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On approximating the distribution of indefinite
quadratic expressions in singular normal vectors

A. Akbar Mohsenipour and Serge B. Provost

Abstract. General representations of quadratic forms and quadratic
expressions in singular normal vectors are given in terms of the dif-
ference of two positive definite quadratic forms and an independently
distributed linear combination of normal random variables. Up to now,
only special cases have been treated in the statistical literature. The
densities of the quadratic forms are then approximated with gamma
and generalized gamma density functions. A moment-based technique
whereby the initial approximations are adjusted by means of polyno-
mials is presented. Closed form and integral formulae are provided for
the approximate density functions of the quadratic forms and quadratic
expressions. A detailed step-by-step algorithm for implementing the pro-
posed density approximation technique is also provided. Two numerical
examples illustrate the methodology.

1. Introduction

Numerous distributional results are already available in connection with
quadratic forms and quadratic expressions in normal random variables. The
latter include a linear term and a constant in addition to the quadratic
form. Various representations of the density function of a quadratic form
have been derived and several procedures have been proposed for computing
percentage points; for instance such results are available from [9], [15], [16],
[20], [23], [24] and [26]. Central and noncentral indefinite quadratic forms
are respectively discussed in [8] and [25] ; however, as explained in [25], the
expansions obtained are not practical. A linear combination of chi-square
variables having even degrees of freedom was considered in [1] and [7]. Exact
distributional results were derived in [2], [13] and [22] . As pointed out in
[18], a wide array of test statistics can be expressed in terms of quadratic
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forms in normal random vectors. For example, one may consider the lagged
regression residuals developed in [3] and discussed in [21], or certain change
point test statistics derived in [17]. The distribution of a certain goodness-
of-fit score statistic that is given in terms of a sum of quadratic expressions
is discussed in [19] . As pointed out in [14], quadratic expressions are also
utilized in connection with analysis of variance methods for unbalanced data.
Criteria for the independence of quadratic expressions were derived in [5],
[6] and [20] .

An accessible approach is proposed in this paper for approximating the
densities of positive definite and indefinite quadratic expressions in possibly
singular normal random vectors in terms of gamma and generalized gamma
densities. It is explained that such approximants can be combined with
polynomial adjustments in order to improve their accuracy.

A decomposition of indefinite quadratic expressions in nonsingular nor-
mal vectors is derived in Section 2 where the moments of such quadratic
forms are determined from a certain recursive relationship involving their
cumulants. An integral representation of the density function of an indefi-
nite quadratic form is also provided in that section. Useful representations
of quadratic forms and quadratic expressions in singular normal vectors are
respectively obtained in Sections 3 and 4. In Section 5, we propose some
approximations to the distribution of quadratic expressions in terms of gen-
eralized gamma-type distributions and their polynomially adjusted coun-
terparts. That section includes closed form and integral formulae for the
approximate densities. Also provided is a step-by-step algorithm for im-
plementing the proposed density approximation approach. Two numerical
examples are presented in the last section. The first one is based on exact
percentiles whereas the second makes use of simulated percentiles.

In the context of density approximation, the Monte Carlo and analytical
approaches have their own merits and shortcomings. Monte Carlo simula-
tions which generate artificial data wherefrom sampling distributions and
moments are estimated, can be implemented with relative ease on a wide ar-
ray of models and error probability distributions. There are, however, some
limitations on the range of applicability of such techniques: the results may
be subject to sampling variations or simulation inadequacies and may depend
on the assumed parameter values. Recent efforts to cope with these issues
are discussed for example in [4] and [10–12] . On the other hand, the analyt-
ical approach derives results which hold over the whole parameter space but
may find limitations in terms of simplifications on the model, which have
to be imposed to make the problem tractable. Even when exact theoretical
results can be obtained, the resulting expressions can be fairly complicated.
The moment-based approximation procedure advocated in this paper has
the merit of producing expressions that yield very accurate distributional
results over the entire supports of the distributions being considered.
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2. Indefinite quadratic expressions: the nonsingular case

A decomposition of noncentral indefinite quadratic expressions in non-
singular normal vectors is given in terms of the difference of two positive
definite quadratic forms whose moments are determined from a certain re-
cursive relationship involving their cumulants. An integral representation of
the density function of an indefinite quadratic form is also provided.

We first show that an indefinite quadratic expression in a nonsingular
normal random vector can be expressed in terms of standard normal vari-
ables. Let X ∼ Np(µ, Σ), Σ > 0, that is, X is distributed as a p-variate
normal random vector with mean µ and positive definite covariance matrix
Σ . On letting Z ∼ Np(0, I), where I is a p × p identity matrix, one has
X = Σ

1
2 Z + µ where Σ

1
2 denotes the symmetric square root of Σ . Then,

in light of the spectral decomposition theorem, the quadratic expression
Q∗(X) = X′AX + a′X + d where A is a p× p real symmetric matrix, a is a
p-dimensional constant vector and d is a scalar constant can be expressed as

Q∗(X) = (Z + Σ−
1
2µ)′Σ

1
2AΣ

1
2 (Z + Σ−

1
2µ) + a′Σ

1
2 (Z + Σ−

1
2µ) + d

= (Z + Σ−
1
2µ)′PP ′Σ

1
2AΣ

1
2PP ′(Z + Σ−

1
2µ)

+ a′Σ
1
2PP ′(Z + Σ−

1
2µ) + d

where P is an orthogonal matrix that diagonalizes Σ
1
2AΣ

1
2 , that is,

P ′Σ
1
2AΣ

1
2P = Diag(λ1, . . . , λp),

λ1, . . . , λp being the eigenvalues of Σ
1
2AΣ

1
2 in decreasing order with λr+1 =

. . . = λr+θ = 0. Let vi denote the normalized eigenvector of Σ
1
2AΣ

1
2 corre-

sponding to λi, i = 1, . . . , p, (such that Σ
1
2AΣ

1
2 vi = λivi and vi′vi = 1) and

P = (v1, . . . ,vp). Letting U = P ′Z where U = (U1, . . . , Up)′ ∼ Np(0, I),
b=P ′Σ−

1
2µ with b=(b1, . . . , bp)′, g′=a′Σ

1
2P and c=b′Diag(λ1, . . . , λp)b+

g′b + d , one has

Q∗(X) = (U + b)′Diag(λ1, . . . , λp)(U + b) + a′Σ
1
2P (U + b) + d

= U′Diag(λ1, . . . , λp)U + (2b′Diag(λ1, . . . , λp) + g′)U + c

=
p∑
j=1

λjU
2
j +

p∑
j=1

kjUj + c

=
r∑
j=1

λjU
2
j +

r∑
j=1

kjUj −
p∑

j=r+θ+1

|λj |U2
j +

p∑
j=r+θ+1

kjUj

+
r+θ∑
j=r+1

kjUj + c
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=
r∑
j=1

λj

(
Uj +

kj
2λj

)2
−

p∑
j=r+θ+1

|λj |
(
Uj +

kj
2λj

)2

+
r+θ∑
j=r+1

kjUj +
(
c−

r∑
j=1

k2
j

4λj
−

p∑
j=r+θ+1

k2
j

4λj

)

≡ Q1(V+)−Q2(V−) +
r+θ∑
j=r+1

kjUj + κ

≡ Q1(V+)−Q2(V−) + T, (1)

where k′ = (k1, . . . , kp) = 2b′Diag(λ1, . . . , λp)+g′, κ =
(
c−
∑r

j=1(k2
j /4λj)−∑p

j=r+θ+1(k2
j /4λj)

)
, T = (

∑r+θ
j=r+1 kjUj + κ) ∼ N (κ ,

∑r+θ
j=r+1 k

2
j ), Q1(V+)

and Q2(V−) are positive definite quadratic forms with V+ = (U1 +k1/(2λ1),
. . . , Ur+kr/(2λr))′ ∼ Nr(m1, I), V− = (Ur+θ+1 +kr+θ+1/(2λr+θ+1), . . . , Up
+kp/(2λp))′ ∼ Np−r−θ(m2, I), where m1 = (k1/(2λ1), . . . , kr/(2λr))′ and
m2 = (kr+θ+1/(2λr+θ+1), . . . , kp/(2λp))′, θ being number of null eigenvalues
of AΣ .

