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Congruences on bicyclic extensions of a linearly
ordered group

Oleg Gutik, Dušan Pagon, and Kateryna Pavlyk

Abstract. In the paper we study inverse semigroups B(G), B+(G),

B(G) and B +(G) which are generated by partial monotone injective
translations of a positive cone of a linearly ordered group G. We describe
Green’s relations on the semigroups B(G), B+(G), B(G) and B +(G),
their bands and show that they are simple, and moreover, the semigroups
B(G) and B+(G) are bisimple. We show that for a commutative linearly
ordered group G all non-trivial congruences on the semigroup B(G) (and
B+(G)) are group congruences if and only if the group G is archimedean.
Also we describe the structure of group congruences on the semigroups
B(G), B+(G), B(G) and B +(G).

1. Introduction and main definitions

In this article we shall follow the terminology of [7, 8, 14, 16, 20].
A semigroup is a non-empty set with a binary associative operation. A

semigroup S is called inverse if for any x ∈ S there exists a unique y ∈ S
such that x · y · x = x and y · x · y = y. Such an element y in S is called the
inverse of x and denoted by x−1. The map defined on an inverse semigroup
S which maps every element x of S to its inverse x−1 is called the inversion.

If S is a semigroup, then we shall denote the subset of idempotents in S by
E(S). If S is an inverse semigroup, then E(S) is closed under multiplication
and we shall refer to E(S) as the band of S. If the band E(S) is a non-empty
subset of S, then the semigroup operation on S determines the following
partial order 4 on E(S): e 4 f if and only if ef = fe = e. This order
is called the natural partial order on E(S). A semilattice is a commutative
semigroup of idempotents. A semilattice E is called linearly ordered or a
chain if its natural order is a linear order.
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If C is an arbitrary congruence on a semigroup S, then we denote by
ΦC : S → S/C the natural homomorphisms from S onto the quotient semi-
group S/C. Also we denote by ΩS and ∆S the universal and the iden-
tity congruences, respectively, on the semigroup S, i.e., Ω(S) = S × S and
∆(S) = {(s, s) | s ∈ S}. A congruence C on a semigroup S is called non-
trivial if C is distinct from the universal and the identity congruences on S,
and a group congruence if the quotient semigroup S/C is a group. Every
inverse semigroup S admits a least group congruence Cmg:

aCmgb if and only if there exists e ∈ E(S) such that ae = be

(see [20, Lemma III.5.2]).
A map h : S → T from a semigroup S to a semigroup T is said to be an

antihomomorphism if (a · b)h = (b)h · (a)h. A bijective antihomomorphism
is called an antiisomorphism.

If S is a semigroup, then we shall denote by R, L , J , D and H Green’s
relations on S (see [8]):

aRb if and only if aS1 = bS1;

aL b if and only if S1a = S1b;

aJ b if and only if S1aS1 = S1bS1;
D = L ◦R = R ◦L ;
H = L ∩R.

Let IX denote the set of all partial one-to-one transformations of an
infinite set X together with the following semigroup operation: x(αβ) =
(xα)β if x ∈ dom(αβ) = {y ∈ domα | yα ∈ domβ}, for α, β ∈ IX . The
semigroup IX is called the symmetric inverse semigroup over the set X (see
[8]). The symmetric inverse semigroup was introduced by Wagner [21] and
it plays a major role in the theory of semigroups.

The bicyclic semigroup C (p, q) is the semigroup with the identity 1 gen-
erated by two elements p and q subjected only to the condition pq = 1. The
distinct elements of C (p, q) are exhibited in the following useful array:

1 p p2 p3 · · ·
q qp qp2 qp3 · · ·
q2 q2p q2p2 q2p3 · · ·
q3 q3p q3p2 q3p3 · · ·
...

...
...

...
. . .

and the semigroup operation on C (p, q) is determined as follows:

qkpl · qmpn = qk+m−min{l,m}pl+n−min{l,m}.
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The bicyclic semigroup plays an important role in the algebraic theory of
semigroups and in the theory of topological semigroups. For example a well-
known O. Andersen’s result [1] states that a (0–) simple semigroup is com-
pletely (0–) simple if and only if it does not contain the bicyclic semigroup.
The bicyclic semigroup does not embed into stable semigroups [15].

