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On Morita equivalence of partially ordered
semigroups with local units

Lauri Tart

Abstract. We show that for two partially ordered semigroups S and
T with common local units, there exists a unitary Morita context with
surjective maps if and only if the categories of closed right S- and T -
posets are equivalent.

1. Introduction

The Morita theory for semigroups has seen some significant recent advance-
ment by Lawson in [9], who provided a definition of Morita equivalence
in terms of “closed” acts and showed that such a definition is equivalent
to both Talwar’s original definition ( see [11]) and, more importantly, to
a number of other algebraic conditions. In a follow-up article to Lawson’s
(see [15], which is extended in [13]), we proved that Lawson’s conditions ex-
cept for the definition of Morita equivalence are still equivalent for partially
ordered semigroups with local units. We defined what we called “strong
Morita equivalence” (cf. [11], [12], [8]) as the strongest of those conditions,
the existence of a (unitary) Morita context with surjective maps. At that
time, we could only remark that we do not know whether some condition
similar to Lawson’s definition is also equivalent to the others. In this article,
we will show that if we restrict the class of partially ordered semigroups under
consideration, Lawson’s definition can indeed be modified to be equivalent
to the other conditions.

We use the symmetric monoidal closed category Pos of partial orders and
monotone maps (with cartesian product for monoidal tensor product) and
different categories enriched over Pos. For more details on Pos-categories,
Pos-functors and Pos-equivalences, the reader is referred to [4]. When C is a
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Pos-category, we use the notation C0 for its class of objects instead of C in
cases when it is not immediately clear from the context whether we mean
objects or morphisms. By C(A,B) we denote the poset of morphisms in the
Pos-category C from object A to object B. Categorial compositions will be
written from right to left.

A partially ordered semigroup S (a posemigroup for short) is a (nonempty)
semigroup that is endowed with a partial order so that its operation is mono-
tone. One can get a pomonoid from a posemigroup by adjoining an external
identity 1 and considering the order ≤ ∪{(1, 1)}. For a fixed posemigroup
S, (one-sided) S-posets are partially ordered S-acts where the S-action is
monotone in both arguments. In the sequel, the set of idempotents of a
(po)semigroup S will be denoted by E(S). A right S-poset X is said to be
unitary if X = XS. We say that a right S-poset X is Pos-unitary if for all
x, y ∈ X such that x ≤ y there exist s, t ∈ E(S) such that s ≤ t, xs = x and
yt = y. The notions for left S-posets are dual. A poset is called an (S, T )-
biposet if it is a left S- and a right T -poset and its S- and T -actions commute
with each other. Moreover, (S, T )-biposets are called unitary (Pos-unitary)
if they are unitary (Pos-unitary) as both left S- and right T -posets. Posemi-
group homomorphisms are monotone semigroup homomorphisms. S-poset
morphisms are monotone S-act homomorphisms. All such morphisms
naturally form posets with respect to the pointwise order.

A posemigroup S is said to have (weak) local units if for any s ∈ S there
exist e, f ∈ E(S) (e, f ∈ S) such that es = s = sf. A posemigroup has
common (weak) local units (cf. [7]) if for any s, s′ ∈ S there are e ∈ E(S)
and f ∈ E(S) (e ∈ S and f ∈ S) such that es = s = sf and es′ = s′ = s′f.
We say that a posemigroup S has ordered (weak) local units if for all s, s′ ∈ S,
s ≤ s′, there exist e, e′, f, f ′ ∈ E(S) (e, e′, f, f ′ ∈ S) such that

es = s = sf, e′s′ = s′ = s′f ′, e ≤ e′, f ≤ f ′.

A natural example of a posemigroup with ordered local units is a partially
ordered band (a poband), e.g. (N,min,≤). The last example is noteworthy
because it illustrates two important facts: (1) we can choose from many such
pairs of local units and (2) not all of the local units are in the required order
relation.

A posemigroup S is said to have a property locally (e.g. to be locally
inverse) if every local subpomonoid eSe, e ∈ E(S), has that property (e.g.
is inverse). A posemigroup is called factorizable if each of its elements can
be written as a product of two elements. Having local units implies having
weak local units, which in turn implies factorizability. Also, a posemigroup
with common (weak) local units has ordered (weak) local units, and one with
ordered (weak) local units has (weak) local units. The converse implications
do not hold in general.
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Example 1.1. All lower semilattices (with their natural order) that lack
upwards direction have ordered local units but not common local units. The
smallest example of such is the three-element lower semilattice that is not a
chain.

Example 1.2. Take two posets U = {1} and V = {1 < 2}, the linearly

ordered group (Z,+,≤), M =
(

0
1

)
and construct the Rees matrix semigroup

M = M(Z, U, V,M) with cartesian order. The elements (1, z, 1), z ∈ Z,
have only one local right unit, namely (1, 0, 1). Elements (1, z, 2), z ∈ Z,
also have only (1,−1, 2) as a local right unit. But then (1, 0, 1) ≤ (1, 0, 2),
yet (1, 0, 1) 6≤ (1,−1, 2), so M has local units but not ordered local units.

The directed kernel of a posemigroup homomorphism f : S → T is the
relation

−−→
Ker f = {(a, b) ∈ S2| f(a) ≤ f(b) in T}.

For a morphism f : S → T , we can construct a quotient posemigroup
S/
−−→
Ker f if we factorize S by the semigroup congruence Ker f =

−−→
Ker f ∩

(
−−→
Ker f)−1 and set

[s] ≤ [s′] in S/
−−→
Ker f ⇐⇒ (s, s′) ∈

−−→
Ker f.

Theorem 1.3 of [3] shows that S/
−−→
Ker f ∼= Im f as posemigroups.

An admissible preorder on a posemigroup S is a preorder on S that is
compatible with S-multiplication and which contains the order on S. The
admissible preorder generated by a relation H ⊆ S2 is the smallest admissible
preorder on S that contains H. By Theorem 1.2 of [3], admissible preorders
are exactly the directed kernels of posemigroup homomorphisms. There-
fore we can use any admissible preorder ρ on S to construct the quotient
posemigroup S/ρ as above.

If S is a posemigroup and ρ is a reflexive relation on S, one can define a
preorder ≤ρ on S by setting s ≤ρ t if there exist n ∈ N, si, ti ∈ S, 1 ≤ i ≤ n
such that

s ≤ s1 ρ t1 ≤ s2 ρ t2 ≤ . . . ≤ sn ρ tn ≤ t.
A posemigroup congruence on S is a semigroup congruence θ on S such that
the closed chains condition holds:

if s ≤θ t ≤θ s, then sθt.

