. Natu-
rally, the same coefficients also appear on the last row of Table 5. Note that
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the values of T4,k, Tk,k′ , and Tk′,k′′ given in Table 6 respectively correspond
to the values appearing in the (x + y)4 row, the upper (x + y + z)4 row
and the upper (x + y + z + w)4 row of Table 5. Thus, appending rows of
embedded Pascal’s triangles provides a systematic approach for determining
the coefficients Ti,j appearing in Equation (8).

The probabilities associated with the coefficients, which appear in the last
column of Table 6, may be interpreted in terms of an experiment in which
four tetrahedral dice bearing the letters (x, y, z, w) on each of their sides
are rolled simultaneously. One can determine the probability that the dice
will fall on a certain combination of faces by noting that the exponent of
a given letter appearing in a certain monomial in the expansion indicates
how many times the dice fell on the face bearing that letter. The associated
coefficients given in Table 6, once divided by the sum of all of the coefficients,
that is, Ti/

∑
i Ti = Pi, provide such probabilities. Equivalently, Pi = Ti/I

n

where I is the number of variables or faces (I = 4), and n is the power of
the expansion (n = 4) corresponding to the number of dice being rolled, so
that in this example, In = 256. Alternatively, these probabilities can be
calculated by multiplying each coefficient by the corresponding monomial
in the expansion after letting x = y = z = w = 1/4. For example, the
second probability in the table can be calculated as follows: P2 = T2(x3y) =
4[(1/4)3(1/4)] = 4/256 = 0.015625.

The above example can readily be extended to an experiment in which
the dice have b faces. In such a case, one would expand (x1 +x2 + · · ·+xb)n,
where n represents the number of dice being rolled simultaneously. As an
application to genetics, one may consider the expansion of (x + y)n where
x and y represent the respective probabilities that a boy or a girl be born,
and n denotes the number of children born in a given family. For example,
if one needs to determine the probabilities of certain combinations of boys
and girls being born out four children, first, one would expand (x + y)4.
Then, noting that the coefficients of the expansion correspond to the entries
appearing in the fifth row of Pascal’s triangle, that is, [1 4 6 4 1], one would
have the expansion x4 + 4x3y + 6x2y2 + 4xy3 + y4. Thus, if one assumes
that x = y = 1/2, it follows that the probability that two of the four children
are girls is 6/16 = 37.5%. Applications in genomics such as the structuring
of a single DNA strand are also worth investigating. This would involve the
expansion of (A+T +C+G)n where A, T,C and G are the DNA nucleotides
and n is the length of the DNA string. Even though n could be quite large in
this context, the coefficients of the resulting multinomial expansions can be
efficiently calculated by making use of a recursive algorithm that generates
and concatenates rows of embedded Pascal’s triangles, as is explained in the
next section.
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5. Evaluation of the polynomial coefficients in terms of
embedded Pascal’s triangles

The following recursive algorithm generates embedded Pascal’s triangles
whose rows are appended into single strings, from which the coefficients of
the expansion of (

∑n
i=1 ai)d can be determined.

Notation and algorithm

n is the number of terms being summed;
ai denotes the i-th term in the sum;
d is the degree to which the sum is being raised (d ≥ 2);
rk is a vector representing the (k+1)-th row of Pascal’s triangle, k = 0, 1 . . . .

Denoting the i-th component of rk by rk[[i]], i = 1, . . . , k + 1, and letting
rk[[1]] = rk[[k+1]] = 1, one has rk[[i]] = rk−1[[i]]+rk−1[[i+1]] for i = 1, . . . , k;
vsd,t denotes the appended rows of embedded Pascal’s triangles;
vsd,t is defined recursively as follows in terms of vsd,t−1

with vsd,2 = (rd, rd−1, . . . , r0)
(note the reverse ordering of the d+ 1 subvectors r0, r1, . . . , rd):
vsd,t = {{vsd,t−1[[1]], . . . , vsd,t−1[[d+1]]}, {vsd,t−1[[2]], . . . , vsd,t−1[[d+1]}, . . . ,
{vsd,t−1[[d]], vsd,t−1[[d+ 1]]}, vsd,t−1[[d+ 1]]}
where vsd,t−1[[i]] denotes the i-th subvector of vsd,t−1;
crd,s denotes a vector involved in one of the steps leading to the determina-
tion of the coefficients of (

∑n
i=1 ai)d.