Remark 1.1. We observe that the bicyclic semigroup is isomorphic to the
semigroup CN(α, β) which is generated by injective partial transformations
α and β of the set of positive integers N, defined as follows:

(n)α = n+ 1 if n > 1;

(n)β = n− 1 if n > 1

(see Exercise IV.1.11(ii) in [20]).

Recall from [11] that a partially-ordered group is a group (G, ·) equipped
with a partial order 6 that is translation-invariant; in other words, 6 has
the property that, for all a, b, g ∈ G, if a 6 b then a · g 6 b · g and g ·a 6 g · b.

By e we denote the identity of a group G. The set G+ = {x ∈ G | e 6 x}
in a partially ordered group G is called the positive cone or the integral part
of G and it satisfies the properties

1) G+ ·G+ ⊆ G+;
2) G+ ∩ (G+)−1 = {e};
3) x−1 ·G+ · x ⊆ G+ for all x ∈ G.

Any subset P of a group G that satisfies conditions 1) – 3) induces a partial
order on G (x 6 y if and only if x−1 ·y ∈ P ) for which P is the positive cone.

A linearly ordered or totally ordered group is an ordered group G such
that the order relation 6 is total [7].

In the remainder we shall assume that G is a linearly ordered group.
For every g ∈ G we denote

G+(g) = {x ∈ G | g 6 x}.
The set G+(g) is called a positive cone on element g in G.

For arbitrary elements g, h ∈ G we consider a partial map αgh : G ⇀ G
defined by the formula

(x)αgh = x · g−1 · h for x ∈ G+(g).

We observe that Lemma XIII.1 from [7] implies that for such a partial map
αgh : G ⇀ G the restriction αgh : G+(g)→ G+(h) is a bijective map.

We denote

B(G) = {αgh : G ⇀ G | g, h ∈ G} and B+(G) = {αgh : G ⇀ G | g, h ∈ G+},
and consider, on the sets B(G) and B+(G), the operation of the composition
of partial maps. Simple verifications show that

αgh · α
k
l = αab , where a = (h ∨ k) · h−1 · g and b = (h ∨ k) · k−1 · l, (1)
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for g, h, k, l ∈ G. Therefore, property 1) of the positive cone and condi-
tion (1) imply that B(G) and B+(G) are subsemigroups of IG.

Proposition 1.2. Let G be a linearly ordered group. Then the following
assertions hold:

(i) elements αgh and αhg are inverses of each other in B(G) for all g, h ∈
G (resp., in B+(G) for all g, h ∈ G+);

(ii) an element αgh of the semigroup B(G) (resp., B+(G)) is an idempo-
tent if and only if g = h;

(iii) B(G) and B+(G) are inverse subsemigroups of IG;
(iv) the semigroup B(G) (resp., B+(G)) is isomorphic to SG = G × G

(resp., S+
G = G+ ×G+) with the semigroup operation

(a, b) · (c, d) =

 (c · b−1 · a, d), if b < c;
(a, d), if b = c;
(a, b · c−1 · d), if b > c,

where a, b, c, d ∈ G (resp., a, b, c, d ∈ G+).

Proof. (i) Condition (1) implies that

αgh · α
h
g · α

g
h = αgh and αhg · α

g
h · α

h
g = αhg ,

and hence αgh and αhg are inverse elements for each other in B(G) (resp., in
B+(G)).

Statement (ii) follows from the property of the semigroup IG that α ∈ IG

is an idempotent if and only if α : domα→ ranα is an identity map.
Statements (i), (ii) and Theorem 1.17 from [8] imply statement (iii).
Statement (iv) is a corollary of condition (1). �

Remark 1.3. We observe that Proposition 1.2 implies that

(1) if G is the additive group of integers (Z,+) with usual linear order 6
then the semigroup B+(G) is isomorphic to the bicyclic semigroup
C (p, q);

(2) if G is the additive group of real numbers (R,+) with usual linear
order 6 then the semigroup B(G) is isomorphic to B(−∞,∞) (see
[17, 18]) and the semigroup B+(G) is isomorphic to B[0,∞) (see [2,
3, 4, 5, 6]) and

(3) the semigroup B+(G) is isomorphic to the semigroup S(G) which is
defined in [9, 10].

