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On characterization of horizontal biharmonic
curves in H2 × R

Talat Körpinar and Essin Turhan

Abstract. In this paper, we study biharmonic curves in H2 × R. We
show that all of them are helices. By using the curvature and torsion
of the curves, we give some characterizations of horizontal biharmonic
curves in H2 × R.

1. Introduction

Let f : (M, g) → (N,h) be a smooth function between two Riemannian
manifolds. The bienergy E2(f) of f over compact domain Ω ⊂M is defined
by

E2 (f) =
∫

Ω
h (τ (f) , τ (f)) dvg,

where τ (f) = traceg∇df is the tension field of f and dvg is the volume form
of M . Using the first variational formula one sees that f is a biharmonic
function if and only if its bitension field vanishes identically, i.e.,

τ̃(f) := −4f (τ(f))− tracegRN (df, τ(f))df = 0, (1.1)

where
4f = −traceg(∇f )2 = −traceg

(
∇f∇f −∇f∇M

)
is the Laplacian on sections of the pull-back bundle f−1(TN )and RN is the
curvature operator of (N,h) defined by

R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z.

The theory of biharmonic functions is an old and rich subject. The bi-
harmonic functions were first studied by Maxwell and Airy to describe a
mathematical model of elasticity in 1862. The theory of polyharmonic func-
tions was later on developed, for example, by E. Almansi, T. Levi-Civita
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and M. Nicolescu. Recently, biharmonic functions on Riemannian manifolds
have been studied by R. Caddeo and L. Vanhecke [2, 3], L. Sario et al. [7],
and others.

Recently, there have been a growing interest in the theory of biharmonic
functions which can be divided into two main research directions. On the
one side, the differential geometric aspect has driven attention to the con-
struction of examples and classification results. The other side is the analytic
aspect from the point of view of PDE: biharmonic functions are solutions of
a fourth order strongly elliptic semilinear PDE.

Chen and Ishikawa [4] classified biharmonic curves in semi-Euclidean 3-
spaces. In particular, they showed that in Euclidean 3-spaces there are
no proper biharmonic curves (i.e., biharmonic curves which are not har-
monic). On the other hand, in an indefinite semi-Euclidean 3-space, there
exist proper biharmonic curves.

Recently, some work has been done in the study of non-geodesic bihar-
monic curves in some model spaces. For example, the study of biharmonic
curves in Berger’s spheres, in contact and Sasakian manifolds and in the
Minkowski 3-space, see [1], [5] and [6], respectively.

In this paper, we first write down the conditions that any non-harmonic
(non-geodesic) biharmonic curve in H2×R must satisfy. Then we prove that
the non-geodesic biharmonic curves in H2×R are helices. Finally we deduce
the explicit parametric equations of the non-geodesic horizontal biharmonic
curves in H2 × R.

2. Left invariant metric in H2 × R
Let H2 be the upper half-plane model {(x, y) ∈ R2 : y > 0} of the hyper-

bolic plane endowed with the metric

gH =
(dx2 + dy2)

y2

of constant Gauss curvature −1. The space H2, with the group structure
derived by the composition of proper affine maps, is a Lie group and the
metric gH is left invariant. Therefore the product H2×R is a Lie group with
the left invariant product metric

gH2×R =
(dx2 + dy2)

y2
+ dz2. (2.1)

The left-invariant orthonormal frame is

e1 = y
∂

∂x
, e2 = y

∂

∂y
, e3 =

∂

∂z
.

The corresponding Lie brackets are

[e1, e2] = −e1, [e1, e3] = [e2, e3] = 0.
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In order to calculate the Christoffel symbols Lkij we can use

2g(∇eiej , ek) = Lkij ,

where the non zero symbols Lkij are

L1
12 = −2, L2

11 = 2.

The Riemannian curvature tensor is given by

R121 = e2, R1212 = 1. (2.2)

3. Biharmonic curves in H2 × R
Let I ⊂ R be an open interval and γ : I −→ H2 × R be a curve on a

Riemannian manifold parametrized by arc length. Let κ be the curvature of
γ and τ its torsion. Putting T = γ′, we can write the tension field of γ as
τ(γ) = ∇γ′γ′ and the biharmonic map equation (1.1) reduces to

∇3
TT +R(T,∇TT )T = 0. (3.1)

A successful key to study the geometry of a curve is to use the Frenet
frames along the curve.

With respect to the orthonormal basis {e1, e2, e3} we can write

T = T1e1 + T2e2 + T3e3,

N = N1e1 +N2e2 +N3e3,

B = T ×N = B1e1 +B2e2 +B3e3.

(3.2)

Theorem 3.1. A curve γ : I −→ H2 × R is biharmonic if and only if

κ = constant 6= 0,

κ2 + τ2 = B2
3 ,

τ ′ = −N3B3.

(3.3)

Proof. From (3.1) we obtain

τ̃(γ) = ∇3
TT +R(T,∇TT )T

= (−3κκ′)T + (κ′′ − κ3 − κτ2 + κR(T,N, T,N))N
+(−2κ′τ − κτ ′ + κR(T,N, T,B))B

= 0.

We see that γ is a biharmonic curve if and only if

κκ′ = 0,
κ′′ − κ3 − κτ2 + κR(T,N, T,N) = 0,
−2κ′τ − κτ ′ + κR(T,N, T,B) = 0,
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which is equivalent to

κ = constant 6= 0,

κ2 + τ2 = R(T,N, T,N),

τ ′ = R(T,N, T,B).

(3.4)

A direct computation using (2.2) yields

R(T,N, T,N) = B2
3 , R(T,N, T,B) = −N3B3.