Letting crd,2 = rd,
crd,s is obtained as follows in terms of crd,s−1 and vsd,s−1:
crd,s = { crd,s−1[[1]] • vsd,s−1[[1]], . . . , crd,s−1[[d+ 1]] • vsd,s−1[[d+ 1]]}
where for example crd,s−1[[1]]•vsd,s−1[[1]] is understood to be equal to a vec-
tor whose j-th subvector is the product of the j-th component of crd,s−1[[1]]
with the j-th subvector of vsd,s−1[[1]].
crd,n is the required vector under reverse lexicographic ordering.

This algorithm was implemented in Mathematica. Given its simplicity,
other computational packages such as Maple or MathLab could possibly also
be utilized. Note that the default sorting procedure used by Mathematica
for polynomial terms (or monomials) in an expansion corresponds to the
negative lexicographic ordering, the variables being sorted in the reverse
order. This is commonly known as the reverse lexicographic ordering. This
explains why the vectors vs and the vector of coefficients cr are in reverse
order with respect to the ordering specified in Section 4. To obtain the
vector of the coefficients of (

∑n
i=1 ai)d in the lexicographic order, it suffices

to remove the levels (brackets) from crd,n and then to reverse the order of the
resulting components. This yields cd,n, the vector of the coefficients under
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lexicographic ordering. Note that the Mathematica code given below does
not involve any divisions or combinatorial quantities.

Mathematica code

r0 = 1;
rk: = rk = Flatten[Prepend[Append[Table[rk−1[[i]] + rk−1[[i + 1]], {i, 1, k −
1}], 1], 1]];
crd,2:= crd,2 = rd;
vsd,2 := vsd,2 = Table[rd−i, {i, 0, d}];
vsd,t := vsd,t = Table[Table[vsd,t−1[[i]], {i, j, d+ 1}], {j, 1, d+ 1}];
crd,s := crd,s = Table[crd,s−1[[i]]vsd,s−1[[i]], {i, 1, d+ 1}];
cd,n := cd,n = Reverse[Flatten[crd,n]];

After specifying n and d, the required vector of coefficients is readily deter-
mined in lexicographic order. For instance, on typing c4,4, one directly ob-
tains {1, 4, 4, 4, 6, 12, 12, 6, 12, 6, 4, 12, 12, 12, 24, 12, 4, 12, 12, 4, 1, 4, 4, 6, 12, 6,
4, 12, 12, 4, 1, 4, 6, 4, 1}, as given in Table 6.

Some steps are illustrated below for the case n = 4 and d = 4. In this
case the code yields
r4
{1, 4, 6, 4, 1}
vs4,2

{{1, 4, 6, 4, 1}, {1, 3, 3, 1}, {1, 2, 1}, {1, 1}, 1}
vs4,3

{{{1, 4, 6, 4, 1}, {1, 3, 3, 1}, {1, 2, 1}, {1, 1}, 1}, {{1, 3, 3, 1}, {1, 2, 1}, {1, 1}, 1},
{{1, 2, 1}, {1, 1}, 1}, {{1, 1}, 1}, {1}}
cr4,2

{1, 4, 6, 4, 1}
cr4,3

{{1, 4, 6, 4, 1}, {4, 12, 12, 4}, {6, 12, 6}, {4, 4}, 1}
where
cr4,3 = {cr4,2[[1]] • vs4,2[[1]], · · · , cr4,2[[5]] • vs4,2[[5]]}
= {1 • {1, 4, 6, 4, 1}, 4 • {1, 3, 3, 1}, 6 • {1, 2, 1}, 4 • {1, 1}, 1 • 1}
cr4,4