We shall say that a linearly ordered group G is a d-group if for every
element g ∈ G+ \ {e} there exists x ∈ G+ \ {e} such that x < g. We observe
that a linearly ordered group G is a d-group if and only if the set G+ \ {e}
does not contain a minimal element.
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Definition 1.4. Suppose that G is a linearly ordered d-group. For every
g ∈ G we denote

◦
G+(g) = {x ∈ G | g < x}.

The set
◦
G+(g) is called a ◦-positive cone on element g in G.

For arbitrary elements g, h ∈ G we consider a partial map ◦
αgh : G ⇀ G

defined by the formula

(x) ◦αgh = x · g−1 · h for x ∈
◦
G+(g).

We observe that Lemma XIII.1 from [7] implies that for such a partial map
◦
αgh : G ⇀ G the restriction ◦

αgh :
◦
G+(g)→

◦
G+(h) is a bijective map.

We denote
◦
B(G) =

{ ◦
αgh : G ⇀ G | g, h ∈ G

}
and

◦
B+(G) =

{ ◦
αgh : G ⇀ G | g, h ∈ G+

}
,

and consider, on the sets
◦
B(G) and

◦
B+(G), the operation of the composition

of partial maps. Simple verifications show that
◦
αgh ·

◦
αkl = ◦

αab , where a = (h ∨ k) · h−1 · g and b = (h ∨ k) · k−1 · l, (2)

for g, h, k, l ∈ G. Therefore, property 1) of the positive cone and condi-
tion (2) imply that

◦
B(G) and

◦
B+(G) are subsemigroups of the symmetric

inverse semigroup IG.

Proposition 1.5. If G is a linearly ordered d-group then the semigroups
◦
B(G) and

◦
B+(G) are isomorphic to B(G) and B+(G), respectively.

Proof. Define a map h : B(G) →
◦
B(G) (resp., h : B+(G) →

◦
B+(G)) by

the formula

(αgh)h = ◦
αgh for g, h ∈ G (resp., g, h ∈ G+).

Simple verifications show that h is an isomorphism of the semigroups
◦
B(G)

and B(G) (resp.,
◦
B+(G) and B+(G)). �

Suppose that G is a linearly ordered d-group. Then obviously
◦
B(G) ∩

B(G) = ∅ and
◦
B+(G) ∩B+(G) = ∅. We define

B(G) =
◦
B(G) ∪B(G) and B +(G) =

◦
B+(G) ∪B+(G).

Proposition 1.6. If G is a linearly ordered d-group then B(G) and
B +(G) are inverse semigroups.

Proof. Since
◦
B(G), B(G),

◦
B+(G) and B+(G) are inverse subsemigroups

of the symmetric inverse semigroup IG over the group G we conclude that
it is sufficient to show that B(G) and B +(G) are subsemigroups of IG.
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We fix arbitrary elements g, h, k, l ∈ G. Since αgh, αkl ,
◦
αgh and ◦

αkl are
partial injective maps from G into G we have

αgh ·
◦
αkl =


◦
αk·h

−1·g
l , if h < k;

◦
αgl , if h = k;

αg
h·k−1·l, if h > k

and ◦
αgh · α

k
l =

 αk·h
−1·g

l , if h < k;
◦
αgl , if h = k;

◦
αg
h·k−1·l, if h > k.

Hence B(G) is a subsemigroup of IG.
Similar arguments and property 1) of the positive cone imply that B +(G)

is a subsemigroup of IG. This completes the proof of our proposition. �

In our paper we study semigroups B(G) and B+(G) for a linearly ordered
group G, and semigroups B(G) and B +(G) for a linearly ordered d-group
G. We describe Green’s relations on the semigroups B(G), B+(G), B(G)
and B +(G), their bands and show that they are simple, and moreover, the
semigroups B(G) and B+(G) are bisimple. We show that for a commuta-
tive linearly ordered group G all non-trivial congruences on the semigroup
B(G) (and B+(G)) are group congruences if and only if the group G is
archimedean. Also, we describe the structure of group congruences on the
semigroups B(G), B+(G), B(G) and B +(G).