The posemigroup congruence generated by a relation H ⊆ S × S (denoted
by θ(H)) is the smallest posemigroup congruence on S that contains H.
We remark that if H is a semigroup congruence, then θ(H) =≤H ∩ ≥H .
The notions of admissible preorder and congruence for S-posets and (S, T )-
biposets are analogous.
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The tensor product A ⊗S B of a right S-poset A and a left S-poset B is
the quotient poset (A × B)/∼ by the least poset congruence ∼ for which
(as, b) ∼ (a, sb) for all a ∈ A, b ∈ B, s ∈ S. If A is a (T, S)-biposet, then
A ⊗S B is a left T -poset, with the left T -action t(a ⊗ b) = (ta) ⊗ b. And
A⊗S B is similarly a right T -poset whenever B is an (S, T )-biposet.

A right S-poset X is unitary if and only if the canonical S-poset morphism

µX : X ⊗S S → X, x⊗ s 7→ xs,

is surjective. If it is also an order embedding (implying it is an order iso-
morphism), then X is said to be closed. Closed left S-posets are defined
dually.

We use the following notation:

Pos – the category of posets and monotone maps,

PosS – the Pos-category of right S-posets and right S-poset morphisms,

SPos – the Pos-category of left S-posets and left S-poset morphisms,

SPosT – the Pos-category of (S, T )-biposets and (S, T )-biposet morphisms,

UPosS – the full Pos-subcategory of PosS generated by unitary S-posets,

FPosS – the full Pos-subcategory of PosS generated by closed S-posets,

IPS – the full Pos-subcategory of PosS generated by objects eS, e ∈ E(S).

Let C be an (S, T )-biposet. We get a Pos-functor −⊗S C : PosS → PosT
by taking (− ⊗S C)(A) = A ⊗S C. If f : A → B is an S-poset morphism,
then f ⊗S C : A⊗S C → B⊗S C is defined by (f ⊗S C)(a⊗ c) = f(a)⊗ c for
any a ∈ A, c ∈ C. There is a similar Pos-functor PosT (C,−) : PosT → PosS
and it is easy to prove that these two Pos-functors are a Pos-adjoint pair,
similar to how it is done in Proposition 2.5.19 of [5].

A posemigroup R is called an enlargement of a subposemigroup S (with
inherited order) if S = SRS and R = RSR. For posemigroups S, T and R,
R is said to be a joint enlargement (cf. [9]) of S and T if it is an enlargement
of its subposemigroups S′ ∼= S and T ′ ∼= T . In general, if it does not cause
any confusion, we will ignore the isomorphisms S′ ∼= S and T ′ ∼= T and write
S instead of S′ and T instead of T ′.

The Cauchy completion of a posemigroup S (cf. [9]) is the (small) Pos-
category C(S) that has C(S)0 = E(S), morphism posets

C(S)(f, e) = {(e, s, f)| s ∈ S, esf = s},

with the order (e, s, f) ≤ (e, s′, f)⇐⇒ s ≤ s′ in S and the composition rule
(e, s, f) ◦ (f, s′, g) = (e, ss′, g).

A category C is called strongly connected if for all A,B ∈ C0 there always
exists a morphism f : A→ B.
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A consolidation on a strongly connected category C is a map p :C0×C0→C
(denoted by pB,A := p(B,A) : A → B) such that pA,A = 1A. A small Pos-
category C with a consolidation p can be made into a posemigroup if we
define a multiplication � by

g � f = g ◦ pdomg,codf ◦ f
and take the order from the morphism-poset order of C. This posemigroup
will be denoted by Cp. It is easy to see that if the composite g ◦ f exists for
morphisms f and g in C, then g � f = g ◦ f .

Let S and T be two posemigroups. We say that a sextuple

(S, T, P,Q, 〈−,−〉, [−,−])

is a Morita context if the following conditions hold:
(M1) P is an (S, T )-biposet and Q is a (T, S)-biposet;
(M2) 〈−,−〉 : P ⊗T Q→ S is an (S, S)-biposet morphism and

[−,−] : Q⊗S P → T is a (T, T )-biposet morphism;
(M3) the following two conditions hold for all p, p′ ∈ P and q, q′ ∈ Q:

(i) 〈p, q〉p′ = p[q, p′], (ii) q〈p, q′〉 = [q, p]q′.
A Morita context is called unitary if the biposets P and Q are unitary. We

say that two posemigroups S and T are strongly Morita equivalent (a notion
introduced for unordered semigroups by Talwar in [12]) if there exists a
unitary Morita context (S, T, P,Q, 〈−,−〉, [−,−]) such that the mappings
〈−,−〉 and [−,−] are surjective.

2. General observations

First, let us recall from [15] the ordered analogue of Theorem 1.1 of [9],
showing the equivalence of the algebraic characterizations.

Theorem 2.1 (Theorem 2.1 of [15]). Let S and T be posemigroups with
local units. Then the following are equivalent:

(1) S and T are strongly Morita equivalent,
(2) S and T have a joint enlargement,
(3) the Pos-categories C(S) and C(T ) are Pos-equivalent.

Note that due to the following proposition, the Cauchy completion C(S)
can be considered as a Pos-subcategory of PosS or, dually, SPos.

Proposition 2.2. Let S be a posemigroup with local units. Then the
Pos-category C(S) is Pos-equivalent to IPS.

Proof. Take a right S-poset morphism h : eS → fS for some e, f ∈ E(S).
Observe that h(es) = h(e)es for every s ∈ S, whence h = λh(e). Furthermore,
we have fh(e) = h(e) = h(e2) = h(e)e, so (f, h(e), e) ∈ C(S)(e, f). It
is clear that the map λs : eS → fS is a right S-poset morphism whenever
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(f, s, e) ∈ C(S)(e, f). Define a functor F : C(S)→ IPS by taking F (e) = eS
and F (f, s, e) = λs. It is easy to see that we obtain a Pos-functor, that
it provides poset isomorphisms IPS(eS, fS) ∼= C(S)(e, f) and that F is
(essentially) surjective on objects. �

If the posemigroups have ordered local units, then the context maps turn
out to be biposet isomorphisms.

