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Congruences on bicyclic extensions of a linearly
ordered group

OLEG GUTIK, DUSAN PAGON, AND KATERYNA PAVLYK

ABSTRACT. In the paper we study inverse semigroups %(G), 8" (G),
%(G) and % T (G) which are generated by partial monotone injective
translations of a positive cone of a linearly ordered group G. We describe

Green’s relations on the semigroups #(G), 21 (G), #(G) and Z *(G),
their bands and show that they are simple, and moreover, the semigroups
#(G) and B (G) are bisimple. We show that for a commutative linearly
ordered group G all non-trivial congruences on the semigroup %(G) (and
%% (@Q)) are group congruences if and only if the group G is archimedean.
Also we describe the structure of group congruences on the semigroups

B(G), B(G), B(G) and B+ (G).

1. Introduction and main definitions

In this article we shall follow the terminology of [7, 8, 14, 16, 20].

A semigroup is a non-empty set with a binary associative operation. A
semigroup S is called inverse if for any x € S there exists a unique y € S
such that z-y-x =z and y - - y = y. Such an element y in S is called the
inverse of x and denoted by ~!. The map defined on an inverse semigroup
S which maps every element z of S to its inverse 27! is called the inversion.

If S is a semigroup, then we shall denote the subset of idempotents in S by
E(S). If S is an inverse semigroup, then E(S) is closed under multiplication
and we shall refer to E(S) as the band of S. If the band E(S) is a non-empty
subset of S, then the semigroup operation on S determines the following
partial order < on E(S): e < f if and only if ef = fe = e. This order
is called the natural partial order on E(S). A semilattice is a commutative
semigroup of idempotents. A semilattice E is called linearly ordered or a
chain if its natural order is a linear order.
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If € is an arbitrary congruence on a semigroup S, then we denote by
®e: S — S/€ the natural homomorphisms from S onto the quotient semi-
group S/€. Also we denote by Qg and Ag the universal and the iden-
tity congruences, respectively, on the semigroup S, i.e., Q(S) =S x S and
A(S) = {(s,s) | s € S}. A congruence € on a semigroup S is called non-
trivial if € is distinct from the universal and the identity congruences on S,
and a group congruence if the quotient semigroup S/€ is a group. Every
inverse semigroup S admits a least group congruence €,,4:

aCgb if and only if there exists e € E(S) such that ae = be

(see [20, Lemma II1.5.2]).

A map h: S — T from a semigroup S to a semigroup 7' is said to be an
antihomomorphism if (a - b)h = (b)h - (a)h. A bijective antihomomorphism
is called an antitzsomorphism.

If S is a semigroup, then we shall denote by Z, .2, ¢, ¥ and J# Green’s
relations on S (see [8]):

aZb if and only if aS! = bS*;

a.?b if and only if Sta = S'b;
a_#b if and only if S*aS' = S'bS!;
D=L oR=XHZ;

H =L NAK.

Let #x denote the set of all partial one-to-one transformations of an
infinite set X together with the following semigroup operation: z(af) =
(za)B if z € dom(af) = {y € doma | ya € dom 3}, for o, € FZx. The
semigroup .Zy is called the symmetric inverse semigroup over the set X (see
[8]). The symmetric inverse semigroup was introduced by Wagner [21] and
it plays a major role in the theory of semigroups.

The bicyclic semigroup €(p, q) is the semigroup with the identity 1 gen-
erated by two elements p and g subjected only to the condition pg = 1. The
distinct elements of € (p, q) are exhibited in the following useful array:

L
S
S
S

¢ ¢Pp P ¢
¢ ¢ P EPp?

and the semigroup operation on % (p, q) is determined as follows:

qkpl . qmpn _ qk+m7min{l,m}pl+n7min{l,m}‘
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The bicyclic semigroup plays an important role in the algebraic theory of
semigroups and in the theory of topological semigroups. For example a well-
known O. Andersen’s result [1] states that a (0—) simple semigroup is com-
pletely (0-) simple if and only if it does not contain the bicyclic semigroup.
The bicyclic semigroup does not embed into stable semigroups [15].

Remark 1.1. We observe that the bicyclic semigroup is isomorphic to the
semigroup %n(a, #) which is generated by injective partial transformations
« and ( of the set of positive integers N, defined as follows:

(na=n+1 if n>1;
n)f=n—-1 ifn>1
(see Exercise IV.1.11(7) in [20]).

Recall from [11] that a partially-ordered group is a group (G,-) equipped
with a partial order < that is translation-invariant; in other words, < has
the property that, for all a,b,g € G, ifa < bthena-g <b-gand g-a < g-b.

By e we denote the identity of a group G. The set G = {z € G | e < z}
in a partially ordered group G is called the positive cone or the integral part
of G and it satisfies the properties

1) Gt-GT C G,

2) G+ (GH) ! = fe);

3) -Gtz C Gt forall x € G.
Any subset P of a group G that satisfies conditions 1) —3) induces a partial
order on G (z < y if and only if 2! -y € P) for which P is the positive cone.

A linearly ordered or totally ordered group is an ordered group G such
that the order relation < is total [7].

In the remainder we shall assume that G is a linearly ordered group.