2. Algebraic properties of the semigroups B(G) and B+(G)

Proposition 2.1. Let G be a linearly ordered group. Then the following
assertions hold:

(i) if αgg, αhh ∈ E(B(G))
(
resp., αgg, αhh ∈ E(B+(G))

)
then αgg 4 αhh if

and only if g > h in G
(
resp., in G+

)
;

(ii) the semilattice E(B(G))
(
resp.,E(B+(G))

)
is isomorphic to G

(
resp.,

G+
)
, considered as a ∨-semilattice, under the mapping (αgg)i = g;

(iii) αghRαkl in B(G)
(
resp., in B+(G)

)
if and only if g = k in G

(
resp.,

in G+
)
;

(iv) αghLαkl in B(G)
(
resp., in B+(G)

)
if and only if h = l in G

(
resp.,

in G+
)
;

(v) αghH αkl in B(G)
(
resp., in B+(G)

)
if and only if g = k and h = l

in G
(
resp., in G+

)
, and hence every H -class in B(G)

(
resp., in

B+(G)
)

is a singleton set;
(vi) αghDα

k
l in B(G)

(
resp., in B+(G)

)
for all g, h, k, l ∈ G, and hence

B(G)
(
resp., B+(G)

)
is a bisimple semigroup;

(vii) B(G)
(
resp., B+(G)

)
is a simple semigroup.

Proof. Statements (i) and (ii) are trivial and follow from the definition of
the semigroup B(G).

(iii) Let αgh, α
k
l ∈ B(G) be such that αghRαkl . Since αghB(G) = αkl B(G)

and B(G) is an inverse semigroup, Theorem 1.17 from [8] implies that
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αghB(G) = αgh(αgh)−1B(G) and αkl B(G) = αkl (α
k
l )
−1B(G), and hence αgg =

αgh(αgh)−1 = αkl (α
k
l )
−1 = αkk. Therefore we get that g = k.

Conversely, let αgh, α
k
l ∈ B(G) be such that g = k. Then αgh(αgh)−1 =

αkl (α
k
l )
−1. Since B(G) is an inverse semigroup, Theorem 1.17 from [8] im-

plies that αghB(G) = αgh(αgh)−1B(G) = αkl B(G) and hence αghRαkl in B(G).
The proof of statement (iv) is similar to (iii).
Statement (v) follows from statements (iii) and (iv).
(vi) For every g, h ∈ B(G) we have αgh(αgh)−1 = αgg and (αgh)−1αgh = αhh,

and hence by statement (ii), Proposition 1.2 and Lemma 1.1 from [19] we
get that B(G) is a bisimple semigroup.

(vii) Since every two D-equivalent elements of an arbitrary semigroup
S are J -equivalent (see [8, Section 2.1]) we have that B(G) is a simple
semigroup.

The proof of the proposition for the semigroup B+(G) is similar. �

Given two partially ordered sets (A,6A) and (B,6B), the lexicographical
order 6lex on the Cartesian product A×B is defined as follows:

(a, b) 6lex (a′, b′) if and only if a <A a
′ or (a = a′ and b 6B b′).

In this case we shall say that the partially ordered set (A × B,6lex) is the
lexicographic product of partially ordered sets (A,6A) and (B,6B) and it
is denoted by A ×lex B. We observe that the lexicographic product of two
linearly ordered sets is a linearly ordered set.

Proposition 2.2. Let G be a linearly ordered d-group. Then the following
assertions hold:

(i) E
(
B(G)

)
= E(B(G))∪E

( ◦
B(G)

)
and E

(
B +(G)

)
= E(B +(G))∪

E
( ◦
B +(G)

)
.

(ii) If αgg,
◦
αgg, αhh,

◦
αhh ∈ E

(
B(G)

) (
resp., αgg,

◦
αgg, αhh,

◦
αhh ∈ E

(
B +(G)

))
then:
(a) αgg 4 αhh if and only if g > h in G

(
resp., in G+

)
;

(b) ◦
αgg 4

◦
αhh if and only if g > h in G

(
resp., in G+

)
;

(c) αgg 4
◦
αhh if and only if g > h in G

(
resp., in G+

)
;

(d) ◦
αgg 4 αhh if and only if g > h in G

(
resp., in G+

)
.