Lemma 2.3. Let S and T be posemigroups with ordered weak local units.
If (S, T, P,Q, 〈−,−〉, [−,−]) is a unitary Morita context with surjective maps,
then 〈−,−〉 : P⊗TQ→ S and [−,−] : Q⊗SP → T are biposet isomorphisms.

Proof. We will prove only the claim for [−,−], since the proof for 〈−,−〉
is symmetric. It is sufficient to show that the mapping [−,−] reflects order.
Let q ⊗ p, q′ ⊗ p′ ∈ Q ⊗ P be such that [q, p] ≤ [q′, p′] in T . As Q is
unitary, T has ordered weak local units and the mapping [−,−] is surjective,
we can find elements t′′ ∈ T , q0, q′0, q

′′, q1, q2 ∈ Q, p0, p
′
0, p1, p2 ∈ P such

that q = tq′′ = [q0, p0]tq′′ = [q0, p0]q, q′ = [q′0, p
′
0]q′, [q, p] = [q, p][q1, p1],

[q′, p′] = [q′, p′][q2, p2] and [q1, p1] ≤ [q2, p2]. Then in Q⊗S P

q ⊗ p = [q0, p0]q ⊗ p = q0〈p0, q〉 ⊗ p = q0 ⊗ 〈p0, q〉p = q0 ⊗ p0[q, p][q1, p1]
≤ q0 ⊗ p0[q, p][q2, p2] = q0 ⊗ 〈p0, q〉p[q2, p2] = q0〈p0, q〉 ⊗ p[q2, p2]
= [q0, p0]q ⊗ 〈p, q2〉p2 = q〈p, q2〉 ⊗ p2 = [q, p]q2 ⊗ p2 ≤ [q′, p′]q2 ⊗ p2

= q′〈p′, q2〉 ⊗ p2 = [q′0, p
′
0]q′ ⊗ 〈p′, q2〉p2 = q′0〈p′0, q′〉 ⊗ p′[q2, p2]

= q′0 ⊗ 〈p′0, q′〉p′[q2, p2] = q′0 ⊗ p′0[q′, p′][q2, p2] = q′0 ⊗ p′0[q′, p′]
= q′0 ⊗ 〈p′0, q′〉p′ = q′0〈p′0, q′〉 ⊗ p′ = [q′0, p

′
0]q′ ⊗ p′ = q′ ⊗ p′.

�

Now, let us recall some constructions from [15].
Take a Pos-category C. We say that C is bipartite with left part A and

right part B (cf. [10]) and write C = [A,B] if the following conditions hold:

• A and B are disjoint full Pos-subcategories of C and A0 ∪ B0 = C0,
• for every A ∈ A0 there is an isomorphism f : A → C with C ∈ B0,

and for each B ∈ B0 there is an isomorphism g : D → B with
D ∈ A0.

The Pos-category C is therefore made up of four kinds of morphisms: those
of A, those of B, and those with either domain in A0 and codomain in B0

or domain in B0 and codomain in A0. The latter two are called hetero-
morphisms. We will denote the classes of such morphisms by AA, BB, BA
and AB, respectively. If A and B are strongly connected, then so is C.

Proposition 3.1 of [15] establishes the following connection between bi-
partite Pos-categories and Pos-equivalences.
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Proposition 2.4. Two Pos-categories A and B are Pos-equivalent if and
only if there exists a bipartite Pos-category C with left part isomorphic to A
and right part isomorphic to B.

We will explicitly use the constructions from the necessity part of the
above result, so a brief review is in order. For a Pos-equivalence F : A → B,
take a skeleton A of A, put F̄ : A → B as the Pos-isomorphism obtained by
restricting F to A, so B is a skeleton of B, and finally fix an isomorphism
ξA : A → A0 with A0 ∈ A0 for every A ∈ A0. Then put C0 = A0

∐
B0. For

any A ∈ A0 and B ∈ B0, define heteromorphisms by taking

C(A,B) = {〈A,α〉|α ∈ B(F̄ (A0), B)}
and

C(B,A) = {〈α,A〉|α ∈ B(B, F̄ (A0))}.
Those sets inherit the order from the posets B(F̄ (A0), B) and B(B, F̄ (A0)),
respectively. We compose as follows:

1. for f : A→ A′ in A, 〈A
′, α′〉 ◦ f = 〈A,α′F̄ (ξA′fξ−1

A )〉,
f ◦ 〈α,A〉 = 〈F̄ (ξA′fξ−1

A )α,A′〉,

2. for g : B → B′, h : B′ → B in B, g ◦ 〈A,α〉 = 〈A, gα〉,
〈α,A〉 ◦ h = 〈αh,A〉,

3. 〈A,α′〉 ◦ 〈α,A〉 = α′α,
4. 〈α,A〉 ◦ 〈A′, α′〉 = ξ−1

A F̄−1(αα′)ξA′ ,
5. the compositions on A and B remain the same.

Note that for a heteromorphism 〈A,α〉 ∈ C(A,B) we do have

〈A,α〉 = 1B ◦ 〈A,α〉 and 〈A,α〉 = 〈A,α〉 ◦ 1A. (1)

Lemma 2.5. Let H be a binary relation on a posemigroup S and let ρ
be the admissible preorder generated by H. Then s ρ t if and only if there
exist n ∈ N and for 1 ≤ i ≤ n elements si, ti, ui, vi ∈ S, xi, yi ∈ S1 such that
s = s1, si ≤ ti, tn = t; and if 1 ≤ i < n, then ti = xiuiyi, si+1 = xiviyi and
(ui, vi) ∈ H.

Take a small bipartite Pos-category C = [A,B] with strongly connected
parts A and B. Let p be a consolidation on A and q be a consolidation on
B. Fix an isomorphism ξ : B0 ← A0 ∈ BA and define a consolidation r on C
as follows:

rY,X =


pY,X if X,Y ∈ A0,
qY,X if X,Y ∈ B0,
qY,B0ξpA0,X if X ∈ A0, Y ∈ B0,
pY,A0ξ

−1qB0,X if X ∈ B0, Y ∈ A0.

Then r is said to be the natural extension of p and q to C via ξ.
We will now extend the following result.
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Theorem 2.6 (Theorem 3.1 of [13]). Let S and T be posemigroups with
local units. If their Cauchy completions C(S) and C(T ) are Pos-equivalent,
then S and T have a joint enlargement R.