In particular, when a = 0 and d = 0, one has

Q(X) = X′AX =
p∑
j=1

λj(Uj + bj)2

=
r∑
j=1

λj(Uj + bj)2 −
p∑

j=r+θ+1

|λj |(Uj + bj)2

≡ Q1(Y+)−Q2(Y−) , (2)

where Y+ = (U1+b1, . . . , Ur+br)′ ∼ Nr(m1, I), Y− = (Ur+θ+1+br+θ+1, . . . ,
Up + bp)′ ∼ Np−r−θ(m2, I) with m1 = (b1, . . . , br)′, m2 = (br+θ+1, . . . , bp)′

and b = (b1, . . . , bp)′ = P ′Σ−1/2µ .
Thus, a noncentral indefinite quadratic expression, Q∗(X), can be ex-

pressed as a difference of independently distributed linear combinations of
independent non-central chi-square random variables having one degree of
freedom each plus a linear combination of normal random variables, or equiv-
alently, as the difference of two positive definite quadratic forms plus linear
combination of normal random variables. In particular, a noncentral in-
definite quadratic form can be represented as the difference of two positive
definite quadratic forms. It should be noted that the chi-square random
variables are central whenever µ = 0. When the matrix A is positive semi-
definite, so is Q(X), and then, Q(X) ∼ Q1(Y+) as defined in Equation
(3). Moreover, if the matrix A is not symmetric, it suffices to replace it by
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(A+A′)/2 within a quadratic form. Accordingly, it will be assumed without
any loss of generality that the matrices of the quadratic forms are symmetric.

Expressions for the characteristic function and the cumulant generating
function of a quadratic expression in central normal vectors are given for in-
stance in [6]. The cumulants and moments of quadratic forms and quadratic
expressions, which are useful for estimating the parameters of the density
approximants, can be determined as follows.

Let X ∼ Np(µ,Σ), Σ > 0, A = A′, a be a p−dimensional constant vector,
d be a scalar constant, Q∗(X) = X′AX+a′X+d and Q(X) = X′AX. Then,
as shown in [18], the s-th cumulant of Q∗(X) and Q(X) are respectively

k∗(s) = 2s−1s!
{tr(AΣ)s

s
+

1
4

a′(ΣA)s−2Σ a + µ′(AΣ)s−1Aµ

+ a′(ΣA)s−1Aµ
}
, for s ≥ 2

= tr(AΣ) + µ′Aµ+ a′µ+ d, for s = 1 ; (3)

and

k(s) = 2s−1s!
{tr(AΣ)s

s
+ µ′(AΣ)s−1Aµ

}
, for s ≥ 2

= tr(AΣ) + µ′Aµ for s = 1,

where λ1, . . . , λp are the eigenvalues of Σ
1
2AΣ

1
2 ,

b′ = (b1, . . . , bp) = (P ′Σ−
1
2µ)′

and tr(·) denotes the trace of (·). Note that tr(AΣ)s =
∑p

j=1 λ
s
j .

As explained in [27], the moments of a random variable can be obtained
from its cumulants by means of the recursive relationship that is specified
by Equation (4). Accordingly, the h-th moment of Q∗(X) is given by

µ∗(h) =
h−1∑
i=0

(h− 1)!
(h− 1− i)! i!

k∗(h− i)µ∗(i) , (4)

where k∗(s) is as given in Equation (3).
One could also make use of Equation (4) to determine the moments of

the positive definite quadratic forms, Q1(X) ≡ Y+A1Y+ and Q2(X) ≡
Y−A2Y−, appearing in Equation (2) where A1 = Diag(λ1, . . . , λr), A2 =
Diag(|λr+θ+1|, . . . , |λp|), Y+ ∼ N r(m1, I) with m1 = (b1, . . . , br)′,
Y− ∼ N p−r−θ(m2, I) with m2 = (br+θ+1, . . . , bp)′ and b′ = (b1, . . . , bp) =
(P ′Σ−

1
2µ)′.
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3. Quadratic forms in singular normal vectors

Singular covariance matrices occur in many contexts. For example, con-
sider a standard linear regression model y = Xβ + ε where y ∈ Rn, X
is a non-stochastic n × k matrix of full column rank and ε ∼ Nn(0, σ2In),
In denoting identity matrix order n. The distribution of the residuals e =
y−Xβ̂ = (In −X(X ′X)−1X ′)y, where β̂ = (X ′X)−1X ′y, is

e ∼ Nn
(
0 , σ2(In −X(X ′X)−1X ′)

)
where the covariance matrix, σ2(In −X(X ′X)−1X ′), is of rank n− k .

Another example of application of singular covariance matrices pertains to
economic data, which may be subject to constraints such as the requirement
for a company’s profits to equal its turnover expenses. If, for example, the
data vector X = (X1, . . . , Xk)′ must satisfy the restriction X1 + · · ·+Xk−1 =
Xk, then Σ, the covariance matrix of X, will be singular. When Σp×p is a

singular matrix of rank r < p, we make use of the spectral decomposition
theorem to express Σ as UWU ′ where W is a diagonal matrix whose first r
diagonal elements are positive, the remaining diagonal elements being equal
to zero. Next, we let B∗p×p = UW 1/2 and remove the p − r last columns
of B∗, which are null vectors, to obtain the matrix Bp×r. Then, it can be
verified that Σ = BB′.

Let X be a p × 1 random vector with E(X) = µ and Cov(X) = Σ of
rank r ≤ p. Since Σ is positive semidefinite and symmetric, one can write
Σ = BB′ where B is p×r of rank r. Now, consider the linear transformation

X = µ+B Z1 where Z1 ∼ Nr(0, I) ;

then, one has the following decomposition of the quadratic form Q(X):

Q(X) = X′AX = (µ+BZ1)′A(µ+BZ1)

= µ′Aµ+ 2 Z′1B
′Aµ+ Z′1B

′ABZ1 whenever A = A′.

Let P be an orthogonal matrix such that P ′B′ABP = Diag(λ1, . . . , λr),
λ1, . . . , λr being the eigenvalues of B′AB. Note that when B′AB = O, the
null matrix, Q(X) reduces to a linear form. Then, assuming that B′AB 6= O,
one has Z = P ′Z1 ∼ Nr(0, I), and

Q(X) = µ′Aµ+ 2Z′P ′B′Aµ+ Z′Diag(λ1, . . . , λr)Z .

