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Aggregation/disaggregation as a theoretical tool

Ivo Marek

Abstract. The main aim of this contribution is to establish conver-
gence of some iterative procedures that play an important role in the
PageRank computation. The problems we are interested in are con-
sidered in two recent papers by Ipsen and Selee, and Lee, Golub and
Zenios. Both these papers present new ideas to solve the celebrated
problem of the PageRank. Our aim is to show that the results and some
generalizations of them can be proven via an application of the iter-
ative aggregation/disaggregation methods. One of the results may be
of particular interest. It concerns a proof that the two-stage algorithm
proposed by Lee, Golub and Zenios does compute the PageRank. This
problem has been raised in the literature. We answer this question in
positive by showing appropriate necessary and sufficient conditions. In
addition a short proof of the celebrated Google lemma is presented.

1. Introduction

As described in the monograph [6, Chapter 4] the GOOGLE search en-
gine can be considered as a representation of the set of all web pages as an
oriented graph. Each vertex represents just one page and an edge in the
graph is directed from vertex a to vertex b if and only if page a refers to b. It
is also well known that to this graph a Markov chain can be associated. To
compute the PageRank means to compute a unique stationary probability
vector of the Markov chain mentioned. The web pages referring to none of
the pages are called dangling pages or dangling nodes [6, p. 37]. It is a fact
that various research communities use different representations of the men-
tioned Markov chain. In this paper we use a representation whose station-
ary probability vectors are right eigenvectors of the Markov chain transition
matrix. Since every finite dimensional Banach space is reflexive, a represen-
tation whose nontrivial stationary probability vectors are left eigenvectors
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are dual with respect to the representation possessing right eigenvectors as
stationary probability vectors. Such models utilized by various communities
are in the sense just described equivalent.

Let us consider the following two-by-two block matrix

H =
(
H11 H12

H21 H22

)
satisfying

Hjk ≥ 0, j, k = 1, 2,

HT
11e(K) +HT

21e(N −K) = e(K),

HT
12e(K) +HT

22e(N −K) = e(N −K)

where eT (n) = (1, ..., 1) ∈ Rn, n is a positive integer.
Here, H11 represents the links from the nondangling nodes into the non-

dangling nodes and H21 represents the links from the nondangling nodes
to dangling nodes, respectively. The remaining blocks H12 and H22 can be
treated in various ways. For both theoretical as well as computational pur-
poses it is accepted to let H12 = w(1)eT (N −K) and H22 = w(2)eT (N −K).

Let v ∈ RN
+ , e

T v = 1 and α ∈ (0, 1) be fixed. Then stochastic matrix

G = G(α) = αH + (1− α)veT ,

with
H21 = u(2)eT , H22 = w(2)eT ,

is called the Google matrix and vector v is called its personalization vector.
We note that our theory deals with the Google matrix without any ad-

ditional assumption concerning the structure of the blocks distinct of the
block representing the dangling nodes. We are thus able to handle models
in which there appear dangling nodes of more than of one type in a man-
ner similar to that invented in [3] and [7] with the same unifying iterative
aggregation/disaggregation (IAD) methods.

It is worth to mention that due to the fact that the spectral radius of
the Google matrix is a simple root of its characteristic polynomial for every
α ∈ (0, 1) [1], the matrix G(α) is convergent and the rate of convergence of
the power method applied to G(α) equals α ([1], [2], [4], [11]). A short proof
of these statements is presented in Section 7. The method of proof allows to
obtain further generalizations.

2. Generalities

As standard, we denote by ρ(C) the spectral radius of matrix C, i.e.

ρ(C) = max {|λ| : λ ∈ σ(C)} ,
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where σ(C) denotes the spectrum of C. We call

γ(C) = sup {|λ| : λ ∈ σ(C), λ 6= ρ(C)}
the convergence factor of C.

2.1. Remark. Let C be any N ×N matrix. Then obviously

ρ(C) ≥ γ(C)

with possible strict inequality in place of the nonstrict one.

3. IAD communication maps

Let E = RN ,F = Rn, n < N , eT = e(N)T = (1, ..., 1) ∈ RN . Let G be a
map defined on the index sets:

G : {1, ..., N}
onto
→ {1, ..., n}.