For every g € G we denote

GHg)={reCGlg<a}

The set GT(g) is called a positive cone on element g in G.
For arbitrary elements g,h € G we consider a partial map o : G = G
defined by the formula

(2)o =z -g7' - h for € G (g).
We observe that Lemma XIII.1 from [7] implies that for such a partial map
of : G — G the restriction of : GT(g) — GT(h) is a bijective map.
We denote
BG)={a):G—G|gheG} and BT(G)={a): G—~G|g,he G},

and consider, on the sets #(G) and %7 (G), the operation of the composition
of partial maps. Simple verifications show that

of -af =af, where a=(hVk)-h' g and b= (hVk)-k'-1, (1)
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for g,h,k,l € G. Therefore, property 1) of the positive cone and condi-
tion (1) imply that (G) and £ (G) are subsemigroups of 7.

Proposition 1.2. Let G be a linearly ordered group. Then the following
assertions hold:

(i) elements o and aZ are inverses of each other in B(G) for all g,h €
G (resp., in BT (G) for all g,h € GT);
(i) an element o of the semigroup B(G) (resp., B (Q)) is an idempo-
tent if and only if g = h;
(iii) B(G) and BT (G) are inverse subsemigroups of F¢;
(iv) the semigroup B(G) (resp., B1(Q)) is isomorphic to S¢ = G x G
(resp., St = Gt x GT) with the semigroup operation

(c-b"t-a,d), if b<c
(a,b) - (e,d) =< (a,d), if b=c¢;
(a,b-c~t-d), if b>c,

where a,b,c,d € G (resp., a,b,c,d € GT).

Proof. (i) Condition (1) implies that

h g

_ b
g'OLh'Ck =«

h
g g9’

ap -a, oy =, and  «
and hence o and ag‘ are inverse elements for each other in #(G) (resp., in
PBT(G)).
Statement (i) follows from the property of the semigroup .7 that a € Z¢
is an idempotent if and only if @: dom a — ran « is an identity map.
Statements (¢), (¢4) and Theorem 1.17 from [8] imply statement (7i7).
Statement (iv) is a corollary of condition (1). O

Remark 1.3. We observe that Proposition 1.2 implies that

(1) if G is the additive group of integers (Z, +) with usual linear order <
then the semigroup 47 (G) is isomorphic to the bicyclic semigroup
C(p,q);

(2) if G is the additive group of real numbers (R, +) with usual linear
order < then the semigroup #(G) is isomorphic to B(_o o) (see
[17, 18]) and the semigroup %*(G) is isomorphic to Bjg ) (see [2,
3,4,5,6]) and

(3) the semigroup #7(G) is isomorphic to the semigroup S(G) which is
defined in [9, 10].

We shall say that a linearly ordered group G is a d-group if for every
element g € G\ {e} there exists z € G*\ {e} such that 2 < g. We observe
that a linearly ordered group G is a d-group if and only if the set G \ {e}
does not contain a minimal element.
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Definition 1.4. Suppose that G is a linearly ordered d-group. For every
g € G we denote

GHg)={reClg<uz}).

The set é*(g) is called a o-positive cone on element g in G.

For arbitrary elements g,h € G we consider a partial map aj: G — G
defined by the formula

()& =z-g7' - h for z € G (g).

We observe that Lemma XIII.1 from [7] implies that for such a partial map
& : G — G the restriction &7 : é+(g) — é+(h) is a bijective map.

We denote
BG)={&]: G =G |gheG} and #+(G)={&I: G-~ G |g,he G},
and consider, on the sets P (G) and e%’J“(G), the operation of the composition
of partial maps. Simple verifications show that

&7 -&f =4y, where a=(hVk)-h'-g and b=(hVEk) k' 1, (2
for g,h,k,l € G. Therefore, property 1) of the positive cone and condi-
tion (2) imply that Q(G) and é’*(G) are subsemigroups of the symmetric
inverse semigroup 4.

Proposition 1.5. If G is a linearly ordered d-group then the semigroups
@(G) and B7(G) are isomorphic to B(G) and B (G), respectively.

Proof. Define a map h: B(G) — B(G) (resp., b: BH(G) — B+ (G)) by
the formula

(af)h=a7 for g,h € G (resp., g,h € GT).
Simple verifications show that b is an isomorphism of the semigroups %’(G)
and Z(G) (resp., <O@+(G) and Z1(G)). O
Suppose that G is a linearly ordered d-group. Then obviously Q(G) N
#(G) = @ and B+(G) N B+ (G) = @. We define
Z(G)=BG)URBG) and  BT(G) =B (G)UBT(G).

_ Proposition 1.6. If G is a linearly ordered d-group then P(G) and
PBT(G) are inverse semigroups.

Proof. Since B(G), B(G), #+(G) and B*(G) are inverse subsemigroups
of the symmetric inverse semigroup .#g over the group G' we conclude that
it is sufficient to show that Z(G) and £ T (G) are subsemigroups of 7.
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We fix arbitrary elements g, h,k,l € G. Since of, of, &) and &f are

partial injective maps from G into G we have

o k- -1, . h— L. .
&FMT A h < ks af " i b < ks

ok o . o k o .
of -af = &7, if h=k and &j o = &, if h=k;
o iy if h>k & vy if h> k.

Hence %(G) is a subsemigroup of Zg. -
Similar arguments and property 1) of the positive cone imply that 2 (G)
is a subsemigroup of .#. This completes the proof of our proposition. [J

In our paper we study semigroups Z(G) and %7 (G) for a linearly ordered
group G, and semigroups %(G) and Z*(G) for a linearly ordered d-group
G. We describe Green’s relations on the semigroups %(G), 41 (G), B(G)
and Z (@), their bands and show that they are simple, and moreover, the
semigroups #(G) and £ (G) are bisimple. We show that for a commuta-
tive linearly ordered group G all non-trivial congruences on the semigroup
A(G) (and BT(G)) are group congruences if and only if the group G is
archimedean. Also, we describe the structure of group congruences on the
semigroups #(G), Z7(G), B(G) and B T(Q).