Thus, the quadratic form Q(X) = X′AX has the following representation.
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Representation 3.1. Letting A = A′, X be a p × 1 normal vector with
E(X) = µ , Cov(X) = Σ ≥ 0 , rank(Σ) = r ≤ p, Σ = BB′ where B is a
p× r matrix and assuming that B′AB 6= O, one has

Q(X) = X′AX =
r∑
j=1

λjZ
2
j + 2

r∑
j=1

b∗jZj + c∗

=
r1∑
j=1

λjZ
2
j + 2

r1∑
j=1

b∗jZj −
r∑

j=r1+θ+1

|λj |Z2
j + 2

r∑
j=r1+θ+1

b∗jZj

+ 2
r1+θ∑
j=r1+1

b∗jZj + c∗

=
r1∑
j=1

λj

(
Zj +

b∗j
λj

)2
−

r∑
j=r1+θ+1

|λj |
(
Zj +

b∗j
λj

)2
+ 2

r1+θ∑
j=r1+1

b∗jZj

+
(
c∗ −

r1∑
j=1

b∗j
2

λj
−

r∑
j=r1+θ+1

b∗j
2

λj

)

≡ Q1(W1)−Q2(W2) + 2
r1+θ∑
j=r1+1

b∗jZj + κ∗

≡ Q1(W1)−Q2(W2) + T ∗, (5)

where Q1(W1) and Q2(W2) are positive definite quadratic forms with

W1 = (W1, . . . ,Wr1)′, W2 = (Wr1+θ+1, . . . ,Wr)′,

Wj = Zj + b∗j/λj , j = 1, . . . , r1, r1 + θ + 1, . . . , r,

b∗
′

= (b∗1, . . . , b
∗
r) = µ′ABP , Z = (Z1, . . . , Zr)′ ∼ Nr(0, I),

P ′B′ABP = Diag(λ1, . . . , λr), PP ′ = I, c∗ = µ′Aµ,

T ∗ = 2
r1+θ∑
j=r1+1

b∗jZj + κ∗ ∼ N (κ∗ , 4
r1+θ∑
j=r1+1

b∗j
2)

and κ∗ =
(
c∗ −

∑r1
j=1 b

∗
j

2/λj −
∑r

j=r1+θ+1 b
∗
j

2/λj

)
, λj > 0, j = 1, . . . , r1;

λj = 0, j = r1 + 1, . . . , r1 + θ; λj < 0, j = r1 + θ + 1, . . . , r.

4. Quadratic expressions in singular normal vectors

Let the p × 1 random vector X be a singular p-variate normal random
variable with E(X) = µ and Cov(X) = Σ = BB′ where B is p × r of rank
r ≤ p . Consider the quadratic expression

Q∗(X) = X′AX + a′X + d
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where A = A′ , a is a p-dimensional vector and d is a constant.
A representation of Q∗(X) is derived is Section 4.1 and its cumulants are

provided in Sections 4.2 .

4.1. A decomposition of Q∗(X). Letting X = µ + B Z where Z ∼
Nr(0, I), one can write

Q∗(X) ≡ Q∗(Z) = (µ+BZ)′A(µ+BZ) + a′(µ+BZ) + d

= µ′Aµ+ 2µ′A′BZ + Z′B′ABZ + a′BZ + a′µ+ d .

Let P be an orthogonal matrix such that P ′B′ABP = Diag(λ1, . . . , λr),
with λ1, . . . , λr being the eigenvalues of B′AB, PP ′ = P ′P = I, m′ =
a′BP , b∗

′
= µ′ABP and c1 = µ′Aµ+ a′µ+ d and W = P ′Z ∼ Nr(0, I) .

Then, assuming that B′AB 6= O, one has

Q∗(X) ≡ Q∗(W) = W′P ′B′ABPW + 2µ′ABPW + a′BPW + µ′Aµ

+ a′µ+ d

= W′Diag(λ1, . . . , λr)W + (2b∗
′
+ m′)W + c1 .

Thus we have the following representation.

Representation 4.1. Let A = A′, X be a p-dimensional normal vec-
tor with E(X) = µ , Cov(X) = Σ ≥ 0 , rank(Σ) = r ≤ p, Σ =
BB′ where B is a p × r matrix, a is a p-dimensional vector, P ′B′ABP =
Diag(λ1, . . . , λr), PP ′ = I, λ1, . . . , λr1 be the positive eigenvalues of B′AB,
λr1+1 = · · · = λr1+θ = 0, λr1+θ+1, . . . , λr be the negative eigenvalues of
B′AB, m′ = a′BP, b∗

′
= (b∗1, . . . , b

∗
r) = µ′ABP, and d is a real constant.

Assume that B′AB 6= O, then

Q∗(X) = X′AX + a′X + d

≡ Q∗(W) =
r∑
j=1

λjW
2
j + 2

r∑
j=1

(
1
2
mj + b∗j )Wj + c1

=
r1∑
j=1

λjW
2
j + 2

r1∑
j=1

njWj −
r∑

j=r1+θ+1

|λj |W 2
j + 2

r∑
j=r1+θ+1

njWj

+ 2
r1+θ∑
j=r1+1

njWj + c1

=
r1∑
j=1

λj

(
Wj +

nj
λj

)2
−

r∑
j=r1+θ+1

|λj |
(
Wj +

nj
λj

)2
+ 2

r1+θ∑
j=r1+1

njWj

+
(
c1 −

r1∑
j=1

n2
j

λj
−

r∑
j=r1+θ+1

n2
j

λj

)



INDEFINITE QUADRATIC EXPRESSIONS IN SINGULAR NORMAL VECTORS 69

≡ Q1(W+)−Q2(W−) + 2
r1+θ∑
j=r1+1

njWj + κ1

≡ Q1(W+)−Q2(W−) + T1, (6)

where W′ = (W1, . . . ,Wr) ∼ Nr(0, I), Q1(W+) and Q2(W−) are positive
definite quadratic forms with

W+ = (W1 + n1/λ1, . . . ,Wr1 + nr1/λr1)′ ∼ Nr1(ν1, I),

W− = (Wr1+θ+1 + nr1+θ+1/λr1+θ+1, . . . ,Wr + nr/λr)′ ∼ Nr−r1−θ(ν2, I),

ν1 = (n1/λ1, . . . , nr1/λr1)′ and ν2 = (nr1+θ+1/λr1+θ+1, . . . , nr/ λr)′,
θ being number of null eigenvalues, nj = 1

2mj + b∗j , c1 = µ′Aµ + a′µ + d,

κ1 =
(
c1 −

∑r1
j=1 n

2
j/λj −

∑r
j=r1+θ+1 n

2
j/λj

)
and

T1 = (2
r1+θ∑
j=r1+1

njWj + κ1) ∼ N (κ1 , 4
r1+θ∑
j=r1+1

n2
j ) .