Iterative aggregation/disaggregation communication operators are defined
as

(Rx)j =
∑

G(j)=(j)

xj ,

S = S(u), (S(u)z)j =
uj

(Ru)(j)
(Rx)(j).

We obviously have
RS(u) = In,

where In denotes the identity matrix of size n. For the aggregation projection
P (x) = S(x)R,

P (x)T e = e ∀x ∈ RN , xj > 0, j = 1, ..., N,

and
P (x)x = x ∀x ∈ RN , xj > 0, j = 1, ..., N.

Define the aggregated matrix as

B(x) = RBS(x)

and the error matrix as

J(B;T ; t, s;G;x(0); ε) = T t [I − P (x) (B −Q)]−1 (I − P (x)) ,

where Q = x̂eT (N) denotes the Perron projection of B in its spectral
decomposition and

xT = (x1, ..., xN ), xj > 0, j = 1, ..., N.

Operator T = M−1W is the iteration operator of the splitting

I −B = M −W, M invertible.
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4. Stationary Probability Vector Algorithm

4.1. Algorithm SPV(G;B;T ; t, s;x(0); ε).
Let B be an N × N irreducible stochastic matrix and x̂ its unique sta-

tionary probability vector. Further, let T = M−1W , the iteration matrix
corresponding to splitting I −B = M −W , be elementwise nonnegative. Fi-
nally, let t, s be positive integers, x(0) ∈ RN an elementwise positive vector
and let ε > 0 be a tolerance.

Step 1. Set k = 0.

Step 2. Construct the aggregated matrix (in case s = 1 irreducibility of B
implies that of B(x(k)))

B(x(k)) = RBsS(x(k)).

Step 3. Find the unique stationary probability vector z(k) from

B(x(k))z(k) = z(k), e(p)T z(k) = 1, e(p) = (1, ..., 1)T ∈ Rp.

Step 4. Let

Mx(k+1,m) = Wx(k+1,m−1), x(k+1,0) = S(x(k))z(k), m = 1, ..., t,

x(k+1) = x(k+1,t), e(N)Tx(k+1) = 1.

Step 5. Test whether 1

‖x(k+1) − x(k)‖ < ε.

Step 6. If NO in Step 6, then let

k + 1→ k

and GO TO Step 2.
Step 7. If YES in Step 6, then set

x̂ := x(k+1)

and STOP.

For the reader’s information we present a convergence result needed in
the next section.

4.2. Proposition ([9], [10]). Assume the stochastic matrix B possesses
a positive diagonal, i.e. B ≥ βI (elementwise) with some β > 0. Then
the IAD algorithm SPV(B;T = B; t = 1, s = 1;x(0); ε) returns convergent
sequence: limk→∞ x

(k) = x̂ = Bx̂, eT x̂ = 1.

1Here the symbol ‖.‖ denotes any norm on RN . A good choice is the `1-norm.



AGGREGATION/DISAGGREGATION AS A THEORETICAL TOOL 7

5. Ipsen–Selee Algorithm

We want to find a vector x approximating the unique stationary proba-
bility vector x̂ satisfying

x̂ =
(
x̂(1)

x̂(2)

)
= G(α)

(
x̂(1)

x̂(2)

)
= α

(
H11 H12

H21 H22

)(
x̂(1)

x̂(2)

)
+(1−α)

(
v(1)

v(2)

)
.

The Ipsen–Selee [3] algorithm reads as follows.

5.1. IS Algorithm.
% Inputs H,w, v, u(2), α. Output x̂
% H21 = u(2)eT , H22 = w(2)eT

% Power method applied to G(1)(α), where

G(1) =
[

αH11 + (1− α)v(1)eT αw(1)eT + (1− α)v(1)eT

αeTH21 + (1− α)eT v(2)eT αeTw(2)eT + (1− α)eT v(2)eT

]
.

Choose a starting vector σ̂T = [σ̂T
1:K , σ̂k+1] with σ̂T ≥ 0, ‖σ̂‖ = 1.

While not converged

σ̂1:K = αH11σ̂1:K + (1− α)v(1) + αw(1)σ̂K+1

σ̂K+1 = 1− eT σ̂1:K

end while

% Recover PageRank:

x̂ =
[

σ̂1:K

αH21σ̂1:K + (1− α)v(2) + αw(2)σ̂K+1

]
.

