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Domain estimators calibrated on information from
another survey

Carl-Erik Särndal and Imbi Traat

Abstract. We examine calibration estimation in a setting where two
surveys are conducted on the same finite population. Some variables
of study are common to the two surveys, but the second one requires
greater detail in the statistics produced than the already published first
one. More specifically, we require estimates for sub-populations, called
domains, that are identified only in the second survey to add up consis-
tently to known or estimated totals published for the common variables
in the first survey. We outline and study several options for deriving
calibration estimators for the domains identified in the second survey.
We obtain explicit expressions showing how the calibration weights are
related in the different approaches. The concluding section presents the
results of a simulation study, comparing the precisions attained in the
different options.

1. Introduction

It happens frequently nowadays that several surveys are carried out simul-
taneously, or almost simultaneously, on the same finite population. Typically,
some variables are common in two or more surveys. It is natural to require
that estimates for the common variables are consistent with each other in
the different surveys.

In this paper we consider the situation where population totals are avail-
able, estimated or exactly known, from an already completed survey called
the reference survey (RFS), while totals for certain domains need to be es-
timated in a subsequent survey, called the present survey (PRS). The term
“RFS estimates” includes the case where they are true non-random values
known from registers or other reliable data sources.
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The estimation of totals for domains requires information on domain mem-
bership for the units. Our starting point is that membership in the domains
of interest is lacking for the units in the RFS, but observed for the units
in the new survey, the PRS. Also observed in the PRS are the target vari-
ables, which include the common variables, and suitable auxiliary variables.
Domain estimation then becomes possible, through the PRS.

Furthermore, consistency for variables common to the two surveys is re-
quired, so that the estimated domain totals in the PRS sum up to the corre-
sponding already published totals estimated in the RFS for the whole pop-
ulation, or for larger domains of the population. Such consistency is often
required by users of survey statistics; it is a cosmetic feature, but important
for users. It may or may not be beneficial, in the sense of reducing variance
in the domain estimates. As our paper shows, there is no simple answer to
the question.

An example of this general situation is as follows. In a survey of individ-
uals, estimates of total income by age class are available from the already
completed RFS. Domains defined by age class are thus recorded in the RFS
sample. The need then arises to have estimates of total income for domains
not identified in the RFS sample, namely, those defined by the cross clas-
sification of age class and level of education. Both age and education will
be observed for the PRS sample, and estimates of income by age class and
education level can be produced. The estimates of income for these cross-
classified domains have to be consistent, that is, they must add up over
education classes to the already published estimates of income by age class.

In this paper we assume that both surveys, the RFS and the PRS, are
carried out by probability sampling, with an arbitrary sampling design, from
one and the same finite population. We consider the case where the two
samples are independent of each other. Another obvious possibility, namely
that the PRS sample is a subsample of the RFS sample, is not discussed.

The objective in the PRS is to produce consistent domain estimates through
the classical calibration approach as presented for example in Deville and
Särndal (1992). Two kinds of variables can intervene in the calibration of
weights: (i) variables that are auxiliary in the usual sense of this term; for
those A-variables we have known population totals, and (ii) variables com-
mon to the two surveys; estimates of totals for these C-variables are available
from the RFS, and we now seek consistency with them in the PRS. We call
AC-calibration the procedure consisting in calibration in one single step on
both types of variables, with the PRS design weights as starting weights.

The A-variables, if reasonably powerful, are expected to be beneficial, in
contributing to a lower variance in the domain estimates. But it is not
obvious whether increased precision is realized by requiring consistency for
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the C-variables. There may be a price (in the form of some increase in
variance) to pay for requiring consistent domain estimates.

We compare AC-calibration with A-calibration, that is, one where the
weights are calibrated only on the A-variables. We derive an expression
showing explicitly how the A-calibrated weights are modified to arrive at the
C-variable consistency that characterizes the AC-calibrated weights.

Another procedure also examined in this paper consists in calibration in
two steps. The first step is an A-calibration. Preliminary weights are thereby
obtained. They are then used as starting weights for the calibration in the
second step, which may involve both the A-variables and the C-variables, or
just the C-variables alone. In both cases, the desired consistency of domain
estimates for C-variables is realized. For obvious reasons, both varieties may
be described as repeated weighting. This term has in fact been used in several
articles on weighting of frequency tables from the Dutch national statistical
agency CBS, see for example Kroese and Renssen (1999), Knottnerus and
van Duin (2006). We derive the respective expression of weights for domain
estimation in general, and compare it with the AC-calibrated weights.