2. Algebraic properties of the semigroups #(G) and 7 (G)

Proposition 2.1. Let G be a linearly ordered group. Then the following
assertions hold:

(i) if of,aff € E(B(G)) (resp., af,alt € E(#B(G))) then of < of if
and only if g > h in G (resp., n G+);

(i) the semilattice E(B(Q)) (resp., E(#"(QG))) is isomorphic to G (resp.,
G*), considered as a \V-semilattice, under the mapping (ag)i = g;

(vi1) a,’;%af‘ in B(G) (resp., n %’*(G)) if and only if g =k in G (resp.,
mn G+),'

(iv) o) Lal in B(G) (resp., in BT(G)) if and only if h =1 in G (resp.,
in GT);

(v) ol A af in B(G) (resp., in BT(G)) if and only if g =k and h =
mn G (resp., in G*), and hence every J€-class in B(Q) (resp., m
BF(Q)) is a singleton set;

(vi) o P20k in B(G) (resp., in BT(G)) for all g,h,k,l € G, and hence
B(Q) (resp., @*(G)) is a bisimple semigroup;

(vii) B(G) (resp., BT(G)) is a simple semigroup.

Proof. Statements (i) and (7i) are trivial and follow from the definition of
the semigroup %(G).

(iii) Let o ,af € %(G) be such that af Zaf. Since of B(G) = af B(G)
and #(G) is an inverse semigroup, Theorem 1.17 from [8] implies that
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o) B(G) = o (o)1 B(G) and of B(G) = of (aF)"12(G), and hence off =
af (@)~ = af(af)™t = af. Therefore we get that g = k.

Conversely, let o, af € %(G) be such that g = k. Then of (af)™! =
af(aF)~t. Since #(G) is an inverse semigroup, Theorem 1.17 from [8] im-
plies that of B(G) = of(a]) "1 %B(G) = af B(G) and hence of Zay in B(G).

The proof of statement (iv) is similar to (ii7).

Statement (v) follows from statements (#i7) and (iv).

(vi) For every g,h € #(G) we have of(af)~! = af and (o)) 1o = ol
and hence by statement (i¢), Proposition 1.2 and Lemma 1.1 from [19] we
get that #(G) is a bisimple semigroup.

(vi) Since every two Z-equivalent elements of an arbitrary semigroup
S are _Z-equivalent (see [8, Section 2.1]) we have that #(G) is a simple
semigroup.

The proof of the proposition for the semigroup %7 (G) is similar. O

Given two partially ordered sets (A, <4) and (B, <p), the lexicographical
order <jex on the Cartesian product A x B is defined as follows:

(a,b) <jex (a', V) if and only if a <4 a or (a=ad and b <p?).

In this case we shall say that the partially ordered set (A X B, <jex) is the
lezicographic product of partially ordered sets (A,<4) and (B,<p) and it
is denoted by A Xj1ex B. We observe that the lexicographic product of two
linearly ordered sets is a linearly ordered set.

Proposition 2.2. Let G be a linearly ordered d-group. Then the following
assertions hold:

(i) E (B(Q)) = E(#B(G)) UE(#(G)) and E (Z+(G)) = E(#(G))U
E(#%(Q)).

(i3) If o, &f, ol &l € E (#(G)) (resp., af, &g, ol ah € E(#1(Q)))

then:
(a) of < ozz if and only if g = h in G (resp., in G+);
(b) af < &Z if and only if g = h in G (resp., in G+);
(c) af < &} if and only if g > h in G (resp., in G);
(d) &9 < o if and only if g > h in G (resp., in GT).

(i17) The semilattice E (B(G)) (resp., E (B 1(G))) is isomorphic to the
lexicographic product G X ez {0,1} (resp., G Xiez {0, 1}) of semi-
lattices (G, V) (resp., (GT,V)) and ({0,1}, min) under the mapping
()i = (9,1) and (&9)i = (g,0), and hence E (B(G)) (resp.,
E(#7(Q))) is a linearly ordered semilattice.

(iv) The elements a and 3 of the semigroup B(G) (resp., B (G)) are %-
equivalent in B(G) (resp., in BT (G)) provided either o, 3 € B(G)
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(vid)

(viii)
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(resp., o, € BH(G)) ora,p € Q(G) (resp., a, B € ,%H'(G)); and
moreover, we have that o
(a) alZay in %(G) (resp., in %‘F(G)) if and only if g =k; and
(b) &) %af in B(G) (resp., in '@+(G))if and only if g = k.
The elements o and 3 of the semigroup HB(G) (resp., ,%’+(G)) are
Z-equivalent in B(G) (resp., in BT(G)) provided either o, €
B(Q) (resp., a,B € @*(G)) ora, 3 € é’(G) (resp., a,B e QOS’JF(G));
and moreover, we have that o
(a) of Laf in %(G) (resp., in %JF(G)) if and only if h=1; and
(b) & L4 in B(G) (resp., in ‘%}JF(G))j and only if h = 1.
The elements o and 3 of the semigroup XB(G) (resp., %’*(G)) are
H-equivalent in B(G) (resp., n @*(G)) provided either o, 3 €
B(G) (resp., a,p € BH(G)) ora,B € co@(G) (resp., a, B € CO%JF(G));
and moreover, we have that o
(a) aj oy in B(G) (resp., in B(G)) if and only if g = k and

h=1;
(b) &58F in B(G) (resp., in BH(G)) if and only if g = k and
h=1;, and o o

(c) every S -class in B(G) (resp., in BT(G)) is a singleton set.
B(Q) (resp., @*(G)) is a simple semigroup.
The semigroup B(G) (resp., Z*(G)) has only two distinct Z-classes
which are inverse subsemigroups A(G) and ,%’(G) (resp., B (G) and

BH(G)).