Again, we first outline the constructions used in [13]. Let C = [C(S), C(T )]
be the small bipartite Pos-category that exists due to Proposition 2.4. We
define consolidations p on C(S) and q on C(T ) by taking

pe,f = (e, ef, f) and qi,j = (i, ij, j)

for all idempotents e, f ∈ S and all idempotents i, j ∈ T .
Take an isomorphism ξ : e0 → i0 ∈ C(T )C(S) and define the natural

extension r of p and q to C via ξ. There are congruences ρ1 and ρ2 for which

(e, s, f) ρ1 (e′, s′, f ′) ⇐⇒ s ≤ s′ in S,
(i, t, j) ρ2 (i′, t′, j′) ⇐⇒ t ≤ t′ in T,

for e, e′, f, f ′ ∈ E(S), s, s′ ∈ S, i, i′, j, j′ ∈ E(T ), t, t′ ∈ T . In this way, we
get posemigroup isomorphisms C(S)p/ρ1

∼= S and C(T )q/ρ2
∼= T . Take ρ

as the admissible preorder generated by ρ1 ∪ ρ2. Then R = Cr/ρ is a joint
enlargement of S and T via the isomorphic copies C(S)r/ρ ∼= C(S)p/ρ1

∼= S
and C(T )r/ρ ∼= C(T )q/ρ2

∼= T . Note that in order to show this, we use the
fact that ρ ∩ (C(S)× C(S)) = ρ1 and ρ ∩ (C(T )× C(T )) = ρ2.

Proposition 2.7. If both the posemigroups S and T in Theorem 2.6 have
common local units, then R also has common local units.

Proof. Let the posemigroups S and T have common local units and take
comparable [c]ρ∩ρ−1 ≤ [c′]ρ∩ρ−1 in R = Cr/ρ, i.e. c ρ c′. As ρ is generated by
ρ1 and ρ2, we can use Lemma 2.5 to find n ∈ N and for 1 ≤ i ≤ n elements
ci, c

′
i, ui, vi ∈ Cr, xi, yi ∈ (Cr)1 such that c = c1, ci ≤ c′i, c

′
n = c′, and if

1 ≤ i < n then

c′i = xi � ui � yi, ci+1 = xi � vi � yi and (ui, vi) ∈ ρ1 ∪ ρ2.

We have four possibilities:
(1) c ∈ C(S),
(2) c ∈ C(T ),
(3) c ∈ C(T )C(S),
(4) c ∈ C(S)C(T ).

It is sufficient to consider only cases (1) and (3). If c ∈ C(S), then c′1 ∈ C(S)
as well, because the order on Cr is derived from the morphism-poset order
of C. Now there are four subcases:

(a) x1 6= 1, y1 6= 1,
(b) x1 = 1, y1 6= 1,
(c) x1 6= 1, y1 = 1,
(d) x1 = 1, y1 = 1.
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For (a), we have x1 ∈ C(S)∗ and y1 ∈ ∗C(S), where ∗ ∈ {C(S), C(T )},
so we get c2 = x1 � v1 � y1 ∈ C(S). In subcase (b), we have u1 ∈ C(S)∗,
y1 ∈ ∗C(S), whence u1ρ1v1 in C(S) and consequently c2 = v1 � y1 ∈ C(S).
Subcases (c) and (d) similarly yield u1ρ1v1 in C(S) (and x1 ∈ C(S)∗ in
subcase (c)), so c2 ∈ C(S) again. These two steps can be repeated to get
c1, c

′
1, c2, . . . , cn, c

′
n = c′ ∈ C(S).

For case (3), we have the same subcases (a)-(d) and can again perform a
similar analysis to get c′1 ∈ C(T )C(S), x1 ∈ C(T ) ∗ ∪{1}, y1 ∈ ∗C(S)∪ {1}.
Once more we have u1ρjv1 for subcases (c) (with j = 1) and (b) (with j = 2).
Subcase (d) never arises. Thus c2 ∈ C(T )C(S) as well and we can again
repeat the two steps until we have c1, c′1, c2, . . . , cn, c

′
n = c′ ∈ C(T )C(S).

Since the assumptions of Theorem 2.6 are still fulfilled, we can deduce
that ρ ∩ (C(S) × C(S)) = ρ1 and ρ ∩ (C(T ) × C(T )) = ρ2. So case (1)
reduces to c ρ1 c

′, i.e. the relation [c]ρ∩ρ−1 ≤ [c′]ρ∩ρ−1 in the subposemigroup
Cp/ρ1

∼= S. Since S has common local units, this concludes case (1).
For case (3), we have already shown that c = c1, c

′ = c′n ∈ C(T )C(S),
i.e. they are heteromorphisms. Then there exist elements e, e′ ∈ E(S) and
j, j′ ∈ E(T ) such that c ∈ C(e, j) and c′ ∈ C(e′, j′). Therefore we can
write c = 〈e, (j, t, i)〉 and c′ = 〈e′, (j′, t′, i′)〉, where (j, t, i) ∈ C(T )(i, j),
(j′, t′, i′) ∈ C(T )(i′, j′) and i = F̄ (e0), i′ = F̄ (e′0), using the notation of
Proposition 2.4. As S and T have common local units, there exist e′′ ∈ E(S)
and j′′ ∈ E(T ) such that j′′t = t, j′′t′ = t′, ee′′ = e and e′e′′ = e′.
Then we have (j′′, t, i) ∈ C(T )(i, j′′) and (j′′, t′, i′) ∈ C(T )(i′, j′′), imply-
ing that 〈e, (j′′, t, i)〉 ∈ C(e, j′′) and 〈e′, (j′′, t′, i′)〉 ∈ C(e′, j′′). Moreover,
clearly (e, e, e′′) ∈ C(S)(e′′, e) and (e′, e′, e′′) ∈ C(S)(e′′, e′), so we have
that ξe(e, e, e′′)ξ−1

e′′ ∈ C(S)(e′′0, e0) and ξe′(e′, e′, e′′)ξ−1
e′′ ∈ C(S)(e′′0, e′0)

as well. If we denote F̄ (e′′0) = i′′, then there exist elements t′′ ∈ iT i′′

and t′′′ ∈ i′Ti′′ such that we can write F̄ (ξe(e, e, e′′)ξ−1
e′′ ) = (i, t′′, i′′) and

F̄ (ξe′(e′, e′, e′′)ξ−1
e′′ ) = (i′, t′′′, i′′).