The contribution of this paper can be summarized as follows. We outline
several different ways to obtain, through calibration, estimates for domains
that add up in a consistent manner to estimates published in an earlier
survey. For this purpose, we distinguish an AC-calibration approach and a
repeated weighting approach. The weights in these approaches have certain
features in common, and both weight systems are uniformly applicable to all
study variables. We show the differences of the two approaches by explicit
expressions for the weights. But because of complex interrelationships among
variables, we are not in a position to conclude that one approach is always
better, from a variance point of view, than another. The preferred solution
is data dependent.

The paper is arranged as follows. Section 2 presents AC-calibration. In
Section 3 we note the special case of A-calibration and show how its cali-
brated weights are related to those of AC-calibration. Repeated weighting is
developed in Section 4. Section 5 discusses related works, and Section 6 is de-
voted to illustrative special cases. The covariance matrix for AC-estimators
is presented in Section 7, and the concluding Section 8 reports a simulation
study.

2. The AC-calibration

We assume that two independent surveys are conducted on the same finite
population U = {1, 2, . . . , k, . . . , N}. One of those, the reference survey
(RFS) is already completed. An m-dimensional study variable vector y, with
value yk for unit k is observed in the RFS and a design-based estimate Ŷ0
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of the unknown total Y =
∑

U yk is produced. The estimator Ŷ0 is assumed
to be design-consistent, nearly design-unbiased, and have high precision. A
special case occurs when the RFS information Ŷ0 comes from registers. We
use the term RFS for this case also, although there is no sampling, and thus,
Ŷ0 is the true, non-random total Y.

In another survey, called the present survey (PRS), the aim is to study
specific domains. The finite population U is divided into non-overlapping
and exhaustive domains Ud, d ∈ D = {1, 2, . . . , D}. These domains, called
PRS domains, are identified in the PRS but not in the RFS. We observe
the same m-dimensional study variable vector y in the PRS. The aim is to
estimate the vector of domain totals Yd =

∑
Ud

yk, for d ∈ D, consistently
with the RFS information, i.e. we want the estimates of Yd to sum up to Ŷ0.
To realize that objective, we use the classical calibration approach extended
to handle two types of calibration information.

In the PRS let a sample s of size n be drawn by a probability sampling
design such that the inclusion probability of unit k is πk > 0, so that the
design weight of unit k is ak = 1/πk. The sample part falling into Ud is
denoted by sd = Ud ∩ s. For units k in the PRS sample s we observe the
vectors xk and yk, where xk is an auxiliary variable vector in the traditional
sense, having known total X =

∑
U xk. Calibration on this information will

usually make estimates more precise. The calibration on the yk-information
serves to achieve consistency with the RFS, and may or may not improve
precision.

We define the (p+m)-dimensional vectors (p+m ≤ n)(
xk

yk

)
, k ∈ s,

(
X
Ŷ0

)
,

(
X̂
Ŷ

)
, (1)

where X and Ŷ0 are known, and X̂ =
∑

s akxk and Ŷ =
∑

s akyk are
Horvitz-Thompson (HT) estimators computed in the PRS. Let zACk be
an instrument vector; an arbitrary vector with dimension matching that of
(x′k,y

′
k)
′. A standard choice is zACk = qk(x′k,y

′
k)
′ with specified constants

qk, often chosen as qk = 1. The choice of the instrument vector has some, but
usually only minor, impact on the variance of the calibration estimator. The
instrument vector approach to calibration, see for example Särndal (2007),
gives the weights

wACk = ak(1 + λ′ACzACk), (2)

where

λ′AC =
(

X− X̂
Ŷ0 − Ŷ

)′
M−1, M =

∑
s

akzACk

(
xk

yk

)′
. (3)
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The wACk satisfy both the A-constraint and the C-constraint:∑
s

wACkxk = X,
∑

s

wACkyk = Ŷ0. (4)

We assume that there is no linear dependence among the variables contained
in the vectors xk and yk.

Once computed, the weights wACk can be used for estimating all totals
of interest in the PRS. In particular, Y =

∑
U yk, is estimated by ŶAC =∑

swACkyk, and Yd is estimated as

ŶACd =
∑
sd

wACkyk, d ∈ D. (5)

We have additive consistency with the RFS estimator Ŷ0, since (4) and
(5) imply

∑
d∈D ŶACd = Ŷ0. In other words, the estimates we present for

the domain totals, ŶACd, leave the estimate for the whole population total
unchanged; it agrees with the earlier published Ŷ0.