(iii) The semilattice E
(
B(G)

) (
resp., E

(
B +(G)

))
is isomorphic to the

lexicographic product G ×lex {0, 1}
(
resp., G+ ×lex {0, 1}

)
of semi-

lattices (G,∨)
(
resp., (G+,∨)

)
and ({0, 1},min) under the mapping

(αgg)i = (g, 1) and ( ◦αgg)i = (g, 0), and hence E
(
B(G)

) (
resp.,

E
(
B +(G)

))
is a linearly ordered semilattice.

(iv) The elements α and β of the semigroup B(G)
(
resp., B +(G)

)
are R-

equivalent in B(G)
(
resp., in B +(G)

)
provided either α, β ∈ B(G)
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resp., α, β ∈ B +(G)

)
or α, β ∈

◦
B(G)

(
resp., α, β ∈

◦
B +(G)

)
; and

moreover, we have that
(a) αghRαkl in B(G)

(
resp., in B +(G)

)
if and only if g = k; and

(b) ◦
αghR

◦
αkl in B(G)

(
resp., in B +(G)

)
if and only if g = k.

(v) The elements α and β of the semigroup B(G)
(
resp., B +(G)

)
are

L -equivalent in B(G)
(
resp., in B +(G)

)
provided either α, β ∈

B(G)
(
resp., α, β ∈ B +(G)

)
or α, β ∈

◦
B(G)

(
resp., α, β ∈

◦
B +(G)

)
;

and moreover, we have that
(a) αghL αkl in B(G)

(
resp., in B +(G)

)
if and only if h = l; and

(b) ◦
αghL

◦
αkl in B(G)

(
resp., in B +(G)

)
if and only if h = l.

(vi) The elements α and β of the semigroup B(G)
(
resp., B +(G)

)
are

H -equivalent in B(G)
(
resp., in B +(G)

)
provided either α, β ∈

B(G)
(
resp., α, β ∈ B +(G)

)
or α, β ∈

◦
B(G)

(
resp., α, β ∈

◦
B +(G)

)
;

and moreover, we have that
(a) αghH αkl in B(G)

(
resp., in B +(G)

)
if and only if g = k and

h = l;
(b) ◦

αghH
◦
αkl in B(G)

(
resp., in B +(G)

)
if and only if g = k and

h = l; and
(c) every H -class in B(G)

(
resp., in B +(G)

)
is a singleton set.

(vii) B(G)
(
resp., B +(G)

)
is a simple semigroup.

(viii) The semigroup B(G)
(
resp., B +(G)

)
has only two distinct D-classes

which are inverse subsemigroups B(G) and
◦
B(G)

(
resp., B+(G) and

◦
B +(G)

)
.

Proof. Statements (i), (ii) and (iii) follow from the definition of the semi-
group B(G) and Proposition 1.6.

The proofs of statements (iv), (v) and (vi) follow from Proposition 1.6
and Theorem 1.17 of [8] and are similar to statements (ii), (iv) and (v) of
Proposition 2.1.

(vii) We shall show that B(G) · α ·B(G) = B(G) for every α ∈ B(G).
We fix arbitrary α, β ∈ B(G) and show that there exist γ, δ ∈ B(G) such
that γ · α · δ = β.

We consider the following cases:

(1) α = αgh ∈ B(G) and β = αkl ∈ B(G);

(2) α = αgh ∈ B(G) and β = ◦
αkl ∈

◦
B(G);

(3) α = ◦
αgh ∈

◦
B(G) and β = αkl ∈ B(G);

(4) α = ◦
αgh ∈

◦
B(G) and β = ◦

αkl ∈
◦
B(G),

where g, h, k, l ∈ G.
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We put
γ = αkg and δ = αhl in case (1);
γ = ◦

αkg and δ = ◦
αhl in case (2);

γ = αka and δ = αa·g
−1·h

l , where a ∈ G+(g) \ {g}, in case (3);
γ = ◦

αkg and δ = ◦
αhl in case (4).

Elementary verifications show that γ ·α ·δ = β, and this completes the proof
of assertion (vii).