Observe that we have (j, t, i) ρ ∩ ρ−1 (j′′, t, i), (j′, t′, i′) ρ ∩ ρ−1 (j′′, t′, i′),
(e, e, e) ρ ∩ ρ−1 (e, e, e′′) and (e′, e′, e′) ρ ∩ ρ−1 (e′, e′, e′′). So

c = 〈e, (j, t, i)〉 = (j, t, i) � 〈e, (i, i, i)〉 � (e, e, e)
ρ ∩ ρ−1 (j′′, t, i) � 〈e, (i, i, i)〉 � (e, e, e′′) = 〈e, (j′′, t, i)〉 � (e, e, e′′)

= 〈e′′, (j′′, t, i)F̄ (ξe(e, e, e′′)ξ−1
e′′ )〉 = 〈e′′, (j′′, t, i)(i, t′′, i′′))〉

= 〈e′′, (j′′, tt′′, i′′)〉
and

c′ = 〈e′, (j′, t′, i′)〉 = (j′, t′, i′) � 〈e′, (i′, i′, i′)〉 � (e′, e′, e′)
ρ ∩ ρ−1 (j′′, t′, i′) � 〈e′, (i′, i′, i′)〉 � (e′, e′, e′′) = 〈e′, (j′′, t′, i′)〉 � (e′, e′, e′′)

= 〈e′′, (j′′, t′, i′)F̄ (ξe′(e′, e′, e′′)ξ−1
e′′ )〉 = 〈e′′, (j′′, t′, i′)(i′, t′′′, i′′))〉

= 〈e′′, (j′′, t′t′′′, i′′)〉.
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Therefore

c ρ ∩ ρ−1 〈e′′, (j′′, tt′′, i′′)〉 and c′ ρ ∩ ρ−1 〈e′′, (j′′, t′t′′′, i′′)〉
in Cr. Equations (1) yield that

[c]ρ∩ρ−1 [(e′′, e′′, e′′)]ρ∩ρ−1 = [〈e′′, (j′′, tt′′, i′′)〉 � (e′′, e′′, e′′)]ρ∩ρ−1

= [〈e′′, (j′′, tt′′, i′′)〉]ρ∩ρ−1 = [c]ρ∩ρ−1

and

[(j′′, j′′, j′′)]ρ∩ρ−1 [c]ρ∩ρ−1 = [(j′′, j′′, j′′) � 〈e′′, (j′′, tt′′, i′′)〉]ρ∩ρ−1

= [〈e′′, (j′′, tt′′, i′′)〉]ρ∩ρ−1 = [c]ρ∩ρ−1 .

Similarly
[c′]ρ∩ρ−1 [(e′′, e′′, e′′)]ρ∩ρ−1 = [c′]ρ∩ρ−1 ,

and
[(j′′, j′′, j′′)]ρ∩ρ−1 [c′]ρ∩ρ−1 = [c′]ρ∩ρ−1 .

This concludes case (3) and our proof is complete. �

Corollary 2.8. Let S and T be posemigroups with common local units.
If their Cauchy completions C(S) and C(T ) are Pos-equivalent and R is the
joint enlargement of S and T constructed in Theorem 2.6, then the biposets
P = SRT ∈ SPosT and Q = TRS ∈ TPosS are Pos-unitary.

Proof. We merely observe that Q = TRS is a subposet of C(T )C(S)/ρ.
The last part of the proof of Theorem 2.6 demonstrates that the elements of
C(T )C(S)/ρ have common local units, which are a stronger version of the
ordered local units required in the definition of Pos-unitarity. The case for
P is symmetrical via C(S)C(T )/ρ. �

For illustrative purposes, we present a simple example of the construction
of a joint enlargement. This example also demonstrates that the requirement
for both S and T to have common local units is not necessary to get Pos-
unitary biposets SRT and TRS.

Example 2.9. Let (S,≤) be a left zero posemigroup and (T,≤) be an-
other left zero posemigroup. Take the rectangular poband C = (S

∐
T ) ×

(S
∐
T ) with the discrete order �. Consider the binary relation

(r1, r2)ρ(r′1, r
′
2)⇐⇒ (r1 ≤ r′1) ∧ (r2, r′2 ∈ S ∨ r2, r′2 ∈ T ).

It is easy to see that ρ is an admissible preorder. Consider R = C/ρ. Then
R ∼= (S

∐
T )× {S, T} is a joint enlargement of the two subposemigroups

S ∼= S × {S} ⊆ (S
∐
T )× {S, T} and T ∼= T × {T} ⊆ (S

∐
T )× {S, T}. It

is easy to verify this directly because every rectangular band satisfies the
identity xyx = x, yielding the required equalities R = RSR, S = SRS,
R = RTR and T = TRT . In the same way, the biposet SRT can be
written as SRT ∼= S × {T} ⊆ (S

∐
T )× {S, T}. If S has only ordered local
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units but not common local units, then SRT is still Pos-unitary. Similarly,
if T has ordered local units but not common local units, then the biposet
TRS ∼= T × {S} ⊆ (S

∐
T )× {S, T} is also Pos-unitary.

3. Closed S-posets

We extend to posemigroups Banaschewski’s observation (Proposition 5 of
[1]) that one cannot define two semigroups to be Morita equivalent if and
only if their categories of right posets are equivalent. We also remark on an
issue that may seem to arise from this fact.

Theorem 3.1. Let S and T be arbitrary posemigroups. If the Pos-cate-
gories PosS and PosT are Pos-equivalent, then S and T are isomorphic.

Proof. We can just use Theorem 7 of [6] and repeat Banaschewski’s origi-
nal argument. �

So we cannot use PosS and PosT to define Morita equivalence and need
to restrict ourselves to some Pos-subcategory of PosS . A good candidate is
the Pos-category of closed right S-posets FPosS . But there is the following
slightly alarming observation, the consequences of which are dealt with in
Remark 3.4.

Lemma 3.2. Let S be a posemigroup with common weak local units. Then
all unitary right S-posets are closed.

Proof. Let X be a unitary right S-poset. We have to verify that the
morphism µX : X ⊗S S → X reflects order. Take x, x′ ∈ X, s, s′ ∈ S and let
xs ≤ x′s′ in X. Then there exists e ∈ E(S) such that s = se and s′ = s′e.
Thus

x⊗ s = x⊗ se = xs⊗ e ≤ x′s′ ⊗ e = x′ ⊗ s′e = x′ ⊗ s′.
�

Proposition 3.3. Let S and T be posemigroups with common local units.
Then the following are equivalent:

(1) UPosS and UPosT are Pos-equivalent,
(2) FPosS and FPosT are Pos-equivalent,
(3) C(S) and C(T ) are Pos-equivalent.