Applications of the domain estimator ŶACd include the following.

(1) The vector yk consists of different study variables such as salary, al-
cohol consumption, living expenditures and so on. Then ŶACd estimates
the totals of these variables in domain d, for example, in an educational
class. The sum of the estimates over all educational classes equals Ŷ0, in
accordance with the RFS estimate.

(2) The vector yk is itself a domain vector, so that yk = ykγk, where, for
example, yk is salary and γk identifies m age class domains. Then the vector
ŶACd estimates total salary by age class in the education domain d. Letting
d = 1, 2, . . . , D, we get estimates of total salary for all mD sub-domains
defined by the cross-classification of age and education. These sub-domain
estimates have additive consistency: Their sum over all D education domains
agrees with total salary by age class Ŷ0, as estimated in the RFS or known
by registers.

(3) In an extension of case (2), we can let the RFS domain indicator γk

in yk = ykγk represent a cross-classification of two or more other categorical
variables, and the PRS domains in the set D may represent two or more other
categorical variables. Then ŶACd for d ∈ D produces PRS estimates for sub-
domains defined by cross-classifying all the categorical variables involved.
They add up consistently to the RFS estimate for corresponding domains.

Calibration is well established practice in most statistical agencies. So the
AC-calibrated weights wACk can be routinely computed for any instrument
vector zACk from the general expressions (2) – (3). A particular choice for
the instrument vector allows us to derive a suggestive alternative form for
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the weights wACk, and we can make an easy comparison with the special case
called A-calibration, where the C-information is omitted in (2) – (3).

3. A-calibration compared with AC-calibration

The special case where the C-information is omitted in (2) – (3), called
A-calibration, is characterized by the A-calibrated weights,

wAk = ak(1 + λ′AzAk), where λ′A = (X− X̂)′
(∑

s

akzAkx′k

)−1

, (6)

where the dimension of the instrument vector zAk matches that of xk. With
these weights we form the calibration estimator of the population total Y as
ŶA =

∑
swAkyk, and that of the domain totals Yd as

ŶAd =
∑
sd

wAkyk, ∀d ∈ D. (7)

By construction these domain estimators add up to the estimate ŶA for the
whole population total, ∑

d∈D

ŶAd = ŶA, (8)

but ŶA does not agree with Ŷ0, so consistency with the RFS is no longer
present.

Different choices of zAk give different weights. When yk is one-dimensional,
the asymptotically optimal choice of zAk for a given sampling design and
given x-vector is zAk = a−1

k

∑
l∈s(akal − akl)xl (Estevao and Särndal 2004;

Kott 2004), where akl is the inverse of the second order inclusion probability.
The need to involve the akl makes this choice less appealing.

We use zAk = qkxk, with specified positive constants qk. For a univariate
yk this choice gives the classical GREG estimator (e.g. Särndal et al. 1992,
pp. 225–228). We get the multivariate GREG estimator,

ŶA = Ŷ + (X− X̂)′B̂, (9)

where Ŷ =
∑

s akyk, and B̂ is a coefficient matrix for a multivariate regres-
sion fit (Rencher 1988). Each component of the vector yk, when regressed
on xk, gives rise to a regression coefficient vector given by the corresponding
column of

B̂ = T̂−1
xxT̂xy : p×m, (10)

where

T̂xx =
∑

s

akqkxkx′k : p× p, T̂xy =
∑

s

akqkxky′k : p×m. (11)
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The matrix B̂ generates for unit k a vector of predicted values and a vector
of residuals given respectively by

ŷk = B̂′xk, ek = yk − ŷk. (12)

We want to compare the weights in AC-calibration with those in A-calibra-
tion. Let us fix the instrument vector for the AC-calibration as z′ACk =
qk(x′k,y

′
k). Then the AC calibrated weights (2) – (3) can be written on the

form (see Appendix),

wACk = wAk + akqke′kQ̂
−1(Ŷ0 − ŶA), (13)

where the wAk are the A calibrated weights (6), ŶA is given in (9), ek in
(12), and

Q̂ =
∑

s

akqkyke′k : m×m. (14)

Note that the dimensionality is reduced when wACk is computed from (13)
rather than from (2) – (3); in (13) the inversions of the p× p matrix T̂xx and
the m×m matrix Q̂ are carried out separately.