Proof. Statements (i), (i7) and (ii7) follow from the definition of the semi-
group %(G) and Proposition 1.6.

The proofs of statements (iv), (v) and (vi) follow from Proposition 1.6
and Theorem 1.17 of [8] and are similar to statements (ii), (iv) and (v) of
Proposition 2.1.

(vii) We shall show that Z(G) - a - B(G) = B(G) for every a € B(G).
We fix arbitrary o, 3 € %(G) and show that there exist 7,0 € %(G) such

that ~

a0 =p0.

We consider the following cases:

a=aj € B(G) and B = of € B(G);

a=a] € B(G)and B=af € :/}é’(G);

a=aj € B(G) and 5 = af € B(G);

a =49 € (@) and B = &F € B(G),
led.
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We put
v = a”gC and § = af in case (1);
v = &% and 6 = &} in case (2);
v=akf and § = ozla'g_l'h, where a € G (g) \ {g}, in case (3);
v = 8/; and § = &) in case (4).

Elementary verifications show that -« -0 = 3, and this completes the proof
of assertion (vit).

Statement (viii) follows from statements (iv) and (v).

The proof of the statements of the proposition for the semigroup % (Q)
is similar. g

Proposition 2.3. Let G be a linearly ordered group. Then for any distinct
elements g and h in G such that g < h in G (resp., in GT) the subsemigroup
4 (ﬁ) of B(G) (resp., BT (G)), which is generated by elements o and o/gl,
is isomorphic to the bicyclic semigroup, and hence for every idempotent o
in B(Q) (resp., in BT(G)) there exists a subsemigroup € in B(G) (resp.,
in BT (G)) such that of is a unit of € and € is isomorphic to the bicyclic
semigroup.

Proof. Since the semigroup % which is generated by elements a,gl and 043
is isomorphic to the semigroup éx(«, 3) (this isomorphism i: ¢ — én(a, )
can be determined on generating elements of ¢ by the formulae (of )i = «
and (a;‘)i = f3), we conclude that the first part of the proposition follows

from Remark 1.1. Obviously, the element o is a unity of the semigroup
6. O

3. Congruences on the semigroups #(G) and 87 (G)

The following lemma follows from the definition of a congruence on a
semilattice.

Lemma 3.1. Let € be an arbitrary congruence on a semilattice S and
let X be the natural partial order on S. Let a and b be idempotents of the
semigroup S such that a€b. Then the relation a < b implies that aCc for all
idempotents ¢ € S such that a < ¢ < b.

A linearly ordered group G is called archimedean if for each a,b € G*\{e}
there exist positive integers m and n such that b < @ and a < b" [7]. Lin-
early ordered archimedean groups may be described as follows (Holder’s
theorem): a linearly ordered group is archimedean if and only if it is iso-
morphic to some subgroup of the additive group of real numbers with the
natural order [13].

Theorem 3.2. Let G be an archimedean linearly ordered group. Then
every non-trivial congruence on %+ (G) is a group congruence.
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Proof. Suppose that € is a non-trivial congruence on the semigroup £+ (G).
Then there exist distinct elements off and o of the semigroup Z*(G) such
that af€aj. Since by Proposition 2.1(v) every #-class of the semigroup
%7 (G) is a singleton set, we conclude that either af - (o)1 # af - (a5) 7!
or (@)™t af £ (a5) 7! a5 We shall consider the case ad = af - (af)~! #
ol - (a5) ™! = al. In the other case the proof is similar. Since by Propo-
sition 2.1(i7) the band E(#"(QG)) is a linearly ordered semilattice, without
loss of generality we can assume that af < a%. Then by Proposition 2.1(7)
we have that a« < ¢ in G. Since of€af and A7 (G) is an inverse semi-
group, Lemma IIL.1.1 from [20] implies that (af - (af)™!) € (af- (a5) 1),
ie., ag€al. Then we have

c a a __ ,c.
Qg - Qg - Qe = Q5
-1
c c a __ _ca lec,
Qg - O " O = O —1.05
—1 (n—1..\2
c ca”"-c a __ c(a C) .
Qg " Cpg=1.c" QU = ac.(a—l.c)Qa
—1 n—1 —1 n
c c(a™tc) a __ c(a=te)
Qq O[c-(a—l-c)"—1 Qe = ac-(a—l-c)"’

and hence o? CazEZj 3:

we get that a~!-c is a positive element of the linearly ordered group G. Since
the linearly ordered group G is archimedean we conclude that for every g € G
with g > a there exists a positive integer n such that a=!- g < (a_1 . c)n

for every non-negative integer n. Since a < ¢ in G

and hence g < ¢ - (a‘1 . c)n_l. Therefore Lemma 3.1 and Proposition 2.1(%)
imply that a?€aj for every g € G such that a < g.

If a = e then all idempotents of the semigroup %" (G) are €-equivalent.
Since the semigroup %7 (G) is inverse we conclude that the quotient semi-
group A7 (G)/€ contains only one idempotent and by Lemma I1.1.10 from
[20] the semigroup £ (G)/¢€ is a group.