The authors of [3] prove the convergence of Algorithm 5.1 by showing that
the Google matrix G(α) and the matrix[

G(1) 0
∗ 0

]
, where G(1) =

[
αH11 αw(1)

αeTH21 αeTw(2)

]
,

are similar, and an important fact that a detailed knowledge of spectral
properties of G(1) is available, and this forms a comfortable base for the
elegant provision of the many steps needed in the proof. To this purpose
also the lumpability of matrix G(α) is exploited and it is known that this is
the case if all dangling nodes are lumped into a single node, or else if block
H21 is aggregated into a single element [7], [3].

Our way to prove the convergence of the Ipsen–Selee algorithm consists
of applying a particular version from a class of the IAD methods namely the
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algorithm SPV(G;G(α), T = G(α); t = 1, s = 1;x0; ε) [8] with the following
specifications

R =
(
IK 0
0 R̃

)
(5.1)

where IK is the identity matrix of order K and

R̃u = eTu(2), uT = ((u(1))T , (u(2))T ), u ∈ RN
+ , u

(1) ∈ RK
+ (5.2)

and

S(u) =
(
IK 0
0 S̃(u)

)
, (5.3)

i.e.

S̃(u)z =

(
z(1)

u(2)

eT u(2) z
(2)

)
, z =

(
z(1)

z(2)

)
. (5.4)

The aggregated system then reads

(I − αH11)x(1) = αH12S̃(x(2))z(2) + (1− α)v(1),

eT [I − αH22] S̃(x(2))z(2) = αeTH21x
(1) + (1− α)eT v(2).

(5.5)

System (5.5) is solved approximately using the method of successive approx-
imations or, alternatively, by the power method on G(1). The convergence
of Algorithm 4.1 with the above specifications is guaranteed at first by the
convergence of the Google matrix G(α), second by the irreducibility of the
aggregated matrix RG(α)S(x), third, by the subsequent unique solvability
of the coarse level system and fourth, by an additonal condition requiring the
main diagonal diag{G(α)} to be positive. The last requirement is very easy
to satisfy e.g. just by putting in place of G(α) matrix 1

2(I+G(α)). It follows
that Algorithm 5.1 being equivalent to IAD Algorithm 4.1 with the spec-
ifications shown in (5.1) – (5.4) returns convergent sequences of PageRank
vectors.

It is worth to recall the result [3] by mentioning that the work needed to get
a solution to (5.5), or more precisely, an appropriate approximation requires
a large number of multiplications of matrix H11 with a vector and a small
number of simple algebraic operations implied by the formulae according to
(5.5). This large number is proportional to κ̃K where K is the dimension of
H11, κ̃ is independent of K; pay attention to the fact that the summands of
the lower row in (5.5) are nonnegative reals.

Let us note that our approach is free of any lumpability conditions of the
Google matrix and therefore, a convergence proof of a generalized problem in
which there are p > 1 blocks of dangling nodes of different type as presented
in [3] is not needed, because our proof utilizing IAD methods is free of
requiring lumpability and does apply to an arbitrary block structure of the
Google matrix.
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6. Lee–Golub–Zenios Algorithm

This is a two-stage algorithm to compute the PageRank [7]. There matrix
G(α) reads

G(α) = α

(
H11 u(1)eT

H21 u(2)eT

)
+ (1− α)

(
v(1eT

v(2)eT

)
, α ∈ (

1
2
, 1),

and the following matrices will be involved in the computation:

L(j) = R
(j)
LGZG(α)S(j)

LGZ(y) =

(
L

(j)
11 L

(j)
12

L
(j)
21 L

(j)
22

)
, j = 1, 2,

where yT =
(
(y(1))T , (y(2))T

)
, y(1) ∈ RK , y(2) ∈ RN−K ,

R(1) = R
(1)
LGZ =

(
IK 0
0 eT (K + 1 : N)

)
(6.1)

and

S(1) = S
(1)
LGZ(y(K + 1 : N)) =

(
IK 0
0 y(K+1:N)

eT (K+1:N)y(K+1:N)

)
. (6.2)

Similarly,

R(2) = R
(2)
LGZ =

(
eT (1 : K) 0

0 IN−K

)
(6.3)

and

S(2) = S
(2)
LGZ(y(1 : K)) =

(
y(1:K)

eT (1:K)y(1:K)
0

0 IN−K

)
. (6.4)