When µ = 0, one has

Q∗(X) ≡ Q∗(W) =
r∑
j=1

λjW
2
j +

r∑
j=1

mjWj + d

=
r1∑
j=1

λjW
2
j +

r1∑
j=1

mjWj −
r∑

j=r1+θ+1

|λj |W 2
j +

r∑
j=r1+θ+1

mjWj

+
r1+θ∑
j=r1+1

mjWj + d

=
r1∑
j=1

λj

(
Wj +

mj

2λj

)2
−

r∑
j=r+θ+1

|λj |
(
Wj +

mj

2λj

)2

+
r1+θ∑
j=r1+1

mjWj +
(
d−

r1∑
j=1

m2
j

4λj
−

r∑
j=r1+θ+1

m2
j

4λj

)

≡ Q1(W+
1 )−Q2(W−

1 ) +
r1+θ∑
j=r1+1

mjWj + κ∗1

≡ Q1(W+
1 )−Q2(W−

1 ) + T ∗1 , (7)

where Q1(W+
1 ) and Q2(W−

1 ) are positive definite quadratic forms with

W+
1 = (W1 +m1/2λ1, . . . ,Wr1 +mr1/2λr1)′ ∼ Nr1(µ1, I),

µ1 = (m1/2λ1, . . . ,mr1/2λr1)′,
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W−
1 = (Wr1+θ+1 +mr1+θ+1/2λr1+θ+1, . . . ,Wr +mr/2λr)′

∼ Nr−r1−θ(µ2, I),

µ2 = (mr1+θ+1/2λr1+θ+1, . . . ,mr/2λr)′,

κ∗1 =

d− r1∑
j=1

m2
j/4λj −

r∑
j=r1+θ+1

m2
j/4λj


and

T ∗1 =

 r1+θ∑
j=r1+1

mjWj + κ∗1

 ∼ N
κ∗1 , r1+θ∑

j=r1+1

m2
j

 .

4.2. Cumulants and moments of quadratic expressions in singular
normal vectors. The cumulant generating function of Q∗ = X′AX +
a′X + d and Q = X′AX where A = A′, X has a singular p-variate normal
density with E(X) = µ, Cov(X) = Σ = BB′, B is p× r of rank r, a is a
p–dimensional constant vector and d is a scalar constant, are respectively

ln(MQ∗(t)) = t(d+ a′µ+ µ′Aµ) +
1
2

∞∑
j=1

(2t)j

j
tr(AΣ)j

+
∞∑
j=0

(2t)j+2
{1

8
a′(ΣA)jΣ a +

1
2
µ′ (AΣ)j+1Aµ

+
1
2

a′(ΣA)j+1µ
}

and

ln(MQ(t)) = −1
2

r∑
j=1

ln(1− 2 tλj) + c∗t+ 2 t2
r∑
j=1

b∗j
2

(1− 2 tλj)

where λ1, . . . , λp are the eigenvalues of B′AB, B′AB 6= O , c∗ = µ′Aµ,
b∗ = P ′B′Aµ, and PP ′ = I.

It is also shown in [18] that s-th cumulant of Q∗ is

k∗(s) = 2s−1s!
{

(1/s) tr(B′AB)s + (1/4) a′B (B′AB)s−2B′a

+µ′AB(B′AB)s−2B′Aµ+ a′B(B′AB)s−2B′Aµ
}

= 2s−1s!
{

(1/s)tr(AΣ)s + (1/4)a′(ΣA)s−2Σ a

+µ′(AΣ)s−1Aµ+ a′(ΣA)s−1µ
}
, for s ≥ 2

= tr(AΣ) + µ′Aµ+ a′µ+ d , when s = 1 .

The moments of Q∗(X) can then be readily determined via the recursive
relationship given in Equation (4) .
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5. Approximating the distribution of quadratic expressions

Since the representations of indefinite quadratic expressions involve dif-
ference Q1 − Q2 where Q1 and Q2 are independently distributed positive
definite quadratic forms, some approximations to the density function of
Q1 − Q2 are provided in Sections 5.1 and 5.2 . An algorithm describing
proposed methodology is provided in Section 5.3 .

Letting Q(X) = Q1(X1) − Q2(X2) and hQ(q) I<(q), fQ1(q1) I(τ1,∞)(q1)
and fQ2(q2) I(τ2,∞)(q2) respectively denote the approximate densities of
Q(X), Q1(X1) > 0 and Q2(X2) > 0 , where X′ = (X′1 , X

′
2) and X′1 and

X′2 are independently distributed, IA(.) being the indicator function with
respect to the set A, an approximation to density function of the indefi-
nite quadratic form Q(X) can be obtained as follows via the transformation
variables technique:

hQ(q) =
{
hP (q) for q ≥ τ1 − τ2

hN (q) for q < τ1 − τ2,
(8)

where

hP (q) =
∫ ∞
q+τ2

fQ1(y)fQ2(y − q)dy (9)

and

hN (q) =
∫ ∞
τ1

fQ1(y)fQ2(y − q)dy . (10)

Note that in the case of gamma-type density functions without location
parameters, one should set τ1 and τ2 equal to zero in (8), (9) and (10).

Various types of quadratic expressions are represented as the difference
of two positive definite quadratic forms plus linear combination of normal
random variables in Equations (1), (5), (6) or (7). For example, in Equation
(6), we know that T1 ∼ N (κ1 , 4

∑r1+θ
j=r1+1 n

2
j ) and we can use Equation (8)

to approximate the density function of Q = Q1(W+) − Q2(W−) . Since Q
and T1 are independently distributed, fQ,T1(q, t) = hQ(q)η(t) where η(t) is
density function of T1. To determine an approximation to distribution of
V = Q+ T1, we apply transformation variables technique. Letting U = T1,
the joint density function of U and V is found to be gV,U (v , u) = fQ,T1(v −
u , u)|J | where the Jacobian J is equal to one. Thus the density function of
V is

g(v) =
∫ ∞
−∞

gV,U (v , u)du . (11)

5.1. Approximations via generalized gamma distributions. Positive
definite quadratic forms are approximated by gamma-type distributions in
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this section. First, let us consider the gamma distribution whose density
function is given by

ψ(x) =
xα−1e−x/β

Γ(α)βα
I(0 ,∞)(x) (12)

where α > 0 and β > 0 can be specified as follows on the basis of µ(1) and
µ(2), the first two raw moments of the distribution being approximated:

α = µ(1)2/(µ(2)− µ(1)2) and β = µ(2)/µ(1)− µ(1) .

The generalized gamma density function that we are considering has the
following parameterization:

ψ(x) =
γ

βαγΓ(α)
xαγ−1e−(x/β)γ I(0 ,∞)(x)

where α > 0, β > 0 and γ > 0. Denoting its raw moments by m(j), j =
0, 1, . . . , one has

m(j) =
βj Γ(α + j/γ)

Γ(α)
.

Its three parameters can readily be determined by solving the equations,

µQ(i) = m(i) , for i = 1, 2, 3,

numerically, where µQ(i) denotes the i-th moment of a positive definite qua-
dratic form Q.

A four-parameter gamma density, also called shifted generalized gamma
density function, is given by

ψ(x) =
γ

βαγΓ(α)
(x− τ)αγ−1e

−(x−τ
β

)γ I(τ,∞)(x)

where α > 0, β > 0 and γ > 0 . One can determine the moments of the
shifted generalized gamma distribution by applying the binomial expansion
to the moments of the generalized gamma distribution .