Suppose that e < a. Then by Proposition 2.3 we have that the semigroup
¢ which is generated by elements af and o is isomorphic to the bicyclic
semigroup for every element g in G such that e < a < g. Hence the
following conditions hold:

12 i—1
'<01Z¢ 40[51;1 <...<ag<ag and
ag: #* aij, for distinct positive integers 7 and 7,
in E(#"(G)). Since the linearly ordered group G is archimedean we con-

clude that aZCazz for every positive integer 7. Since the semigroup €™ is

isomorphic to the bicyclic semigroup, Corollary 1.32 of [8] and Lemma 3.1
imply that all idempotents of the semigroup £+ (G) are €-equivalent. Since
the semigroup 41 (G) is inverse we conclude that the quotient semigroup
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P+ (G) /€ contains only one idempotent and by Lemma I1.1.10 from [20] the
semigroup %7 (G)/¢ is a group. O

Theorem 3.3. Let G be an archimedean linearly ordered group. Then
every non-trivial congruence on B(G) is a group congruence.

Proof. Suppose that € is a non-trivial congruence on the semigroup #(G).
Similar arguments as in the proof of Theorem 3.2 imply that there exist
distinct idempotents af and az in the semigroup #(G) such that agQﬁag and
ag < a?, for a,b € G with a < b in G. Then we have

a b-a~ ! a b-a"t

a a__ e e b _ —
cay o =ap and o - ap - ap = oy CQ =g,

€
aa a

and hence ag(’lagjgj. Since a < b in G we conclude that e < b-a~ ! in G
and hence Theorem 3.2 implies that agc’lag for all ¢,d € G™.
We fix an arbitrary element g € G\GT. Then we have that g+ € G*\ {e}

and hence agﬁag _;. Since

-1
e __ 9 €¢g
,1'049—06

g
— e’
g1

c=a? and aﬁ-ag c

204671'0562046 ¢

g. €. e —
Qg Qg g g g g leg

g g a

we conclude that af€aj. Therefore all idempotents of the semigroup %#(G)
are €-equivalent. Since the semigroup #(G) is inverse we conclude that the
quotient semigroup #(G)/€ contains only one idempotent and by Lemma
I1.1.10 from [20] the semigroup #(G)/¢ is a group. O

Remark 3.4. We observe that Proposition 1.5 implies that if G is a
linearly ordered d-group then the statements similar to Propositions 2.1 and

2.3 and Theorems 3.2 and 3.3 hold for the semigroups %(G) and 903+(G).

Theorem 3.5. If G is the lexicographic product A X e H of non-singleton
linearly ordered groups A and H then the semigroups B(G) and %+ (G) have
non-trivial non-group congruences.

Proof. We define a relation ~ on the semigroup #(G) as follows:

O‘EZ;,’CIZ; ~¢ aggj”dbig if and only if a; = a9, ¢c; = ¢y and dl_lbl = d2_1b2.

Simple verifications show that ~ is an equivalence relation on the semigroup

B(G).
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Next we shall prove that ~ is a congruence on %(G). Suppose that

(a1,b1) (a2,b2) (a1,b1) (a ,b2) (u,v) .
a(c;’di) ~¢ a(c;dz) for some 04(01176&), (022 d;) € #(Q). Let ) be an arbi-

trary element of #(G). Then we have

U/,U~C7d 71‘a,b .
Wt o _ [ oy T (e d)<(u o)
Vomim) = Uerr) Ua) =) o) if (u,v)<(c1,d1)
(Clvdl)'(u,v)71~(z,y)’ 5 s(C1,d1

a(ucl arvdy b1)’ if (c1,d1)<(u,v); B
§0«17b1 B
(

(

Q

cru-z.dyo-1y)’ if (u,v)<(c1,dy)

ucy ~a1,vdy ) .
[a(xyl) ! Yooif e < ug

= agzl;)}dl " if ey =uand dy < v
a;ll;z_l%x,dw—lyy lf u < c1;
O‘(Z,lc,lltfly)’ if u=c, and v < dy;
and
uw)-(ca,d2) " 1-(az,b .
(ka,l2) :a(ag,sz) o(wY) { agx’yé () 2,d2) (a2 2)? if (c2,d)<(u,v); _
(m2,n2) (c2,d2)  ~(xy) a(?jjdi)(um)fl,(x’y), if (u,v)<(co,d2)

uc2 fagvdy b2), if (c2,d2)<(u,v);

%” if (u,v)<(co, da),

« ) , if co < u;
_ ) o, , if co =uand ds <wv
B a2,b2 . .
« o 193 dyv—1y)? if u < eo;
az,bz e
adeUl) if u=-cy and v < ds.