After substitution, we have

L(1)(y) = α

(
H11 H12S1(y)

eT (1 : K)H21 eT (K + 1 : N)H22S1(y)

)

+(1− α)
(

v(1)eT (1 : K) v(1)eT (K + 1 : N)S1(y)
R1v

(2)eT (1 : K) R1v
(2)eT (K + 1 : N)S1(y)

) (6.5)

and

L(2)(y) = α

(
eT (1 : K)H11S2(y) eT (1 : K)H12

H21S2(y) H22

)

+(1−α)
(
eT (1 : K)v(1)eT (1 : K)S2(y) eT (1 : K)v(1)eT (K + 1 : N)

v(2)eT (1 : K)S2(y) v(2)eT (K + 1 : N)

)
.

(6.6)
As mentioned in [3], the LGZ-Algorithm is very similar to that of the

Ipsen–Selee, actually, the LGZ-Algorithm is its direct predecessor and it
reads as follows.
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6.1. LGZ Two-stage Algorithm: Stage 1.
% Inputs L(1), x(1 : K + 1), where x ∈ RK+1

% w, v, α
Output x̂(1 : K)
% H21 = w(1)eT , H22 = w(2)eT

% Power method applied to L(1)

Form L(1) via (6.5)
select y ∈ RK+1, y ≥ 0, ‖y‖1 = 1, δ = ‖y − x‖1;
while δ ≥ ε do

x = y; (
y(1 : K)
y(K + 1)

)
= L(1)(x)

(
x(1 : K)
x(K + 1)

)
δ = ‖y − x‖1

end

6.2. LGZ Two-stage Algorithm: Stage 2.
% Inputs L(2),
%eT (1 : K)x̂(1 : K), where x̂ ∈ RN is the PageRank
%w, v, α
%Output x̂(K + 1 : N)
% H21 = w(1)eT , H22 = w(2)eT

% Power method applied to L(2)

compute y(k+1) by setting y(k+1) = L(2)(x̂(1 : K)y(k)

form w = x(1)eT (1 : K)H11S2(x̂) and c = 1− eT (1 : K)w via (6.6)
select x(0) ∈ RN−K+1, x(0) ≥ 0, ‖x(0)‖1= 1;
for 1 : 3 do

x(k) = L(2)(y)x(k−1)

end
if ‖x(3) − x(2)‖1 < ε then
z = x(3)

else
% Aitken extrapolation

for k = 1 : (N −K + 1) do

v(k) = x(2)(k)−x(1)(k)

x(3)(k)−2x(2)(k)+x(1)(k)

end
z = x(1) − v
end

6.3. Lemma. Let diagG(α) be positive. Let x̂T = ([x̂(1 : K)]T , [x̂(K + 1 :
N − K)]T ) denote the unique stationary probability vector of the Google
matrix G(α). Assume G1 and G2 are the maps of the set {1, ..., N} onto
{1, ...,K,K + 1},K < N , and {1,K + 1, ..., N}, respectively, and that R(j)
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and S(j)j = 1, 2, are the communication maps defined by (6.1) – (6.4) ac-
cordingly. This includes relations

G1(j) =


= j, j = 1, ...,K,

= K + 1, j ∈ {K + 1, ..., N},

and

G2(j) =


= 1, j ∈ {1, ...,K},

= K + j, j = 1, ...N −K .

Furthermore, let

eT (1 : K)x̂ = ξ̂ and eT (K + 1 : N)x̂(K + 1 : N) = 1− ξ̂.

Then stage 1 of the LGZ-Algorithm returns vectors in the form (xT
(1), ξ)

with x(1) ∈ RK and ξ ∈ R1, and their first K components approach the vector
x̂(1 : K), the required stationary probability vector of G(α) .