These, together with (3.4), complete the proof of the theorem. �

Corollary 3.2. Let γ : I −→ H2 × R be a curve with constant curvature
and N3B3 6= 0. Then γ is not biharmonic.

Proof. We use the covariant derivatives of the vector fields. From Frenet
formulae it follows that

T ′3 = κN3,

N ′3 = −κT3 − τB3,

B′3 = τN3.

(3.5)

Assume now that γ is biharmonic. Then τ ′ = −N3B3 6= 0 and from (3.3)
we obtain

ττ ′ = B3B
′
3.

Since τ ′ = −N3B3, this is rewritten as

τ = −B
′
3

N3
.

From (3.5) we have

τ =
B′3
N3

.

Hence
τ = 0.

Therefore τ ′ = 0 and we have a contradiction. This completes the proof of
the corollary. �

By using Theorem 3.1 and Corollary 3.2, we have the following corollary.

Corollary 3.3. A curve γ : I −→ H2 × R is biharmonic if and only if

κ = constant 6= 0,
τ = constant,

N3B3 = 0,
κ2 + τ2 = B2

3 .
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Corollary 3.4. (i) If N3 6= 0, then γ is not biharmonic.
(ii) If N3 = 0, then

T (s) = sinα0 cosβ(s)e1 + sinα0 sinβ(s)e2 + cosα0e3, (3.6)

where α0 ∈ R and β is a differentiable function of s.

Proof. (i) Using the above Corollary 3.3, it is easy to see that γ is not
biharmonic.

(ii) Since γ is parametrized by arc length s, we can write

T (s) = sinα cosβ(s)e1 + sinα sinβ(s)e2 + cosαe3. (3.7)

From (3.5) we obtain
T ′3 = κN3.

Since N3 = 0,
T ′3 = 0.

Then T3 is constant. From (3.7) we have

T3 = cosα0 = constant.

�

Theorem 3.5. The parametric equations of all biharmonic curves in
H2 × R are

x(s) = c2 sinα0

∫
sinβ(s)esinα0

∫
cosβ(s)dsds+ c1,

y(s) = c2e
sinα0

∫
cosβ(s)ds,

z(s) = s cosα0 + c3,

(3.8)

where c1, c2, c3 are arbitrary constants.

Proof. We note that

dγ

ds
= T (s) = T1e1 + T2e2 + T3e3,

and our left-invariant vector fields are

e1 = y
∂

∂x
, e2 = y

∂

∂y
, e3 =

∂

∂z
.

Hence
dγ

ds
= (y(s)T1, y(s)T2, T3).

By using equation (3.6), we have

dγ

ds
= T (s) = (y(s) sinα0 cosβ(s), y(s) sinα0 sinβ(s), cosα0).



40 TALAT KÖRPINAR AND ESSIN TURHAN

In order to find the explicit equations for γ(s) = (x(s), y(s), z(s)), we must
integrate the system dγ

ds = T (s), that in our case is

dx

ds
= y(s) sinα0 cosβ(s),

dy

ds
= y(s) sinα0 sinβ(s),

dz

ds
= cosα0.

The integration is immediate and yields (3.8). �

Corollary 3.6. If β(s) = s, then the parametric equations of all bihar-
monic curves are

x(s) = e− sinα0 cos s(sinα0 cos s+ 1) + c1,

y(s) = c2e
− sinα0 cos s,

z(s) = s cosα0 + c3,

where c1, c2, c3 are arbitrary constants.

Example 3.7. Let us consider a biharmonic curve γ with c1 = c2 = c3 =
1. Then γ is given by

γ(s) =
(
e− sinα0 cos s(sinα0 cos s+ 1) + 1, e− sinα0 cos s, s cosα0 + 1)

)
.

4. Horizontal biharmonic curves in H2 × R
Consider a 2-dimensional distribution (x, y) −→ H(x,y) in H2 ×R defined

as H = kerω, where ω is a 1-form on H2 × R. The distribution H is called
the horizontal distribution.

A curve s −→ γ(s) = (x(s), y(s), z(s)) is called horizontal curve if γ′(s) ∈
Hγ(s), for every s. Since

γ′(s) = x′(s)
∂

∂x
+ y′(s)

∂

∂y
+ z′(s)

∂

∂z

=
x′(s)
y(s)

e1 +
y′(s)
y(s)

e2 + ω(γ′(s))e3,

γ(s) is a horizontal curve if and only if

γ′(s) =
x′(s)
y(s)

e1 +
y′(s)
y(s)

e2, ω(γ′(s)) = z′(s) = 0.

If γ(s) is horizontal curve, then we have

γ′(s) =
x′(s)
y(s)

e1 +
y′(s)
y(s)

e2 = x′(s)
∂

∂x
+ y′(s)

∂

∂y
. (4.1)
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Using (2.1) and (4.1) we obtain

T = T1y(s)
∂

∂x
+ T2y(s)

∂

∂y
+ T3

∂

∂z
. (4.2)

Theorem 4.1. The parametric equations of all horizontal biharmonic
curves in H2 × R are

x(s) = c2

∫
sinβ(s)e

∫
cosβ(s)dsds+ c1,

y(s) = c2e
∫

cosβ(s)ds,

z(s) = c3,

(4.3)

where c1, c2, c3 are arbitrary constants.

Proof. Using (4.1) and (4.2) we have

T3 = cosα0 = 0. (4.4)

Substituting (4.4) into (3.8), we get (4.3). �

Corollary 4.2. If β(s) = s, then the parametric equations of all horizon-
tal biharmonic curves in H2 × R are

x(s) = e− cos s(cos s+ 1) + c1,

y(s) = c2e
− cos s,

z(s) = c3,

where c1, c2, c3 are arbitrary constants.
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