Since a1 = a9, ¢ = c9 and dl_ b = d2_1b2 we conclude that the following
conditions hold:

(1) if ¢ = cg < u then k; = ucl_lal = ucz_lag = ko, m1 =z = my and
ni 'ty =y ud oy =y tudy the = ng
2) ifcg =cog =uwand d; <vthen k1 = a1 =as = kg, m1 = = my and
( :
nl_lll = yilvdl_lbl = yilvdglbg = n2_1l2;
(3) if u < 1 = co then ky = a1 = as = ko, m1 = cru™ ' = cou™ 'z = my
and
nl_lll = yilvdl_lbl = yilvdglbg = n;llg;
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(4) ifu=1c; =coand v <

d1thenk‘l—al—aQ_kQ,ml_;p_mQ

nfll =1y vd71b1 =y vd; by = n;llg.

if (z,y)<(a1,b1);
if (a1, 01)<(z,y)
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and

Hence we get that aEkll’l;)l) ~e ES?ZZ) ) Similarly we have
a1,b1)-(z,y) " (u,w
(proq1) _ (wo) - (a1br) agcll,dig( o )’
(ris1) = T@y) Tlend) T, u,v)
(wvy)'(alzbl)il'(clvdl)’
-1 -1
. agzllzl) whry U)a if (.Z', y)g(ala bl),
a(::(’:;) c1,yby di)’ if (a1, b1)<(z,y),
oo Y e < a;
aégfbéf) ", if £ = ay and y < by;
= u,v) )
a(ml) b ldr) if a1 < x;
and
a2,b2)-(x, Lo(u,w
(p2ig2) _ (uv) | (a2bo) _ agcidz)( y) o ( )7
(r2752) o ({E,y) (627d2) - a
(z,y)-(az,b2) 1 (c2,d2)’
asz lu Ly
_ agcj,dz) P00 (2, )< (az, o)y B
a(z;:;) c2,ybs “d2) if ((12, b2) (.’L‘, y)
O‘Eg,fl;)lu’bgyilv), if 2 < a;
agﬁgbﬁf) 1v)7 if x = az and y < bo;
= u,v) )
a(mz_) ea,b5 )’ if ag < x;
aEZQ’bez_ldQ), if ag =x and by <y
Since a1 = as, ¢1 = ¢ and dflbl =d, 1py we conclude that the following

conditions hold:

(1)

and

sl_lql = d_lblyi

(2)

ifx =a1 =ag and y <

if £ < a; = ag then p; = a1z~

1

1 -1

v = dy 'bay

1

-1 .
1):82 q2;

by then p; = u =p2, 11 =c1 = c2 =12 and

st 't = dy oy e = dy they e = 55 s

31_1(]1 = dl_lb1y’1v = dz_lbgyfl’u = 82_1(]2;

U= a2 U =P2,TT =C] = C3 =179

if a1 = ag < x then p1 = u = py, 11 = xa; '¢1 = xay ¢y = ry and
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(4) if aj = a2 = x and by < y then p; = u =py, 11 =1 = c2 =19 and

Sl_lql = dl_lblyflv = d;lbgyflv = 52_1q2.

(prq1) | (p2,42)

(r1,s1) ¢ “(re,s2)”

We fix any ai,as,b1,bo € G. If a; # as then the elements 0221’23 and
(az,b2)
(az,bzg

(a1,b1 (a2,b2) . . ..
g1 b1) and Oggby) BTC not ~-equivalent. Since a homomorphic image

Hence we get that «
are idempotents of the semigroup %(G), and moreover, the elements

of an idempotent is an idempotent too, we conclude that <a8123) Te #
(aggzzzg) e, where m.: B(G) — B(G)/ ~ is the natural homomorphism
which is generated by the congruence ~. on the semigroup #(G). This im-
plies that the quotient semigroup #(G)/~. is not a group, and hence ~ is
not a group congruence on the semigroup %(G).

The proof of the statement that the semigroup %' (G) has a non-trivial
non-group congruence is similar. O

Theorem 3.6. Let G be a commutative linearly ordered group. Then the
following conditions are equivalent:

(1) G is archimedean;
(ii) every mon-trivial congruence on B(G) is a group congruence;
(i71) every non-trivial congruence on B1(G) is a group congruence.

Proof. Implications (i) = (i) and (i) = (¢i7) follow from Theorems 3.3
and 3.2, respectively.

(74) = (i) Suppose the contrary that there exists a non-archimedean com-
mutative linearly ordered group G such that every non-trivial congruence on
#(G) is a group congruence. Then by Hahn’s theorem (see [12] or [16, Sec-
tion VIL.3, Theorem 1]) G is isomorphic to a lexicographic product H lexHa

ac
of some family of non-singleton subgroups {H, | & € _#} of the additive
group of real numbers with a non-singleton linearly ordered index set _#Z.
We fix a non-maximal element ag € ¢, and put

A=]liex{Ho|la<ao}  and  H=]]iex{Ha |0 <a}.

Then G is isomorphic to a lexicographic product A Xjex H of non-singleton
linearly ordered groups A and H, and hence by Theorem 3.5 the semigroup
2%(G) has a non-trivial non-group congruence. The obtained contradiction
implies that the group G is archimedean.

The proof of implication (ii7) = (7) is similar to (ii) = (). O

On the semigroup %(G) (resp., @*LG)) we determine a relation ~i in
the following way. We define a map i0: B(G) — B(G) (resp., i0: BT (G) —
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2 7(@)) by the formulae (o])id = &7 and (&7)id = o] for g,h € G (resp.,
g,h € GT). We put

a~p P ifandonlyif a=p or (e)io=0 or (6)id=a

for a, 3 € B(Q) (resp., o, 8 € BT(Q)). Simple verifications show that ~iy
is an equivalence relation on the semigroup %(G) (resp., Z 7 (G)).

Proposition 3.7. If G is a linearly ordered d-group then ~iy is a con-
gruence on semigroups B(G) and B+(G). Moreover, quotient semigroups
B(G) /] ~ip and B(G) T | ~ip are isomorphic to semigroups B(G) and BT (G),
respectively.