Let Q1(Y+) and Q2(Y −) be two independently distributed positive defi-
nite quadratic forms such as those defined in Equation (2) . Then, an approx-
imate density function for Q1(Y+)−Q2(Y−) can be obtained from Equation
(8) . Let τ1 = τ2 = 0 and consider the gamma distribution whose density
function is given in Equation (12). Let αi and βi be determined from the
first two moments of Qi(X), i = 1, 2 . It is assumed that the constants αi are
such that the arguments of the gamma functions appearing in the following
expressions are neither negative integers nor zero. In this case, the negative
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part of the density function of Q(X) is

hN (q) =
∫ ∞
−q

fQ1(y) fQ2(y − q) dy

=
∫ ∞

0

(y)α1−1 (y − q)α2−1 e−y/β1 e−(y−q)/β2

Γ(α1) Γ(α2)
dy

=
eq/β2 βα2−1

1 βα1−1
2 (β1 + β2)−α1−α2

q Γ(α1) Γ(1− α2) Γ(α2)

(
q (β1 + β2) Γ(1− α2)

× Γ(α1 + α2 − 1) 1F1

(
1− α2;−α1 − α2 + 2;−q(β1 + β2)

β1 β2

)
− β1 β2

(
− q(β1 + β2)

β1 β2

)α1+α2

Γ(α1) Γ(−α1 − α2 + 1)

×1 F1

(
α1;α1 + α2;−q(β1 + β2)

β1 β2

))
,

the positive part of the density being

hP (q) =
∫ ∞
q

fQ1(y) fQ2(y − q) dy

=
∫ ∞
q

(y)α1−1 (y − q)α2−1 e−y/β1 e−(y−q)/β2

Γ(α1) Γ(α2)
dy

=
eq/β2 qα2−1 β−α1

1 β−α2
2

Γ(α1)
1

Γ(1− α1)
Γ(−α1 − α2 + 1)

×1 F1

(
α1;α1 + α2;−q(β1 + β2)

β1 β2

)
qα1

+
1

Γ(α2)

(
β1 β2

β1 + β2

)α1+α2−1

Γ(α1 + α2 − 1)

×1 F1

(
1− α2;−α1 − α2 + 2;−q(β1 + β2)

β1 β2

)
q1−α2

where 1F1(a, b, z) =
∑∞

k=0
Γ(a+k) Γ(b) zk

Γ(a) Γ(b+k) k! . Thus, the density function of Q1(Y+)
−Q2(Y−) is

hQ(q) = hN (q) I(−∞,0)(q) + hP (q) I(0,∞)(q) . (13)

The approximate cumulative distribution function of Q(X) for y ≤ 0 is
then given by

FN (y) =
∫ y

−∞
hN (q)dq

=
∫ y

−∞

(
eq/β2 βα2−1

1 βα1−1
2 (β1 + β2)−α1−α2

q Γ(α1) Γ(1− α2) Γ(α2)

(
q (β1 + β2) Γ(1− α2)
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× Γ(α1 + α2 − 1) 1F1

(
1− α2;−α1 − α2 + 2;−q(β1 + β2)

β1 β2

)
− β1 β2

(
− q(β1 + β2)

β1 β2

)α1+α2

Γ(α1) Γ(−α1 − α2 + 1)

×1 F1

(
α1;α1 + α2;−q(β1 + β2)

β1 β2

)))
dq

=
∫ y

−∞

(
eq/β2 βα2−1

1 βα1−1
2 (β1 + β2)−α1−α2

q Γ(α1) Γ(1− α2) Γ(α2)

(
q (β1 + β2) Γ(1− α2)Γ(α1

+ α2 − 1)
∞∑
k=0

(
Γ(1− α2 + k) Γ(−α1 − α2 + 2)

(
− q(β1+β2)

β1 β2

)k
Γ(1− α2) Γ(−α1 − α2 + 2 + k) k!

)

− β1 β2

(
− q(β1 + β2)

β1 β2

)α1+α2

Γ(α1) Γ(−α1 − α2 + 1)

×
∞∑
k=0

(
Γ(α1 + k) Γ(α1 + α2)

(
− q(β1+β2)

β1 β2

)k
Γ(α1) Γ(α1 + α2 + k) k!

)))
dq

=
∞∑
k=0

βα2−1
1 βα1−1

2 (β1 + β2)−α1−α2

Γ(α1) Γ(1− α2) Γ(α2)

(
(β1 + β2) Γ(1− α2) Γ(α1 + α2 − 1)

×

(
Γ(1− α2 + k) Γ(−α1 − α2 + 2)

(
β1+β2

β1 β2

)k
Γ(1− α2) Γ(−α1 − α2 + 2 + k) k!

)∫ y

−∞
(−q)k eq/β2dq

+ β1 β2

(β1 + β2

β1 β2

)α1+α2

Γ(α1) Γ(−α1 − α2 + 1)

×

(
Γ(α1 + k) Γ(α1 + α2)

(
β1+β2

β1 β2

)k
Γ(α1) Γ(α1 + α2 + k) k!

))∫ y

−∞
(−q)k+α1+α2−1 eq/β2dq

=
∞∑
k=0

βα2−1
1 βk+α1

2 (β1 + β2)−α1−α2

(
β1+β2

β1 β2

)k
k! Γ(α1)2 Γ(1− α2)2 Γ(k − α1 − α2 + 2) Γ(α2) Γ(k + α1 + α2)

×
(

(β1 + β2) Γ(k + α1) Γ(1− α2)2 Γ(k − α1 − α2 + 2) Γ(α1 + α1 − 1)

× Γ(α1 + α1) Γ(1 + k,−y/β2) + β1 β
α1+α2
2

(β1 + β2

β1 β2

)α1+α1

Γ(α1)2

× Γ(k − α2 + 1) Γ(−α1 − α2 + 1) Γ(−α1 − α2 + 2)

× Γ(k + α1 + α2) Γ(k + α1 + α2,−y/β2)
)
.
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It can be similarly determined that for y ≥ 0, the approximate cumulative
distribution function of Q(X) is expressible as follws:

FP (y) = FN (0) +
∫ y

0
hP (q)dq

= FN (0) +
∫ y

0

(
eq/β2 qα2−1 β−α1

1 β−α2
2

Γ(α1)

( 1
Γ(1− α1)

Γ(−α1 − α2 + 1)

×1 F1

(
α1;α1 + α2;−q(β1 + β2)

β1 β2

)
qα1 +

1
Γ(α2)

( β1 β2

β1 + β2

)α1+α2−1

× Γ(α1 + α2 − 1) 1F1

(
1− α2;−α1 − α2 + 2;−q(β1 + β2)

β1 β2

)
q1−α2

)
dq

= FN (0) +
∫ y

0

(
eq/β2 qα2−1 β−α1

1 β−α2
2

Γ(α1)

( 1
Γ(1− α1)

Γ(−α1 − α2 + 1)

×
∞∑
k=0

(
Γ(α1 + k) Γ(α1 + α2)

(
− q(β1+β2)

β1 β2

)k
Γ(α1) Γ(α1 + α2 + k) k!

)
qα1

+
1

Γ(α2)

( β1 β2

β1 + β2

)α1+α2−1
Γ(α1 + α2 − 1)

×
∞∑
k=0

(
Γ(1− α2 + k) Γ(−α1 − α2 + 2)

(
− q(β1+β2)

β1 β2

)k
Γ(1− α2) Γ(−α1 − α2 + 2 + k) k!

)
q1−α2

)
dq

= FN (0) +
∞∑
k=0

β−α1
1 β−α2

2

Γ(α1)

(
1

Γ(1− α1)
Γ(−α1 − α2 + 1)

×

(
Γ(α1 + k) Γ(α1 + α2)

(
− β1+β2

β1 β2

)k
Γ(α1) Γ(α1 + α2 + k) k!