The dependence of the matrix Q̂ on the residuals ek is further illustrated
by an alternative expression. In (14), yk can be replaced by ek = yk − B̂′xk

because∑
s

akqkxke′k =
∑

s

akqkxk(y′k − x′kB̂) = T̂xy − T̂xxB̂ = 0.

Consequently,
Q̂ =

∑
s

akqkeke′k. (15)

The weight system (13) can be used for all variables whose totals or domain
totals need to be estimated in the PRS. We focus here on estimates for the
common variables, for which the known RFS vector Ŷ0 contains informative
control totals. The AC-calibrated estimator of Yd is obtained as

ŶACd =
∑
sd

ykwACk = ŶAd + Q̂dQ̂−1(Ŷ0 − ŶA), (16)

where ŶAd is the A-calibrated estimator (7), and

Q̂d =
∑
sd

akqkyke′k. (17)

Noting that
∑

d∈D ŶAd = ŶA and
∑

d∈D Q̂d = Q̂, the additive consistency
with the RFS follows:

∑
d∈D ŶACd = Ŷ0. In the unlikely case that the

RFS and the PRS agree in their estimates of the whole population total, so
that ŶA = Ŷ0, then the A calibrated domain estimator is unchanged, i.e.
ŶACd = ŶAd.
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We can interpret (16) to say that the additive consistency with Ŷ0 is a
consequence of distributing the difference Ŷ0 − ŶA over the D domains,
with the aid of the adjustment matrix Q̂dQ̂−1. The next section discusses
the technique known as repeated weighting. Placed in a context of domain
estimation, this technique provides another example of distributing the dif-
ference Ŷ0 − ŶA over the set of domains, but with a different adjustment
matrix.

4. Repeated weighting

Repeated Weighting (RW) was developed at the Central Bureau of Sta-
tistics (CBS) in the Netherlands. The original idea is to produce frequency
tables in a consistent manner, so that estimated marginal frequencies in the
PRS agree with their counterparts in another survey, one that precedes the
present one in a temporal or other ordering. Some references are Kroese and
Renssen (1999), Houbiers (2004), and Knottnerus and van Duin (2006). We
formulate the RW method somewhat differently, so as to facilitate compari-
son with AC-calibration.

The RW method can be described as calibration in two steps. The A-
calibrated weights wAk given by (6) are based on a given auxiliary vector xk

and a given instrument vector zAk. In a second step, the wAk are used as
starting weights for a new calibration, leading to weights wRWk, k ∈ s, that
satisfy the constraint ∑

s

wRWkyk = Ŷ0, (18)

where yk is the vector of common variables, and as before, Ŷ0 is the RFS
estimate. Let zRWk be an instrument vector with dimension matching that
of yk. Calibrated weights are then given by wRWk = wAk(1 + λ′RW zRWk),
where λRW is determined to satisfy the constraint (18). This leads to the
RW weights

wRWk = wAk{1 + z′RWkQ̂
−1
R (Ŷ0 − ŶA)}, (19)

for k ∈ s, where ŶA =
∑

swAkyk, and

Q̂R =
∑

s

wAkzRWky′k. (20)

The resulting estimator of the domain total Yd =
∑

Ud
yk is ŶRWd =∑

sd
wRWkyk which we can write, for easy comparison with (16), on the

alternative form

ŶRWd = ŶAd + Q̂dRQ̂−1
R (Ŷ0 − ŶA), (21)
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where ŶAd =
∑

sd
wAkyk, and

Q̂dR =
∑
sd

wAkzRWky′k. (22)

Summing over domains we get ŶRW =
∑

d∈D ŶRWd = Ŷ0.

The applications of RW at CBS aim primarily at producing frequency
tables in the present survey to achieve consistency with corresponding es-
timates in preceding surveys. We can describe their objective as choosing
zRWk = yk = γk, where γk codifies the table cells with which consistency
is required. But more generally, we can allow the vector yk in (18) to be
defined, for example, as in the cases (1), (2) and (3) discussed in Section 2.
Additionally, we have the freedom to choose zRWk.

The weight system wRWk given by (19) with zRWk = yk is not A-consistent,
that is, not consistent with the known vector total X =

∑
U xk. However,

this consistency can be achieved in two ways: (1) by including xk in the
vector yk in (18) – (19), or (2) by choosing zRWk = ekakqk/wAk, where ek

are regression residuals given by (12), and the wAk are given by (6) with
zAk = qkxk. In case (2), the RW weight (19) and the AC calibrated weight
(13) coincide, and so do the domain estimators.