Proof. 1t is sufficient to show that if o ~ip 8 and 7y ~ip 0 then (- 7) ~ip
(8-9) for o, B3,7,6 € B(G) (resp., o, 3,7,6 € BT (G)). Since the case o = 3
and vy = ¢ is trivial we consider the following cases:

(1) a=af, f=af and v =6 = a;
(it) a=aof, B=af and vy =0 = &5;
(¢4ii) a=af, B=af and vy =0 = af;
(iv) a=af, f=af and v =6 = &5;

=af, B=ay, v=ajand § = a;
=af, B=aj, v=oajand § = a;

O S e S e e e e e = )
|

(vit) a =af, f=af,y=a5 and § = af;
(viii =af, B=af, vy=afand § = &;
(izx =fB=qaf,y=3a5and § = af;

(x =0B=af,v=3a5and § = af;

(x1 =fB=0aof,y=afand § =& and
(zii =0B=4af,v=afand § =&,

where a,b,c,d € G (resp., a,b,c,d € GT).

In case (i) we have that

cbla

g , ifb<eg

oy = of-af={ a,

if b=c;

al o, ifb>e

and hence (a - )
verifications are similar.

and (-6 = af-af=

~ip (B-0) in B(GQ) (resp., in BH(Q)).

o p—1, .

aéb e if b < ¢
&g, if b=c;
ap 14 ifb>c,

In other cases

Since the restriction ®~, |z : #(G) — #(G) of the natural homomor-

phism @ : B(G) — A(G) is a bijective map we conclude that the semi-

group (#(G))®~,, is isomorphic to the semigroup #(G). Similar arguments
show that the semigroup £ *(G)/ ~ip is isomorphic to & *(G). O

Theorem 3.8. Let G be an_archimedean linearly ordered d-group. If €
is a non-trivial congruence on B(G) (resp., on BT (QG)) then the quotient
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semigroup B(G)/C (resp., B1(G)/€) is either a group or B(G)/C (resp.,
PBH(G)/¢) is isomorphic to the semigroup B(G) (resp., B1(G)).

Proof. Since the subsemigroup of idempotents of the semigroup %(Q) is
linearly ordered, similar arguments as in the proof of Theorem 3.2 imply
that there exist distinct idempotents ¢ and ¢ of %(G) such that e¢: and
e <t If the set (g,0) = {v € E(#B(GQ)) | ¢ < v < 1} is non-empty then
Lemma 3.1 and Theorem 3.2 imply that the quotient semigroup %(G)/¢
is inverse and has only one idempotent, and hence by Lemma I1.1.10 from
[20] it is a group. Otherwise there exists g € G such that ¢ = «of and
e =&j. Since of = ok -af - af and &) = af
conclude that the congruence € coincides with the congruence ~i, on %(G),
and hence by Proposition 3.7 the quotient semigroup %(G)/€ is isomorphic
to the semigroup #(G).

In the case of the semigroup % T(G) the proof is similar. O

- ay - af for every k,l € G we

Theorem 3.9. Let G be a commutative linearly ordered d-group. Then
the following conditions are equivalent:

(1) G is archimedean;
. . o .
every non-trivial congruence on B(G) is a group congruence;

every non-trivial congruence on %’JF(G) 1S @ group congruence;

the semigroup %;(G) has a unique non-trivial non-group congruence;
the semigroup #B7+(G) has a unique non-trivial non-group congru-
ence.

Proof. The equivalence of statements (i), (i¢) and (iii) follows from Propo-
sition 1.5 and Theorem 3.6. Also Theorem 3.8 implies that implications
(i) = (iv) and (7) = (v) hold.

Next we shall show that implication (iv) = (i) holds. Suppose the con-
trary: there exists a commutative linearly ordered non-archimedean d-group
G such that the semigroup %(G) has a unique non-trivial non-group con-
gruence. Then by Proposition 3.7 we have that ~j; is a unique non-trivial
non-group congruence on the semigroup %(G). Therefore, similarly as in the
proof of Theorem 3.6 we get that G is isomorphic to the lexicographic prod-
uct A Xjex H of non-singleton linearly ordered groups A and H, and hence
by Theorem 3.5 the semigroup #(G) has a non-trivial non-group congruence
~. We define a relation ~ on the semigroup %(G) as follows:

(1) (agi’sg, aEZ’S) € ~if and only if (O‘EZ,S;’ aEfﬁ?) €~, for agi’zg, O‘Ef,’g)) S
A(G) C B(G);

i (P,9) o (pa) o (p.g)  (P.g) o (p.g) o (P.q) =
(i) (a(ns),a(T’s)) , (a(m),a(r’so , <a(m),a(r’s)) € ~, for all p,r € A

and q,s € H;
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;,&qu)) € ~1fand0nly1f< ;, gfg;)

E (a.b) . (p:a) c
B(G) C B(G) and &Y &PD ¢ 2(G) c B
(b.q NG
e,
C

, for ey Q)

/\

Yeid) Xr,s) G);

)) € ~if and only if
c @(G) and G2 € (G)
;, &(T7’8)> € ~if and only if ( « c’g, g
C B(G) and &%) € B(G) C B(G).
Then simple verifications show that =~ is a congruence on the semigroup
%(G), and moreover, the quotient semigroup %(G)/~ is isomorphic to the
quotient semigroup %( )/ ~. This implies that the congruence ~ is differ-
ent from ~ijp. This contradicts that ~i is a unique non-trivial non-group
congruence on the semigroup #(G). The obtained contradiction implies
implication (iv) = (7).