) ∫ y

0
qk+α1+α2−1 eq/β2dq

+
1

Γ(α2)

( β1 β2

β1 + β2

)α1+α2−1
Γ(α1 + α2 − 1)

×

(
Γ(1− α2 + k) Γ(−α1 − α2 + 2)

(
β1+β2

β1 β2

)k
Γ(1− α2) Γ(−α1 − α2 + 2 + k) k!

))∫ y

0
(−q)k eq/β2dq

= FN (0) +
∞∑
k=0

β−α1
1 β−α2

2

k! Γ(α1)

(
− β1 + β2

β1 β2

)k

×

(( β1 β2

β1+β2

)α1+α2−1
Γ(1− α2 + k) Γ(−α1 − α2 + 2)

Γ(1− α2) Γ(k − α1 − α2 + 2) Γ(α2)
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× Γ(α1 + α2 − 1)
(

Γ(k + 1,−y/β2)− k Γ(k)
)
βk+1

2

+
(−1/β2)−k−α1−α2 Γ(k + α1) Γ(α1 + α2)

Γ(1− α1) Γ(k + α1 + α2) Γ(α1)
Γ(−α1 − α2 + 1)

×
(

Γ(k + α1 + α2)− Γ(k + α1 + α2,−y/β2)
))

.

Consider the singular quadratic expression Q∗(X) which is decomposed
in Equation (6) into Q1(W+)−Q2(W−) + T1 where the approximate den-
sity function of Q = Q1(W+) − Q2(W−) is as given in Equation (13) and
T1 = (2

∑r1+θ
j=r1+1 njWj + κ1) ∼ N (κ1 , 4

∑r1+θ
j=r1+1 n

2
j ) with κ1 =

(
c1 −∑r1

j=1 n
2
j/λj −

∑r
j=r1+θ+1 n

2
j/λj

)
, T1 being distributed independently of

Q1(W+) and Q2(W−). In this case, the density function of T1 is

η(t) =
(

1
/(√

2πσ
))

e−(t−κ1)2/(2σ2)

where σ2 = 4
∑r1+θ

j=r1+1 n
2
j . Then, it follows from Equation (11) that the

approximate density function of V = Q+ T1 is

g(v) =
∫ ∞
−∞

gV,U (v , u)du

=
∫ ∞
−∞

hQ(v − u)η(t)du

=
∫ ∞
−∞

(
hN (v − u) I(−∞,0)(v − u)η(t)

+hP (v − u) I(0,∞)(v − u)η(t)
)

du

=
∫ v

−∞
hN (v − u) η(t) du+

∫ ∞
v

hP (v − u) η(t) du

≡ gn(v) + gp(v)

where

gn(v) =
∫ 0

−∞
hN (v − u) η(u) du

=
∫ 0

−∞

∞∑
k=0

(
e
− (u−κ1)2

2σ2 − u
β2

+ v
β2 βα2−2

1 βα1−2
2 b−a+1 (ζ(u− v))k−1

×
(
β1β2Γ(α1)2Γ(k − α2 + 1)Γ(−a+ 1)Γ(−a+ 2)Γ(k + a)

× (ζ (u− v))a + (u− v) bΓ(k + α1) Γ(1− α2)2 Γ(k − a+ 2)

× Γ(a− 1)Γ(a)
)
/
(

(
√

2πσk!Γ(α1)2Γ(1− α2)2Γ(k − a+ 2)
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× Γ(α2)Γ(k + a))
))

du

=
∞∑
k=0

(
1√

πk!Γ(α2)
2
k
2
−2e−

(v−κ1)2

2σ2 βα2
1 ζkβα1−2

2 b−a σk−2

×
(

1
Γ(1− α2)2Γ(k − a+ 2)

2
a
2 β2Γ(k − α2 + 1)Γ(−a+ 1)

× Γ(−a+ 2)
(√

2β2σΓ
(

1
2

(k + a)
)

1F1

(
1
2

(k + a);
1
2

; γ
)

− 2
(
σ2 + vβ2 − β2 κ1

)
Γ
(

1
2

(k + a+ 1)
)

1F1

(1
2

(k + a+ 1);

× 3
2

; γ
))

(ζσ)a +
1

β1Γ(α1)2Γ(k + a)

√
2β2σΓ(k + α1)Γ(a− 1)

× Γ(a)
(√

2β2σΓ
(
k + 1

2

)
1F1

(
k + 1

2
;
1
2

; γ
)

− 2
(
σ2 + vβ2 − β2κ1

)
Γ
(
k

2
+ 1
)

1F1

(
k + 2

2
;
3
2

; γ
))

+
1

Γ(α1)2Γ(k + a)
2σΓ(k + α1)Γ(a− 1)Γ(a)

×
(
β2σΓ

(
k + 1

2

)
1F1

(
k + 1

2
;
1
2

; γ
)

−
√

2
(
σ2 + vβ2 − β2 κ1

)
Γ
(
k

2
+ 1
)

1F1

(
k + 2

2
;
3
2

; γ
))))

and

gp(v) =
∫ ∞
v

hP (v − u) η(t) du

=
∫ ∞
v

∞∑
k=0

(
1√

2πσk!Γ(α1)
e
v−u
β2
− (u−κ1)2

2σ2 (v − u)α2−1β−α1
1 β−α2

2

× (ζ(u− v))k
(

Γ(k + α1)Γ(−a+ 1)Γ(a)(v − u)α1

Γ(1− α1)Γ(α1)Γ(k + a)

+
((1

ζ

)a−1
Γ(k − α2 + 1)Γ(−a+ 2)Γ(a− 1)(v − u)1−α2

Γ(1− α2)Γ(k − a+ 2)Γ(α2)

))
du

=
∞∑
k=0

{ 1√
πσ2k!Γ(α1)2

2
k
2
−2e−

(v−κ1)2

2σ2 β−α1
1 β−α2−2

2

Γ(1− α2)Γ(k − a+ 2)Γ(α2)
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×

[
1

Γ(1− α1)Γ(k + a)
2
a
2 β2σ

k+aΓ(k + α1)Γ(−a+ 1)Γ(a)

×
(√

2β2σΓ
(

1
2

(k + a)
)

1F1

(
1
2

(k + a);
1
2

; γ
)

+ 2
(
σ2 + vβ2 − β2κ1

)
Γ
(

1
2

(k + a+ 1)
)

×1 F1

(
1
2

(k + a+ 1);
3
2

; γ
)

(−ζ)k +
(

2β2

(
1
ζ

)a−1

σ (ζσ)k

× Γ(α1)Γ(k − α2 + 1)Γ(−a+ 2)Γ(a− 1)
(
β2σΓ

(
k + 1

2

)
×1 F1

(
k + 1

2
;
1
2

; γ
)

+
√

2
(
σ2 + vβ2 − β2κ1

)
Γ
(
k

2
+ 1
)

×1 F1

(
k + 2

2
;
3
2

; γ
)))]}

where a = α1 + α2, b = β1 + β2, ζ = β1+β2

β1β2
and γ = (σ2+vβ2−β2κ1)2

2β2σ2 .

5.2. Polynomially adjusted density functions. It is explained in this
section that the density approximations can be adjusted with polynomials
whose coefficients are such that their first n moments coincide with the first
n moments of the positive definite quadratic forms being approximated.