We cannot conclude, neither theoretically nor by our empirical experience,
that ŶACd is better than ŶRWd from the point of view of smaller variance,
despite of the fact that the former but not the latter is A-calibrated. And
although ŶRW = ŶAC = Ŷ0, it does not follow that ŶRWd and ŶACd will
be close for all domains d ∈ D.

5. Discussion

The construction of weights that use both C-information and A-information
has been considered by other authors. Zieschang (1990) considers a survey
with two different simultaneously processed samples from the same popu-
lation and having some variables in common. For each sample, he derives
weights that are adjusted by the general regression estimator (GREG) tech-
nique so that estimated totals agree for comparable domains. He finds that
efficiency is gained by letting the weights take common variables into ac-
count. Renssen and Nieuwenbroek (1997) consider the case of two simulta-
neous surveys. They build an adjusted GREG estimator from information on
both C-variables and A-variables. The respective weights produce consistent
estimates of totals for variables common to the two surveys. In the absence of
known C-totals, they strive, by combining data over surveys, for highly pre-
cise estimates of the C-variable totals. This increases the efficiency of their
estimator. Domain estimation is not examined. Further development for
more precise population level estimates through combining information from
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multiple surveys is made in Merkuris (2004), and for domain level estimates
in Merkuris (2010).

These references differ from our work in that they consider simultaneously
processed surveys or samples, whereas we assume an already completed RFS
survey that cannot be processed simultaneously with the PRS.

In a recent work by Dever and Valliant (2010) calibration information
is also combined from different surveys. Their post-stratification estimator
with estimated control totals from another survey can be seen, in certain
setting, as a special case of our AC calibration. They do not consider domain
estimation, and consistency between surveys is not their aim. But their
message about increased variance due to the estimated control totals, is also
visible in our simulation study for domains. Also, their linearized variance
estimator has some common features with our approximate covariance matrix
of the AC-calibrated domain estimators. Similarly, the incomplete post-
stratification estimator by Deville et al. (1993) has connection points with
our approach, in particular, if their post-strata were domains, and the domain
counts under marginal restrictions were of interest.

Our calibration-based domain estimators (16) and (21) achieve consis-
tency by distributing a difference Ŷ0 − ŶA over domains with two different
adjustment matrices. There are yet other estimation techniques that achieve
consistency in a similar manner, but with other adjustment matrices. One
example is the General Restriction (GR) estimator, proposed by Knottnerus
(2003, Chapter 12) and studied in the domain estimation framework by Sõs-
tra and Traat (2009). The GR estimator, optimal under certain assumptions,
uses an adjustment matrix that involves the true, but unknown, covariance
matrix of the A-calibrated domain estimators. This covariance matrix needs
to be estimated; the resulting modified GR estimator is then no longer op-
timal but only asymptotically so. In addition, the design based estimation
of the covariance matrix requires the second order inclusion probabilities,
which makes this procedure less appealing for practice. By contrast, our
AC-calibrated estimator (16) and our RW estimator (21) do not include
any unknown quantities, furthermore, they require only first order inclusion
probabilities.

6. Special cases

In this section we choose simple special cases to illustrate general formulas
in Sections 2 and 3. We want to compare the AC-calibrated estimator with
the RW estimator, to illustrate the differences. For Sections 6.2 and 6.3 we
fix z′ACk = qk(x′k,y

′
k), zAk = qkxk and zRWk = qkyk.
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6.1. The case with no A-information. Consider first the special case
where no A-information is available in the PRS. Then the vector of domain
totals Yd =

∑
Ud

yk can be unbiasedly estimated by Ŷd =
∑

sd
akyk. If yk

consists of variables common with the RFS, we may want to estimate Yd

consistently with the RFS estimate Ŷ0. In the absence of A-information,
AC-calibration reduces to C-calibration with weights obtained from (2) and
(3) as

wCk = ak(1 + λ′CzCk), where λ′C = (Ŷ0 − Ŷ)′
(∑

s

akzCky′k

)−1

,

where zCk has the dimension of yk, and Ŷ is the HT estimator for the whole
population, Ŷ =

∑
d∈D Ŷd =

∑
s akyk.

In the absence of A-information, the starting weights in the second step
of the RW approach are the design weights ak. We get from (19) and (20),
with wAk = ak, and with ŶA replaced by Ŷ,

wRWk = ak(1 + z′RWkQ̂
−1
R (Ŷ0 − Ŷ)),

where Q̂R =
∑

s akzRWky′k. Thus if zRWk = zCk, C-calibration and RW-
calibration produce the same weights.