The proof of implication (v) = (i) is similar to the proof of implication
(iv) = (7). O

Theorem 3.10. Let G be a linearly ordered group and let &,y be the
least group congruence on the semigroup B(G) (resp., B (G)). Then the
quotient semigroup B(G)/Cpmq (resp., BY(G)/ECng) is antiisomorphic to the
group G.

Proof. By Proposition 1.2(ii) and Lemma IIL.5.2 from [20] we have that
elements of and of are €,,g-equivalent in QE(G) (resp., in #1(Q)) if and
only if there exists # € G such that of - o = ag-aZ. Then Proposition 2.1(3)
implies that af - af = a§ - af for all g € G such that gzaxinG. Ifg>b
and g > d then the definition of the semigroup operation in Z(G) (resp., in

~1.,
P7*(G)) implies that ab af =ad®? “and af-af = af® ¢, and since G is

a group we get that b™'-a =d~!-c.

Conversely, suppose that «f and «of are elements of the semigroup %(G)
(resp., 1 (G)) such that b='-a = d~'-c. Then for any element g € G such
that g > b and g > d in G we have «f - ag—agb andag-aZ—agdl :
and hence, since b1 -a = d~ !¢, we get that af € gay. Therefore, aj &, a4
in B(G) (resp., in BT (G)) if and only if b= -a =d ! c.

We determine a map f: B(G) — G (resp., {: BT (G) — G) by the formula
(a@)f=b"1-a, for a,b € G. Then we have

(@GP o), if b < ¢ dl-c-bla, ifb<c
(ap -ag)f =19 (a9)f, ifb=c¢; =< d1-aq, ifb=c; =
(O[Z-c—l.d)f? if b > ¢, (b et d)_l " a, if b > Cy
dt.c-bl.a, ifb<cg
= gii'c'zii'a’ iﬁgzc; =dl-c-bta=(af (ad)f,
TtecbTa, ifb>c
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for a,b,c,d € G. This completes the proof of the theorem. O
Holder’s theorem and Theorem 3.10 imply the following.

Theorem 3.11. Let G be an archimedean linearly ordered group and let
Cpng be the least group congruence on the semigroup B(G) (resp., B1(G)).
Then the quotient semigroup B(G)/Cpmg (resp., B (G)/Cpmg) is isomorphic
to the group G.

Theorems 3.2, 3.3 and 3.11 imply the following.

Corollary 3.12. Let G be an archimedean linearly ordered group and let
Cpng be the least group congruence on the semigroup B(G) (resp., BH(G)).
Then every non-isomorphic image of the semigroup B(G) (resp., B+ (Q))
is isomorphic to some homomorphic image of the group G.

Theorem 3.13. Let G be a linearly ordered d-group and let €,,, be the
least group congruence on the semigroup B(G) (resp., BT (QG)). Then the
quotient semigroup B(G)/Cpmg (resp., BH(G)/Cmg) is antiisomorphic to the
group G.

Proof. Similar arguments as in the proofs of Theorem 3.10 and Proposi-

tion 3.7 show that the following assertions are equivalent:
(i) ab mgad in B(G) (resp., in BT(Q));

(1) « mgad in B(G) (resp., in Z1(Q));

) ab CrgS in ,@( ) (resp., in B 1(Q));

(iv) bt-a=d*t-

We determine a map f: B(G) — G (resp., f: B7(G) — G) by the formu-
lae (af)f =b~'-a and ( a)f=b"1-a, for a,b € G. Then we have

(ap - ag)f = (ag)f - (ap)f,

(G5P 0, ifb<c dlcbla, ifb<e
(& (Gg)f, ifb=c; =g d ' ifh=c =
(G .1 ifb>c, (b- 0*1 d)~-a, ifb>c,

dlc-bl.a, ifb<eg
dtcbtea, ifb=c¢ =d e bt a=(a9f (GDF,
d b la, ifb>e

G50, i b < dle bl ifb<e
(o (&9)f, ifb=c; =3 d'-a, ifb=c; =
(af 1), ifb>c, (b- L. d)~1 ifb>ec,

dl.c-bl.a, ifb<c
dlcbtea, ifb=c¢ =d e bt a=(a)f (GDF,
dloc-b o, ifb>e

|
|
|
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(O‘Eb G, ifb<c dt.c-b!aq, ifb <
(85 -a@)f =1 (@9)f,  Hfb=c = d"'q ifh=c =
(@1 f ifb>c, (b-ct-d)y"ta, ifb>c,
dlc-b7la, ifb<c
= dlc-bl.a, ifb=c :d_l‘c'b_l'az(&g)f-(ag)f,
dl.c-b7l.a, ifb>c,
for a,b,c,d € G. This completes the proof of the theorem. O

Holder’s theorem and Theorem 3.13 imply the following.

Theorem 3.14. Let G be an archimedean linearly ordered d-group and let
@y be the least group congruence on the semigroup B(G) (resp., B(Q)).
Then the quotient semigroup B(G)/Cpmg (resp., BT(G))/Emg) is isomorphic
to the group G.

Theorems 3.8 and 3.14 imply the following.

Corollary 3.15. Let G be an archimedean linearly ordered d-group, T be a
semigroup and h: B(G) — T (resp., h: (G) — T) be a homomorphism.
Then only one of the following conditions holds:

(i) h is a monomorphism;
(i) the image (B(G)) h (resp., (B7(G)) h) is isomorphic to some ho-
momorphic image of the group G;

(i17) the image (B(G)) h (resp., (Z7(G)) h) is isomorphic to the semi-

group B(Q) (resp., B1(Q)).
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