In order to approximate the density function of a noncentral quadratic
form Q(X), one should first approximate the density functions of the two
positive definite quadratic forms, Q1(Y+) and Q2(Y−) . On making use
of the recursive relationship given in (4), the moments of the positive def-
inite quadratic form Q1(Y+) denoted by µQ1(·) can be obtained from its
cumulants. Then, on the basis of the first n moments of Q1(Y+), a density
approximation of the following form is assumed for Q1(Y+):

fn(x) = ϕ(x)
n∑
j=0

ξjx
j

where ϕ(x) is an initial density approximant referred to as base density
function, which could be a gamma, generalized gamma or shifted generalized
gamma density function.
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In order to determine the polynomial coefficients, ξj , we equate the
h-th moment of Q1(X) to the h-th moment of the approximate distribu-
tion specified by fn(x) for h = 0, 1, . . . , n. That is,

µQ1(h) =
∫ ∞
τ1

xhϕ(x)
n∑
j=0

ξjx
jdx =

n∑
j=0

ξj

∫ ∞
τ1

xh+jϕ(x)dx

=
n∑
j=0

ξj m(h+ j), h = 0, 1, . . . , n,

where m(h+ j) is the (h+ j)-th moment determined from ϕ(x). This leads
to a linear system of (n+ 1) equations in (n+ 1) unknowns whose solution
is
ξ0

ξ1
...
ξn

=


m(0) m(1) · · · m(n− 1) m(n)
m(1) m(2) · · · m(n) m(n+ 1)
· · · · · · · · · · · · · · ·
m(n) m(n+ 1) · · · m(2n− 1) m(2n)


−1

µQ1(0)
µQ1(1)

...
µQ1(n)

.
The resulting representation of the density function of Q1(X) will be referred
to as an n-th degree polynomially adjusted density approximant. As long as
higher moments are available, more accurate approximations can always be
obtained by making use of additional moments.

The density function for Q2(X) can be similarly approximated, so that ap-
proximations for both positive definite quadratic forms, Q1(X) and Q2(X),
are available. The density approximant to the noncentral indefinite qua-
dratic expressions in nonsingular and singular normal vectors are then ob-
tained by making use of Equations (11) in conjunction with Equation (13).

5.3. The algorithm. The following algorithm can be utilized to approx-
imate the density function of the quadratic expression Q∗(X) = X′AX +
a′X + d where X ∼ N p(µ, Σ), Σ ≥ 0, A is an indefinite symmetric real ma-
trix, a is a p-dimensional constant vector and d is a scalar constant. When
Σ is a singular matrix, the symmetric square root does not exist. In this
case, we make use of the spectral decomposition theorem to express Σ as
UWU ′ where W is a diagonal matrix whose first r diagonal elements are
positive, the remaining diagonal elements being equal to zero. Next, we let
B∗p×p = UW 1/2 and remove the p − r last columns of B∗, which are null
vectors, to obtain the matrix Bp×r. Then, it can be verified that Σ = BB′.

1. The eigenvalues of B′AB are denoted by λ1 ≥ · · · ≥ λr > λr+1 =
· · · = λr+θ = 0 > λr+θ+1 ≥ · · · ≥ λp, and the corresponding normalized
eigenvectors, ν1, . . . ,νp, are determined, and we let P = (ν1, . . . ,νp) .
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2. In the singular case, one can decomposeQ∗(X) asQ1(W+)−Q2(W−)+T1

where Q1(W+) and Q2(W−) are positive definite quadratic forms with
W+ = (W1+n1/λ1, . . . ,Wr1 +nr1/λr1)′ ∼ Nr1(ν1, I), ν1 = (n1/λ1, . . . , nr1/
λr1)′, W− = (Wr1+θ+1+nr1+θ+1/(λr1+θ+1), . . . ,Wr+nr/(λr))′ ∼ Nr−r1−θ(ν2

, I), ν2 = (nr1+θ+1/(λr1+θ+1), . . . , nr/(λr))′, θ being number of null eigen-
values, b∗

′
= (b∗1, . . . , b

∗
r) = µ′ABP, nj = 1

2mj+b∗j , c1 = µ′Aµ+a′µ+d and

W′ = (W1, . . . ,Wr) . Letting κ1 =
(
c1 −

∑r1
j=1 n

2
j/λj −

∑r
j=r1+θ+1 n

2
j/λj

)
,

T1 = (2
∑r1+θ

j=r1+1 njWj + κ1) ∼ N (κ1 , 4
∑r1+θ

j=r1+1 n
2
j ). Clearly, b∗ = 0 when-

ever µ = 0 and in that case, there is no need to determine the matrix P .

3. The cumulants and the moments of Q1 and Q2 are obtained from Equa-
tions (3) and (4), respectively.

4. Density approximants are determined for each of the positive definite
quadratic forms Q1 and Q2 on the basis of their respective moments and
denoted by fQ1(·) and fQ2(·) .

5. Given fQ1(·) and fQ2(·), we first approximate density of Q1(W+) −
Q2(W−) by using Equation (8) and then, determine the density function of
Q1(W+)−Q2(W−) + T1 by making use of Equation (11) .

6. A polynomial adjustment, which improves the accuracy of the approxi-
mations, can also be applied to the density approximations for Q1(W+) and
Q2(W−) as explained in Section 5.2. Then, an approximate density function
for Q∗(X) is obtained as explained in Step 5 .

6. Numerical examples

Example 6.1. Consider the following general linear combination of inde-
pendently distributed central chi-square random variables:

Q(X) =
s∑
i=1

λ′i Ti −
t∑

j=s+1

|λ′j |Tj ,

where s = 6, t = 10, λ′k = λk/2, k = 1, . . . , 10, and the random variables
Ti and Tj are independently distributed chi-square random variables, each
having two degrees of freedom and λ1 = λ2 = 23.1, λ3 = λ4 = 4.5, λ5 = λ6 =
6.8, λ7 = λ8 = 8.13, λ9 = λ10 = 10.3, λ11 = λ12 = 20.1, λ13 = λ14 = −3.4,
λ15 = λ16 = −12.4, λ17 = λ18 = −2 and λ19 = λ20 = −1.3.

Since the eigenvalues occur in pairs, the exact density of Q(X) can be
determined as explained in the Appendix. In this example, we compare the
exact density and distribution functions of Q(X) with various approxima-
tions. Some exact and approximate percentiles are listed in Tables 1 and 2
and the best approximation for a given percentile is indicated by an asterisk.
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Table 1. Three approximations to the distribution function
of Q(X) evaluated at certain exact percentiles (Exact %)

CDF Exact % Gamma Gen. Gam. Sh. Gen. Gam.
0.0001 −147.47 0.000040 0.000127 0.000103*
0.001 −90.366 0.000689 0.001041 0.000985*
0.01 −33.257 0.010198 0.009811 0.009886*
0.05 7.0176 0.055784 0.049952* 0.049864
0.10 25.734 0.108681 0.100281 0.100013*
0.25 57.398 0.255312 0.250484 0.250396*
0.50 98.008 0.494008 0.499698 0.500128*
0.90 203.27 0.898124 0.900115 0.899893*
0.95 241.73 0.950857 0.950186 0.950052*
0.99 325.86 0.991558 0.990045* 0.990057
0.999 440.25 0.999399 0.998977 0.998997*
0.9999 551.20 0.999961 0.999889 0.999895*

Table 2. Three polynomially-adjusted approximations to
the distribution function of Q(X) evaluated at certain exact
percentiles (Exact % )