Proof. First, Lemma 3.2 provides (1)⇔(2). The equivalence (2)⇔(3) will
be proved for posemigroups with ordered local units in Theorem 4.10 and
Corollary 5.4. �

Remark 3.4. While Lemma 3.2 shows that all unitary right S-posets
are closed, there are always non-unitary S-posets. For example, any poset
with at least two elements and with S-actions that all map every element
to a single fixed element are non-unitary. Such posets are, of course, not
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pomonoid S-posets if S happens to be a pomonoid. Therefore we do not
have the situation where if S and T are posemigroups with common local
units, then all right S-posets are closed and so S ∼= T by Theorem 3.1. This
would, for example, trivialize a number of our results on Morita invariants
(see [14]).

4. From closed S-posets to Cauchy completions

We will now modify Lawson’s proof (see Theorem 1.1 of [9]) that Morita
equivalence implies the equivalence of Cauchy completions and show the
same for posemigroups.

Lemma 4.1 (Lemma 4.1 of [13]). Let T , P and Q be subposemigroups of
some posemigroup R. Furthermore, let P be a right T -poset and Q a left T -
poset with respect to actions defined by multiplication in R. If p⊗ q ≤ p′⊗ q′
in P ⊗T Q, then pq ≤ p′q′ in R.

Lemma 4.2. Let S be a posemigroup with ordered weak local units. Then
the right S-poset SS is closed.

Proof. Proving that the map s ⊗ s′ 7→ ss′ is a right S-poset morphism
is easy if one keeps in mind Lemma 4.1. It is surjective because S is fac-
torizable. Finally, take ss′ ≤ tt′ for some s, s′, t, t′ ∈ S. Then there exist
e, e′, g, g′ ∈ S such that ess′ = ss′, e′tt′ = tt′, e ≤ e′, s′g = s′ and t′g′ = t′.
So

s⊗ s′ = ess′ ⊗ g = e⊗ ss′ ≤ e′ ⊗ tt′ = e′tt′ ⊗ g′ = t⊗ t′.
�

Lemma 4.3. Let S be a posemigroup such that SS is closed and let X be
a right S-poset. Then X ⊗S S is a closed right S-poset.

Proof. Because the right S-poset SS is closed, we have a right S-poset
isomorphism (X⊗SS)⊗SS → X⊗S (S⊗SS)→ X⊗SS, where (x⊗s)⊗s′ 7→
x⊗(s⊗s′) 7→ x⊗(ss′). But this is exactly µX⊗SS , since µX⊗SS((x⊗s)⊗s′) =
(x⊗ s)s′ = x⊗ (ss′). Therefore X ⊗S S is closed. �

We can now extend Proposition 2.3 of [9] as follows.

Lemma 4.4. Let S be a posemigroup such that SS is closed and let X be
a unitary right S-poset. Then the following are equivalent:

1) X is closed;
2) X ⊗S S ∼= X for some isomorphism in PosS.

Proof. Implication 1)⇒ 2) is trivial. For the converse, let ϕ : X⊗SS → X
be a right S-poset isomorphism. Then ϕ⊗SS : (X⊗SS)⊗SS → X⊗SS must
also be an isomorphism in PosS because Pos-functors preserve isomorphisms.
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Observe that µX : X ⊗S S → X is natural in X, since for any f : X → X ′

and x ∈ X, s ∈ S we have

(µX′ ◦ (f ⊗S S))(x⊗ s) = f(x)s = f(xs) = (f ◦ µX)(x⊗ s).

Therefore we have a commutative diagram in PosS :

X ⊗S S XµX

//

(X ⊗S S)⊗S S

X ⊗S S

ϕ⊗SS

��

(X ⊗S S)⊗S S X ⊗S S
µX⊗SS // X ⊗S S

X

ϕ

��
.

Now, X⊗SS is closed by Lemma 4.3 and therefore µX⊗SS is an isomorphism.
Thus µX must also be an isomorphism. �

The previous lemma allows us to ignore checking that an isomorphism
X ⊗S S ∼= X is actually µX if we need to show that a unitary right S-poset
X is closed.

Lemma 4.5. Coproducts in PosS and FPosS are constructed as disjoint
unions with componentwise order and action.

Proof. For PosS , this is essentially proved in Section 2 of [2]. Observe that
the Pos-functor − ⊗S S : PosS → PosS as a left adjoint preserves colimits.
Thus if we take Xi ∈ FPos, i ∈ I, we get the following isomorphisms in PosS :

(
∐
i

Xi)⊗S S ∼=
∐
i

(Xi ⊗S S) ∼=
∐
i

Xi.

So a PosS-coproduct of closed right S-posets is closed by Lemma 4.4. Be-
cause FPosS is a full Pos-subcategory, the FPosS-coproduct of closed right
S-posets is the same as in PosS . �

The amalgamated coproduct of a right S-poset B with itself over an S-
subposet B′ ⊆ B is the pushout of the embedding B′ ↪→ B along itself.
Let us recall from Section 2 of [2] that an amalgamated coproduct can be
realized as the set ({1, 2} × (B \B′)) ∪B′ with the action

(i, b)s =
{

(i, bs) if bs ∈ B \B′
bs if bs ∈ B′ , i = 1, 2, b ∈ B \B′, s ∈ S.

The order relation for b1, b2 ∈ B \B′, i, j ∈ {1, 2} is

(i, b1) ≤ (j, b2)⇐⇒ (i = j∧b1 ≤ b2)∨(i 6= j∧b1 ≤ b′′ ≤ b2 for some b′′ ∈ B′).

For b′ ∈ B′, b ∈ B \B′, i ∈ {1, 2}, it is

b′ ≤ (i, b)⇐⇒ b′ ≤ b and (i, b) ≤ b′ ⇐⇒ b ≤ b′.
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The amalgamated coproduct of B with itself over B′ is denoted by B
∐
B′ B.

The pushout morphisms i1 : B → B
∐
B′ B and i2 : B → B

∐
B′ B are

defined by

ij(b) =
{

(j, b) if b ∈ B \B′
b if b ∈ B′.

We can now prove the ordered counterpart of Proposition 2.4 of [9].