6.2. The case of one-dimensional A-information. Consider the special
case where xk = xk is a one-dimensional positive auxiliary variable in the
PRS, with known total X =

∑
U xk. Let γk :m × 1 be the indicator of m

domains that were of interest in the RFS. The values of the common variable
vector defined as yk = γkyk are observed in the PRS. The vector of domain
totals

∑
U γkyk was estimated in the RFS by Ŷ0, and an HT estimator of it

in the PRS would be Ŷ =
∑

s akγkyk.

In the PRS, suppose there are D ×m domains of interest, defined by the
cross-classification of the RFS domains in G = {1, 2, . . . ,m} with D “new”
domains, d ∈ D. Let us choose qk = 1/xk. Then the A-calibrated weight is
wAk = akX/X̂, and with these weights the domain total Yd =

∑
Ud

yk =∑
Ud

γkyk is estimated by

ŶAd = ŶdX/X̂ : m× 1,

where Ŷd =
∑

sd
akγkyk. The sum of ŶAd over d ∈ D is the A-calibrated

estimator

ŶA = ŶX/X̂. (23)
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Now when we impose also the calibration on Ŷ0, the A-calibrated weight
wAk will be adjusted in the manner of (13). An analysis shows that

Q̂ =
∑

s

ak
y2

k

xk
γkγ

′
k −

ŶŶ′

X̂
. (24)

This matrix has a simple form, a diagonal matrix minus a product of vectors,
and can be explicitly inverted (Rao, 1973, p. 33). Finally, the weights (13)
take the form

wACk = ak
X

X̂
+ ak

(
yk

xk
γ ′k −

1
X̂

Ŷ′
)

Q̂−1(Ŷ0 − ŶA), (25)

where ŶA is is given in (23), and Q in (24).

By comparison, the RW weight for the choice zRWk = qkyk with qk = 1/xk

follows from (19),

wRWk = ak
X

X̂
{1 +

yk

xk
γ ′kQ̂

−1
R (Ŷ0 − ŶA)}, (26)

with

Q̂R =
X

X̂

∑
s

ak
y2

k

xk
γkγ

′
k.

Formulas (25) and (26) show two different weight systems, wACk and wRWk.
Both are consistent with the estimator Ŷ0 for the RFS domains, but only
the wACk will reproduce the known total X.

6.3. The case with domain sizes as A-information. We consider the
special case where both yk = yk and Ŷ0 = Ŷ0, are one-dimensional. In the
PRS we are interested in estimating y-totals in the domains d = 1, 2, . . . , D
so that their sum is Ŷ0. Let us fix xk to be the domain indicator xk =
δk = (δ1k, δ2k, . . . , δDk)′; δdk = 1 if unit k ∈ Ud and δdk = 0 otherwise. The
vector of known auxiliary totals is the vector of domain sizes, X =

∑
U δk

= (N1, N2, . . . , ND)′, and the corresponding HT estimator is X̂ =
∑

s akδk =
(N̂1, N̂2, . . . , N̂D)′ with N̂d =

∑
sd
ak. The A-calibrated weight (6) and the

domain estimator (7) simplify to

wAk = akNd/N̂d, if k ∈ sd, and ŶAd = NdŶd/N̂d,

where Ŷd =
∑

sd
akyk. Summing over the domains gives for the whole popu-

lation total the well-known post-stratified estimator,

ŶA =
∑
d∈D

NdŶd/N̂d. (27)
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Let zACk = (δ′k, yk)′. Then the residuals, ek = yk − B̂′δk, take a simple
form,

ek = yk − Ŷd/N̂d, if k ∈ sd. (28)

With ŶA and ek given by (27) and (28), the AC-calibrated weight system,
following from (13) and (15), is

wACk = ak
Nd

N̂d

+
akek∑

d∈D

∑
sd
ake

2
k

(Ŷ0 − ŶA), k ∈ sd, (29)

To compare with repeated weighting, we fix zRWk = yk. Then from (19)
the RW weight system is

wRWk = ak
Nd

N̂d

{
1 +

yk∑
d∈D(Nd/N̂d)

∑
sd
aky

2
k

(Ŷ0 − ŶA)

}
, k ∈ sd.

Again, the two weight systems differ. Both are calibrated on Ŷ0, but only
the system(29) will reproduce the domain sizes Nd.