CDF Exact % Gam. Poly G. Gam. Poly Sh. G. Gam. Poly
0.0001 −147.47 0.000097 0.000101* 0.000098
0.001 −90.366 0.001006* 0.000979 0.000975
0.01 −33.257 0.009993 0.010003* 0.010031
0.05 7.0176 0.050010 0.050009* 0.049983
0.10 25.734 0.099996* 0.100029 0.100153
0.25 57.398 0.249949 0.249998* 0.249980
0.50 98.008 0.500075 0.499928* 0.499725
0.90 203.27 0.899967 0.900005* 0.899984
0.95 241.73 0.950023 0.949979* 0.949858
0.99 325.86 0.989989 0.990005* 0.990030
0.999 440.25 0.998996 0.999003* 0.999004
0.9999 551.20 0.999901 0.999899* 0.999894

The results presented in Table 1 indicate that the approximations ob-
tained from the shifted generalized gamma distribution are more accurate
when no polynomial adjustments are being made. The results included in
Table 2 show that after the polynomial adjustment, the generalized gamma
distribution is more accurate, even for extreme percentage points.
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Example 6.2. Consider the singular quadratic expressionQ∗(X) = X′AX+
a′X + d where X ∼ N5(µ, Σ),

A =


1 −0.9 −1 0 −5
−0.9 1 1 2 1
−1 1 2 3 1

0 2 3 −1 0
−5 1 1 0 1

 ,

µ = (100, 0,−50, 150, 5)′, a′ = (−1, 2, 3, 1, 1) , d = 6 and

Σ =


3 3 3 2 0
3 3 3 2 0
3 3 5 2 0
2 2 2 2 0
0 0 0 0 1

 .

In this case the matrices B and P were found to be

B =


1.66591 0.39015 0 −0.26929
1.66591 0.39015 0 −0.26929
2.03287 −0.92672 0 0.09291
1.18171 0.49418 0 0.59945

0 0 1 0


and

P =


−0.97731 0.00042 −0.14936 −0.15022

0.05695 −0.58347 −0.72923 0.35290
0.13922 0.69384 −0.66277 −0.24484
−0.14916 0.42208 0.08157 0.89048


respectively. The eigenvalues of B′AB are λ1 = 31.2355, λ2 = 3.80066,
λ3 = −2.92434, λ4 = −2.51178 and n1 = −693.095, n2 = −317.337, n3 =
443.115, and n4 = −268.983. Moreover, referring to Representation 4.1,
m1 = (−22.1894,−83.4953)′, m2 = (−151.526, 107.089)′ and c1 = −48064.

The approximate density functions of Q1(W+) and Q2(W−) are obtained
by making use of the gamma, generalized gamma and the shifted generalized
gamma approximations. The resulting distribution functions are evaluated
at certain simulated percentiles obtained on the basis of 1,000,000 replica-
tions.

The results presented in Tables 3 to 4 indicate that the gamma, generalized
gamma and the shifted generalized gamma distribution all provide accurate
approximations.
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Table 3. Three approximations to the distribution of Q∗(X)
evaluated at certain percentiles obtained by simulation (Sim-
ulated %)

CDF Simulated % Gamma G. Gam. Sh. G. Gam.
0.0001 −54663.55 0.0001217 0.0001217 0.0001216*
0.001 −53591.02 0.0010932 0.0010931 0.0010929*
0.01 −52256.04 0.0102818 0.0102818 0.0102805*
0.05 −51039.46 0.0504963 0.0504963 0.0504927*
0.10 −50389.24 0.1000880 0.1000880 0.1000830*
0.25 −49289.67 0.2490610 0.2490608 0.2491550*
0.50 −48053.09 0.4984397* 0.4984396 0.4984341
0.75 −46801.40 0.7492549* 0.7492548 0.7492500
0.90 −45661.40 0.9002350 0.9002350 0.9002310*
0.95 −44971.41 0.9505530 0.9505530 0.9505491*
0.99 −43679.37 0.9901870 0.9901870 0.9901841*
0.999 −42211.50 0.9990400 0.9990400 0.9990360*
0.9999 −40911.81 0.9999200 0.9999200 0.9999181*

Table 4. Two approximations with and without polynomial
adjustments (d = 7) to the distribution of Q∗(X) evaluated
at certain percentiles obtained by simulation (Simulated %)

CDF Simulated % Gamma Gam. Poly G. Gam. G. Gam. Poly
0.0001 −54663.55 0.0001217 0.0001044 0.0001217 0.0001040*
0.001 −53591.02 0.0010932 0.0010010 0.0010932 0.0009997*
0.01 −52256.04 0.0102818 0.0099062 0.0102818 0.0099072*
0.05 −51039.46 0.0504963 0.0498882 0.0504963 0.0499204*
0.10 −50389.24 0.1000876 0.0996168 0.1000876* 0.0996930
0.25 −49289.67 0.2490610 0.2493520 0.2490608 0.2495601*
0.50 −48053.08 0.4984397 0.4993070 0.4984397 0.4997190*
0.75 −46801.40 0.7492549 0.7492760 0.7492548 0.7498871*
0.90 −45661.40 0.9002350 0.8992180 0.9002350 0.8999590*
0.95 −44971.41 0.9505530 0.9492760 0.9505530 0.9500640*
0.99 −43679.37 0.9901870 0.9890400 0.9901870 0.9898710*
0.999 −42211.50 0.9990400 0.9981590 0.9990400 0.9990009*
0.9999 −40911.81 0.9999200 0.9991150 0.9999200* 0.9999580

Tables 3 and 4 include various approximate cumulative distribution func-
tion values which are determined with and without polynomial adjustments.
Table 3 indicates that the shifted generalized gamma provides the most ac-
curate approximations for most points. Two of the approximations that
are presented in Table 4 were adjusted with polynomials of degree 7. Also
included in Table 4 are their non polynomially-adjusted counterparts. The
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numerical results indicate that the polynomially-adjusted generalized gamma
approximations are generally more accurate than the other approximations.

Appendix. The exact density function of a certain type of
quadratic forms

Consider a central quadratic form Q(X) that is expressible as the following
general linear combination of independently distributed central chi-square
random variables:

Q(X) =
r∑
i=1

λiYi −
p∑

j=r+θ+1

|λj |Yj ,

where θ is the number of null eigenvalues and the Yj ’s, j = 1, . . . , p are
independently distributed central chi-square random variables having one
degree of freedom. Suppose that all the eigenvalues occur in pairs. Then,
Q(X) can be expressed as

Q(X) =
s∑
i=1

λ′i Ti −
t∑

j=s+1

|λ′j |Tj ,

where s = r/2, t = p/2, λ′k = λk/2, k = 1, . . . , t, and the Ti’s and Tj ’s are
independently distributed chi-square random variables, each having two de-
grees of freedom. The following representation of the exact density function
of Q(X) is derived in [13]:

g(q) =



s∑
j=1

(λ′j)
t−2 e−q/(2λ

′
j)

2
(∏s

k=1,k 6=j(λ
′
j − λ′k)

)(∏t
k=s+1(|λ′j |+ |λ′k|)

) , q ≥ 0

t∑
j=s+1

|λ′j |t−2eq/(2|λ
′
j |)

2
(∏t

k=s+1,k 6=j(|λ′j | − |λ′k|)
)(∏s

k=1(λ′j + λ′k)
) , q < 0.

This representation of the exact density of Q(X) is used in Example 6.1 to
assess the accuracy of the proposed approximations.
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