Lemma 4.6. Let S be a posemigroup such that SS is closed. Then all
epimorphisms in FPosS are surjective.

Proof. Let f : A→ B be an epimorphism in FPosS . Lemma 4.3 shows that
A⊗S S and B⊗S S are closed. Since the same lemma also demonstrates that
µX is natural in X, we have the following commutative diagram in FPosS :

A⊗ S B ⊗S S.
f⊗S

//

A

A⊗ S

OO

µA

A B
f // B

B ⊗S S.

OO

µB

Since µA is an epimorphism, f ⊗S S ∈ FPosS is a product of epimorphisms
and therefore must also be an epimorphism. Assume that f is not surjective,
put B′ = Im f , take the embedding ι : B′ ↪→ B and the amalgamated
coproduct C := B

∐
B′ B in PosS as constructed above and let i1, i2 : B → C

be the pushout maps. Then obviously i1f = i2f . Yet for all b ∈ B \ B′ we
get that i1(b) = (1, b) 6= (2, b) = i2(b). Observe that due to Lemma 4.3 we
have the following commutative diagram in FPosS :

A⊗S S B ⊗S S
f⊗SS // C ⊗S S.

i1⊗SS //
i2⊗SS

//

Take b ∈ B \ B′ 6= ∅ and s ∈ S such that bs = b (this can be done as B is
unitary). If (i1 ⊗S S)(b ⊗ s) = (i2 ⊗S S)(b ⊗ s), then i1(b) ⊗ s = i2(b) ⊗ s.
Therefore we get that µC(i1(b) ⊗ s) = µC(i2(b) ⊗ s), which implies that
i1(b) = i1(bs) = i1(b)s = i2(b)s = i2(bs) = i2(b), a contradiction. So f must
be surjective. �

We say that an object A from some category A of either S-acts or S-
posets is indecomposable if there do not exist non-initial objects A1, A2 ∈ A0

such that A ∼= A1
∐
A2. In particular, we use this in the cases A = ActS ,

A = PosS and A = FPosS .
Next, we extend, respectively, Lemma 3.1 and Lemma 3.2 of [9] as follows.

Lemma 4.7. Let S be a posemigroup such that SS is closed. Then the
right S-posets eS, e ∈ E(S), are indecomposable and projective in FPosS.



ON MORITA EQUIVALENCE OF POSEMIGROUPS 29

Proof. First, the right S-posets eS are clearly unitary because es = (ee)s
for any s ∈ S. If we take s, s′, t, t′ ∈ S and let est ≤ es′t′, then

es⊗ t = ees⊗ t = e⊗ est ≤ e⊗ es′t′ = ees′ ⊗ t′ = es′ ⊗ t′

in eS ⊗S S. So eS are also closed.
Showing that eS are indecomposable and projective is standard due to

Lemma 4.6 (cf. Lemma 1.5.9 and Proposition 3.17.2 of [5]). �

Lemma 4.8. Let S be a posemigroup with ordered local units. For every
A ∈ FPosS there exists a projective P ∈FPosS and an epimorphism π :P→A
in FPosS.

Proof. Take A ∈ FPosS . Since A is unitary and S has local units, for
every a ∈ A there exists ea ∈ E(S) such that aea = a. Form the coproduct∐
a∈A

eaS. Because eaS are closed and the left adjoint −⊗S S : PosS → PosS

preserves coproducts,
∐
a∈A

eaS is closed by Lemma 4.4. Note that the use of

Lemma 4.4 is legitimate due to Lemma 4.2. Since eaS are also projective
and coproducts of projectives are projective,

∐
a∈A

eaS is a projective in FPosS .

As the S-poset morphism π :
∐
a∈A

eaS → A, defined by π(eas) = as, is an

epimorphism in PosS , it is also an epimorphism in FPosS . �

Once we have those two lemmas, we can easily get the ordered version of
Proposition 3.3 of [9].

Proposition 4.9. Let S be a posemigroup with ordered local units. Then
a closed right S-poset is indecomposable and projective in FPosS if and only
if it is isomorphic to eS for some e ∈ E(S).

Proof. The proof is again standard (for details, see Theorem 3.17.8 of [5]),
using Lemmas 4.2, 4.7 and 4.8. �

Finally, we complete the section by proving the ordered counterpart of
Theorem 3.4 of [9].

Theorem 4.10. Let S and T be posemigroups with ordered local units.
If FPosS and FPosT are Pos-equivalent, then C(S) and C(T ) are also Pos-
equivalent.

Proof. Let the Pos-functors F : FPosS → FPosT and G : FPosT → FPosS
form a Pos-equivalence. Since F and G map indecomposable projectives to
indecomposable projectives, the full Pos-subcategories FIPS and FIPT of in-
decomposable projectives are Pos-equivalent. Due to Proposition 4.9, each
indecomposable projective in FPosS is isomorphic to eS for some e ∈ E(S),
so those poset isomorphisms provide a Pos-equivalence between FIPS and
IPS . Similarly, FIPT is Pos-equivalent to IPT . Proposition 2.2 shows that
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the Pos-categories IPS and C(S) (and IPT and C(T )) are Pos-equivalent
and therefore C(S) and C(T ) are Pos-equivalent. �

5. From Cauchy completions to closed S-posets

We now prove the converse of what we showed in the previous section,
namely that the Pos-equivalence of the Cauchy completions C(S) and C(T )
implies the Pos-equivalence of the Pos-categories FPosS and FPosT . The
prototype is still Theorem 1.1 of [9], although the latter does not explicitly
cover this implication.

We start by proving the ordered version of Proposition 3.14 of [9].

Lemma 5.1. Let S and T be two posemigroups with local units that have
a joint enlargement R such that the biposets P = SRT ∈ SPosT and Q =
TRS ∈ TPosS are Pos-unitary. Then the biposets P and Q constructed
for the Morita context (S, T, P,Q, 〈−,−〉, [−,−]) in implication (2)⇒(1) of
Theorem 2.1 are closed as right T - and S-posets .

Proof. Since P = SRT and Q = TRS are Pos-unitary, they are also
unitary. For them to be closed as well it is sufficient to prove that the
mappings µP and µQ are order-reflecting. We will show this only for µP :
P ⊗T T → P , since the case for Q is essentially the same. Let pt ≤ p′t′ in
P . As P = SRT and T has weak local units, we can write

p = s1r1t1, p
′ = s′1r

′
1t
′
1, t = tu1, t

′ = t′u2

for s1, s
′
1 ∈ S, t1, t′1, u1, u2 ∈ T , r1, r′1 ∈ R. Because P is Pos-unitary,

S ⊆ R = RTR and T has weak local units, we can find s2, s
′
2 ∈ E(S),

r3, r4 ∈ R, t2, u ∈ T so that

s2pt = pt, s′2p
′t′ = p′t′, s2 ≤ s′2, s′2 = r3t2r4 and t2 = ut2.