Similarly, stage 2 of the LGZ-Algorithm returns vectors in the form (η, x(2))
with η ∈ R1, and x(2) ∈ RN−K approaches the appropriate component of the
stationary probability vector x̂(K + 1 : N)) if and only if

1 > η = eT (K + 1 : N)x̂(K + 1 : N)) = 1− ξ̂> 0. (6.7)

Proof. The sufficiency of conditions (6.7) is a consequence of the conver-
gence of both SPV algorithms appearing in our IAD interpretation of the
LGZ-Algorithm according to Proposition 4.2. The uniqueness of the station-
ary probability vector x̂ implies necessity of relation (6.7). The proof is thus
complete. �

The authors of [3] remark that there is no proof that the two-stage LGZ-
Algorithm does compute the PageRank. Lemma 6.3 shows that this is the
case if the component representing the aggregated part of the coarse level
vector ξ is chosen appropriately and namely

ξ = eT (1 : K)x̂(1 : K).

This adequate choice is available after having computed x̂(1 : K) utilizing
stage 1 of the LGZ-Algorithm in computing the remaining part x̂(K : N−K)
utilizing the stage 2 of the LGZ-Algorithm. Thus, we have

6.4. Theorem. The two-stage LGZ-Algorithm does compute the PageRank.
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7. A short proof of the Google lemma

It is known that the Google search engine opened unusual interest for its
fundamental principles in many areas of research. Our contribution is con-
cerned with the celebrated Google matrix whose importance in computing
the PageRank is undisputable. A worldwide discussion concerning many
aspects of search engines resulted in many journal publications as well as a
monograph [6]. The above mentioned problem how to compute the Page-
Rank efficiently led to an elementary but very interesting result in Linear
Algebra, to the so-called Google lemma. Within short time many proofs and
generalizations of this lemma have been proposed and with large probability
some more will appear. An increasing interest to the specific disciplines of
Mathematics and Computer Science as well as many other areas of research
directions should be welcome.

We are going to examine the following system of problems parameterized
by parameter α ∈ (1

2 , 1):

G(α) = αG(1) + (1− α)G(2),

where G(1) is a (column) stochastic matrix and G(2) a suitable (low rank)
irreducible stochastic matrix.

We establish the following result and present it as follows.

7.1. Lemma. Suppose G(2) = veT , where v = (v1, ..., vN )T is a vector whose
all components are nonnegative reals and eT = (1, ..., 1), eT v = 1, i.e. G(2)

represents a rank-one stochastic matrix. Then the convergence factor can be
bounded as follows

γ(G(α)) ≤ α.

Proof. Let x̂(α) denote the Perron eigenvector. It is easy to see that vector
x̂(α) has all its components nonnegative and it can be normalized by setting
eT x̂(α) = 1. It follows that

x̂(α) = G(α)x̂(α) = αG(1)x̂(α) + (1− α)v

and hence

x̂(α) =
[

1
1− α

(I − αG(1))
]−1

v.

Thus, the Perron projection of G(α) reads

Q(α) = x̂(α)eT .

We check easily that

Q(α)G(α)Q(α) = G(α)Q(α) = Q(α)
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and

(I −Q(α))G(2) (I −Q(α)) =
(
G(2) −Q(α)

)
(I −Q(α))

= G(2) (I −Q(α)) = 0. (7.1)

The validity of the statement of Lemma 7.1 follows from the relation repre-
senting the unique spectral decomposition of matrix G(α)

G(α) = Q(α) + (I −Q(α))αG(1) (I −Q(α)) .

�

The above proof opens a way to generalizations. A crucial point in the
above proof is a special kind of relationship between the original transition
matrix G(1) and the perturbation G(2) consisting of relations (7.1).

8. Concluding remarks

We wanted to show some capabilities of the IAD methods and in par-
ticular of the SPV algorithms as theoretical tools for proving convergence
of computational procedures studied in [3] and [7]. The methodology of
our approach carries characteristics of unifying and systemizing. The IAD
methods offer some additional information in comparison with the results
established already. In case of [3] this addition consists of showing that the
IAD methods of proof are independent of the structure of the number of
classes of dangling nodes.

The fact that the LGZ-Algorithm does compute the PageRank is another
result that helps to complete our knowledge of Mathematics around the
search engine Google. Another feature of our proofs is that convergence is
guaranteed for more general models than are those applied in [3] and [7].
On the other hand, one must agree that the restrictive conditions applied in
these papers are serious and needed to low computational cost. Seemingly,
our proof is new.

The Google matrix lemma is very popular and many proofs have been
presented so far. Our method of proof allows some generalizations as a
theme for further research.
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