{{{1, 4, 6, 4, 1}, {4, 12, 12, 4}, {6, 12, 6}, {4, 4}, 1}, {{4, 12, 12, 4}, {12, 24, 12},
{12, 12}, 4}, {{6, 12, 6}, {12, 12}, 6}, {{4, 4}, 4}, {1}}
where
cr4,4 = {cr4,3[[1]] • vs4,3[[1]], . . . , cr4,3[[5]] • vs4,3[[5]]}
= {{1, 4, 6, 4, 1} • {{1, 4, 6, 4, 1}, {1, 3, 3, 1}, {1, 2, 1}, {1, 1}, 1},
{4, 12, 12, 4}}•{{1, 3, 3, 1}, {1, 2, 1}, {1, 1}, 1}, {6, 12, 6}}•{{1, 2, 1}, {1, 1}, 1},
{4, 4} • {{1, 1}, 1}, 1 • 1},
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cr4,4 being the required vector of coefficients for (a1 +a2 +a3 +a4)4 under re-
verse lexicographic ordering. On removing the levels within the vector cr4,4

and reversing the order of the components, one obtains a vector whose com-
ponents are the coefficients of the monomials sorted in lexicographic order
as given in Table 6. This vector can be directly obtained by simply typing
c4,4, which produces
{1, 4, 4, 4, 6, 12, 12, 6, 12, 6, 4, 12, 12, 12, 24, 12, 4, 12, 12, 4, 1, 4, 4, 6, 12, 6,
4, 12, 12, 4, 1, 4, 6, 4, 1}

The computational power that is currently available can easily accommo-
date polynomials of higher orders containing more terms.

Note that the expansion of (a1 + a2 + a3 + a4)4 can also be determined
from

4∑
i=0

4−i∑
j=0

4−i−j∑
k=0

4!
i! j! k! (4− i− j − k)!

ai
1 a

j
2 a

k
3 a

4−i−j−k
4 ,

which yields

a4
1 + 4 a3

1a2 + 6 a2
1a

2
2 + 4 a1a

3
2 + a4

2 + 4 a3
1a3 + 12 a2

1a2a3 + 12 a1a
2
2a3

+4 a3
2a3 + 6 a2

1a
2
3 + 12 a1a2a

2
3 + 6 a2

2a
2
3 + 4 a1a

3
3 + 4 a2a

3
3 + a4

3 + 4a3
1a4

+12 a2
1a2a4 + 12 a1a

2
2a4 + 4 a3

2a4 + 12 a2
1a3a4 + 24 a1a2a3a4 + 12 a2

2a3a4

+12 a1a
2
3a4 + 12 a2a

2
3a4 + 4 a3

3a4 + 6 a2
1a

2
4 + 12 a1a2a

2
4 + 6 a2

2a
2
4 + 12 a1a3a

2
4

+12 a2a3a
2
4 + 6 a2

3a
2
4 + 4 a1a

3
4 + 4 a2a

3
4 + 4 a3a

3
4 + a4

4

in reverse lexicographic ordering.
Observe that the coefficient of ai

1 a
j
2 a

k
3 a

4−i−j−k
4 is the multinomial coeffi-

cient,(
4

i, j, k

)
=

4!
i!j!k!(4− i− j − k)!

=
(
i+ j

j

)(
i+ j + k

k

)(
4

4− i− j − k

)
= Ti+j,j Ti+j+k,k T4,4−i−j−k ,

which clearly can be expressed as a product of binomial coefficients. This
produces a representation equivalent to that given in Equation (9). Similarly,
the product of binomial coefficients appearing in Equation (8) can be ex-
pressed as a single multinomial coefficient. Thus, the proposed methodology
provides an alternative approach for determining multinomial coefficients in
terms of the products of certain entries of Pascal’s triangle.

6. Conclusions

First, a representation of a generalized binomial expansion was presented,
and some relationships between the roots and the coefficients of the mono-
mials appearing in the expansions were pointed out. The case of binomial
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expansions wherein all the roots are equal has also been treated, and gener-
alizations to powers of multinomial expressions have been considered as well.
It was pointed out that the coefficients of the monomials resulting from the
expansion of (

∑I
i=1 xi)n can be expressed in terms of those of (

∑I−1
i=1 xi)n

and a certain vector of concatenated rows of Pascal’s triangles of succes-
sive orders. A simple and efficient recursive algorithm is provided for the
determination of these coefficients. Unlike the usual approach which relies
on multinomial coefficients, that herein advocated only involves products.
The proposed polynomial expansion methodology, which was shown to have
combinatorial applications, is also potentially applicable to certain types of
genomic studies as well as other fields of scientific investigations.
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