7. Covariance matrix of the AC-calibrated estimator

The covariance matrix of the RW estimator for the frequency table case is
developed in Knottnerus and van Duin (2006). In this section we derive the
covariance matrix of the AC-calibrated estimators ŶACd, d ∈ D, given by
(16). More particularly, we find the covariance matrix of the linearized esti-
mator. The matrices Q̂ and Q̂d, given in (14) and (17), consist of the design-
weighted sums. They are unbiased consistent estimators of the corresponding
population sums. Consequently, Q̂dQ̂−1 is a consistent estimator of the pop-
ulation quantity QdQ−1, where Q =

∑
U qkyke′k and Qd =

∑
Ud
qkyke′k.

The linearized form of the AC calibrated domain estimator (16) is

ŶACd ≈ ŶAd + QdQ−1(Ŷ0 − ŶA).

We present the covariance matrix of the linearized estimator in a single matrix
expression taking into considerations all domains d ∈ D. Therefore, we stack
the m-dimensional vectors ŶACd on top of each other to obtain the mD-
dimensional vector denoted by θ̂AC . Analogously, we stack the A-calibrated
domain estimators ŶAd on top of each other and obtain the mD-dimensional
vector θ̂A. The additivity property of the A-calibrated domain estimators
can be expressed as ∑

d∈D

ŶAd = ŶA = Rθ̂A.

Here R = 1′D ⊗ diag(1m), where 1D and 1m are the vectors of ones with
the indicated dimensionality, and diag(·) indicates a diagonal matrix. Now
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in matrix form,

θ̂AC ≈ θ̂A + CQ−1(Ŷ0 −Rθ̂A),

where C : mD×m is a matrix with the m×m matrices Qd, d ∈ D, stacked
on top of each other. Reorganizing terms, we get

θ̂AC ≈ A1θ̂A + A2Ŷ0,

where A1 = I−CQ−1R and A2 = CQ−1. Since Ŷ0 and θ̂A are uncorrelated,
due to different surveys, the desired approximate covariance matrix is

Acov(θ̂AC) = A1cov(θ̂A)A′1 + A2cov(Ŷ0)A′2. (30)

Since cov(θ̂A) is the covariance matrix of the traditional A-calibrated domain
estimators, its form, as well its estimator, are known (Estevao and Särndal
2006; Knottnerus van Duin 2006). The same can be said for cov(Ŷ0) if a
calibration estimator is used in the RFS. Furthermore, consistent estimates
of A1 and A2 can be obtained, replacing Qd by Q̂d and Q−1 by Q̂−1. In the
special case of a non-random Ŷ0, only the first term in (30) remains.

8. Simulation

The simulation reported in this section illustrates application (2) in Section
2. That is, the common variable vector has the form yk = ykγk, where the
vector γk indicates one out of three possible regions. We use a population
of N = 2000 persons with real data from the Estonian Labour Force Survey.
The study variable value yk is salary for person k (monthly, in thousands of
kroons). Two cases of common variable information were studied: (1) the
case of a constant (non-random) Ŷ0 composed of a priori known values of
total salary by region, Ŷ0 = (4999.0, 4614.8, 1396.3)′, and (2) the case of
random Ŷ0, composed of three unbiased regional estimates derived from an
RFS, as explained later.

The PRS in this experiment involves two educational categories, d = 1, 2,
not observed in the RFS. The objective in the PRS is to estimate total salary
for each of the 3 × 2 = 6 sub-domains formed by the cross classification of
region and education categories. The consistency that we require for each
region is that the two sub-domain (education category) estimates add up to
the common variable information for regions as specified in Ŷ0.

5000 PRS samples, each with size n = 200, were drawn by simple random
sampling without replacement (SI). For each sample and each sub-domain we
computed the HT estimator and an A-calibrated estimator based on zAk =
xk = γk whose known population total is the vector of sizes of regions,
(1019, 733, 248)′.
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In the simulation we also studied the AC estimator and the RW estimator.
The AC weights were computed with (2) – (3) having zACk = (x′k,y

′
k)
′, and

the RW weights with (19) having zRWk = yk. Both non-random and random
Ŷ0 were used. With these weights we computed the AC estimator and the
RW estimator for each sample and each sub-domain. For the case of the ran-
dom Ŷ0, we associated with each of the 5000 PRS samples an independently
drawn RFS sample (SI, sample size n = 400) from U , and the realized vector
of estimates Ŷ0 was used as a random constraint vector in computing the AC
weights and the RW weights. More specifically, Ŷ0 was calculated for each
RFS sample as an A-calibrated estimator of the total salary by region, using
here also zAk = xk = γk and the region sizes