Then t2r4p = t2r4s1r1t1 ∈ TRSRT = TRT = T , t2r4p′ = t2r4s
′
1r
′
1t
′
1 ∈ T

and s′2r3u ∈ SRT = P . We can now calculate in P ⊗T T that

p⊗ t = p⊗ tu1 = pt⊗ u1 = s2pt⊗ u1 ≤ s′2pt⊗ u1 = (s′2)2pt⊗ u1

= s′2(r3t2r4)pt⊗ u1 = s′2r3(ut2)r4pt⊗ u1 = s′2r3ut2r4p⊗ tu1

= s′2r3ut2r4p⊗ t = (s′2r3u)(t2r4p)⊗ t = s′2r3u⊗ (t2r4p)t
= s′2r3u⊗ (t2r4)(pt) ≤ s′2r3u⊗ (t2r4)(p′t′) = s′2r3u⊗ (t2r4p′)t′

= s′2r3u⊗ (t2r4p′)(t′u2) = s′2r3u⊗ ((t2r4p′)t′)u2

= (s′2r3u)(t2r4p′)t′ ⊗ u2 = s′2r3(ut2)r4p′t′ ⊗ u2

= s′2(r3t2r4)p′t′ ⊗ u2 = (s′2)2(p′t′)⊗ u2 = s′2(p′t′)⊗ u2

= p′t′ ⊗ u2 = p′ ⊗ t′u2 = p′ ⊗ t′.

�



ON MORITA EQUIVALENCE OF POSEMIGROUPS 31

Corollary 5.2. Let S and T be two posemigroups with ordered local
units that have a joint enlargement R and Pos-unitary SSRTT ∈ SPosT
and TTRSS ∈ TPosS. Then there exists a unitary Morita context (S, T, P,Q,
〈−,−〉, [−,−]) with surjective maps where P and Q are closed right S- and
T -posets.

Proof. Due to implication (2)⇒(1) of Theorem 2.1, there exists a unitary
Morita context (S, T, P,Q, 〈−,−〉, [−,−]) with surjective maps. Since we
have Pos-unitary P = SRT and Q = TRS, we can apply Lemma 5.1 and
get that P and Q are closed right S- and T -posets. �

It is now easy to get the following counterpart of Proposition 3.16 of [9].

Theorem 5.3. Let S and T be posemigroups with ordered local units. If
(S, T, P,Q, 〈−,−〉, [−,−]) is a unitary Morita context with surjective maps
and P and Q are closed, then the Pos-categories FPosS and FPosT are Pos-
equivalent via Pos-functors

−⊗Q P : FPosS → FPosT and −⊗TQ : FPosT → FPosS .

Proof. The proof closely mirrors Proposition 3.16 of [9]. �

Corollary 5.4. Let S and T be posemigroups with common local units.
If the Cauchy completions C(S) and C(T ) are Pos-equivalent, then the Pos-
categories FPosS and FPosT are Pos-equivalent.

Proof. Theorem 2.6 and Corollary 2.8 show that S and T have a joint
enlargement R such that P = SRT ∈ SPosT and Q = TRS ∈ TPosS
are Pos-unitary. By Corollary 5.2, there exists a unitary Morita context
(S, T, P,Q, 〈−,−〉, [−,−]) with surjective maps where P and Q are closed
right S- and T -posets. Therefore we can apply Theorem 5.3 to get that the
Pos-categories FPosS and FPosT are Pos-equivalent. �

Example 2.9 shows that our assumption of the existence of common local
units is an artefact of the proof used in Theorem 2.6 and it is not necessary
for satisfying the Pos-unitarity requirement of Corollary 5.2. Since most of
our results hold for posemigroups with ordered local units and unordered
semigroups have ordered local units if and only if they have local units, we
have the following natural open question.

Problem 5.5. Let S and T be posemigroups with ordered local units.
If the Cauchy completions C(S) and C(T ) are Pos-equivalent, are the Pos-
categories FPosS and FPosT also Pos-equivalent?

We have now the ordered version of Lemma 3.17 of [9].

Lemma 5.6. Let S and T be two posemigroups with ordered local units. If
(S, T, P,Q, 〈−,−〉, [−,−]) is a unitary Morita context with surjective maps
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and P and Q are closed as right posets, then they are also closed as left
posets.

Proof. By Lemma 2.3, we have the following (S, T )-biact isomorphisms:

S ⊗ P ∼= (P ⊗Q)⊗ P ∼= P ⊗ (Q⊗ P ) ∼= P ⊗ T ∼= P and

T ⊗Q ∼= (Q⊗ P )⊗Q ∼= Q⊗ (P ⊗Q) ∼= Q⊗ S ∼= Q. �

This allows us to get the ordered equivalent of Theorem 3.18 of [9].

Proposition 5.7. Let S and T be two posemigroups with common local
units. If the Pos-categories FPosS and FPosT are Pos-equivalent, then the
Pos-categories SFPos and TFPos are also Pos-equivalent.

Proof. By Theorem 2.1, Theorem 4.10 and Corollary 5.4, the Pos-categories
FPosS and FPosT are Pos-equivalent if and only if there exists a unitary
Morita context (S, T, P,Q, 〈−,−〉, [−,−]) with surjective maps and P and Q
closed as right posets. Dualizing this result to the Pos-categories SFPos and
TFPos yields a similar condition with P and Q closed as left posets. Now we
only need to apply Lemma 5.6. �

Theorem 4.10 and Corollary 5.4 allow us to refine Theorem 2.1 to

Theorem 5.8. Let S and T be posemigroups with common local units.
Then the following are equivalent:

(1) S and T are strongly Morita equivalent,
(2) S and T have a joint enlargement,
(3) the Pos-categories C(S) and C(T ) are Pos-equivalent,
(4) the Pos-categories FPosS and FPosT are Pos-equivalent.

Due to this, it is reasonable to define that two posemigroups S and T are
Morita equivalent if the Pos-categories FPosS and FPosT are Pos-equivalent.
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