∑
U γk = (1019, 733, 248)′

as auxiliary information. The standard deviations of the components of Ŷ0

were (205.4, 236.5, 105.4)′.
Table 1. Standard Deviations of Estimators for Region × Education

Sub-domain Totals and Regional Domain Totals
Non-rand. Ŷ0 Random Ŷ0

Reg. Educ. HT A AC RW AC RW
1 1 309 278 268 269 278 282

2 410 359 268 269 315 299

2 1 287 256 262 265 266 272
2 501 416 262 265 345 321

3 1 189 154 159 155 164 161
2 234 199 159 155 184 169

1 - 455 308 0 0 205 205
2 - 541 349 0 0 236 236
3 - 291 158 0 0 105 105

The simulation validated the theoretical expectation that all estimators
are unbiased or nearly so. Therefore the negligible biases are not presented.
The simulation-based standard deviations of the estimators in the six sub-
domains are given in Table 1. It shows that both the AC and the RW
estimators are consistent with Ŷ0; by construction, they have zero standard
deviations at the regional level for the non-random constraint case, and the
standard deviations for the random case are equal, determined solely by the
variability of Ŷ0 in the RFS.

Compared to the HT estimator, the A-calibrated estimator is as expected
more efficient in every domain. Neither is consistent with Ŷ0. However,
AC and RW have such consistency. They are in all cells more efficient than
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HT, but not always more efficient than the A-calibrated estimator. The
latter is a bit unexpected for the case of constant Ŷ0, although the loss of
efficiency is then small. This might be caused by very different variances of
the A-calibrated estimators in the educational sub-domains. After putting on
summation restriction, the estimators are forced to take on equal variances
inside regions which has caused an huge decrease for the higher variance and,
in some cases, a small increase for the smaller variance.

For the six sub-domains, the AC estimator and the RW estimator have very
similar standard deviations in the constant Ŷ0 case, while for the random
case, the standard deviations are increased, for both AC and RW, and the
differences between them become more pronounced. Neither estimator is
superior to the other over all sub-domains.

Additional simulations are reported in Traat (2010) for variations of the
situation considered in this section, with alternative ways of specifying the
finite populations from which repeated samples are drawn. The results from
these simulations confirm the general pattern of the results reported here.

Appendix: Derivation of the relationship between AC- and
A-calibrated weights

We consider the instrument vector, z′ACk = qk(x′k,y
′
k). With this vector

the (p+m)× (p+m) matrix M in (3) has the following blocks:

M =
∑

s

akzACk(x′k,y
′
k) =

(
T̂xx T̂xy

T̂′xy T̂yy

)
,

where T̂xx and T̂xy are given in (11), and

T̂yy =
∑

s

akqkyky′k : m×m.

The inverse of the block matrix M is (Kollo and von Rosen 2005, p. 74)

M−1 =
(

T̂−1
xx + B̂Q̂−1B̂′ −B̂Q̂−1

−Q̂−1B̂′ Q̂−1

)
, (A.1)

where B̂ is given in (10), and

Q̂ = T̂yy − T̂′xyB̂ : m×m. (A.2)

In arriving at (A.1) we have also used the symmetricity of M and the formula
for inverting a sum of matrices. The general expression (2) for wACk contains
the term

λ′ACzACk = (X′ − X̂′, Ŷ′0 − Ŷ′)M−1zACk, (A.3)
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where

M−1zACk = qk

(
(T̂−1

xx + B̂Q̂−1B̂′)xk − B̂Q̂−1yk

−Q̂−1B̂′xk + Q̂−1yk

)
.

The expression simplifies with the aid of the predicted values and the resid-
uals in (12):

M−1zACk = qk

(
T̂−1

xxxk − B̂Q̂−1ek

Q̂−1ek

)
.

Now (A.3) can be written as

λ′ACzACk = λ′Aqkxk − qk(ŶA − Ŷ0)′Q̂−1ek, (A.4)

where the vector λA is as in the A-calibrated weight (6) with zAk = qkxk,
and ŶA is given in (9). Finally, it follows that the AC-calibrated weight
wACk = ak(1 + λ′ACzACk) can be expressed as in (13). For convenience, we
have transposed the last matrix product in (A.4). The expression (14) of the
matrix Q̂ follows by inserting T̂yy and T̂′xy into (A.2).
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