Statement (viii) follows from statements (iv) and (v).
The proof of the statements of the proposition for the semigroup B +(G)

is similar. �

Proposition 2.3. Let G be a linearly ordered group. Then for any distinct
elements g and h in G such that g 6 h in G (resp., in G+) the subsemigroup
C
(
g, h
)

of B(G) (resp., B+(G)), which is generated by elements αgh and αhg ,
is isomorphic to the bicyclic semigroup, and hence for every idempotent αgg
in B(G) (resp., in B+(G)) there exists a subsemigroup C in B(G) (resp.,
in B+(G)) such that αgg is a unit of C and C is isomorphic to the bicyclic
semigroup.

Proof. Since the semigroup C which is generated by elements αgh and αhg
is isomorphic to the semigroup CN(α, β) (this isomorphism i : C → CN(α, β)
can be determined on generating elements of C by the formulae (αgh)i = α

and (αhg )i = β), we conclude that the first part of the proposition follows
from Remark 1.1. Obviously, the element αgg is a unity of the semigroup
C . �

3. Congruences on the semigroups B(G) and B+(G)

The following lemma follows from the definition of a congruence on a
semilattice.

Lemma 3.1. Let C be an arbitrary congruence on a semilattice S and
let 4 be the natural partial order on S. Let a and b be idempotents of the
semigroup S such that aCb. Then the relation a 4 b implies that aCc for all
idempotents c ∈ S such that a 4 c 4 b.

A linearly ordered group G is called archimedean if for each a, b ∈ G+\{e}
there exist positive integers m and n such that b 6 am and a 6 bn [7]. Lin-
early ordered archimedean groups may be described as follows (Hölder’s
theorem): a linearly ordered group is archimedean if and only if it is iso-
morphic to some subgroup of the additive group of real numbers with the
natural order [13].

Theorem 3.2. Let G be an archimedean linearly ordered group. Then
every non-trivial congruence on B+(G) is a group congruence.
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Proof. Suppose that C is a non-trivial congruence on the semigroup B+(G).
Then there exist distinct elements αab and αcd of the semigroup B+(G) such
that αabCα

c
d. Since by Proposition 2.1(v) every H -class of the semigroup

B+(G) is a singleton set, we conclude that either αab · (αab )−1 6= αcd · (αcd)−1

or (αab )
−1 · αab 6= (αcd)

−1 · αcd. We shall consider the case αaa = αab · (αab )−1 6=
αcd · (αcd)−1 = αcc. In the other case the proof is similar. Since by Propo-
sition 2.1(ii) the band E(B+(G)) is a linearly ordered semilattice, without
loss of generality we can assume that αcc 4 αaa. Then by Proposition 2.1(i)
we have that a 6 c in G. Since αabCα

c
d and B+(G) is an inverse semi-

group, Lemma III.1.1 from [20] implies that
(
αab · (αab )−1

)
C
(
αcd · (αcd)−1

)
,

i.e., αaaCα
c
c. Then we have

αca · αaa · αac = αcc;

αca · αcc · αac = αc·a
−1·c

c·a−1·c;

αca · αc·a
−1·c

c·a−1·c · α
a
c = α

c·(a−1·c)2
c·(a−1·c)2 ;

. . . . . .

αca · α
c·(a−1·c)n−1

c·(a−1·c)n−1 · αac = α
c·(a−1·c)n

c·(a−1·c)n ,

and hence αaaCα
c·(a−1·c)n

c·(a−1·c)n for every non-negative integer n. Since a < c in G

we get that a−1 ·c is a positive element of the linearly ordered group G. Since
the linearly ordered group G is archimedean we conclude that for every g ∈ G
with g > a there exists a positive integer n such that a−1 · g <

(
a−1 · c

)n
and hence g < c ·

(
a−1 · c

)n−1. Therefore Lemma 3.1 and Proposition 2.1(i)
imply that αaaCα

g
g for every g ∈ G such that a 6 g.

If a = e then all idempotents of the semigroup B+(G) are C-equivalent.
Since the semigroup B+(G) is inverse we conclude that the quotient semi-
group B+(G)/C contains only one idempotent and by Lemma II.1.10 from
[20] the semigroup B+(G)/C is a group.

Suppose that e < a. Then by Proposition 2.3 we have that the semigroup
C ∗ which is generated by elements αeg and αge is isomorphic to the bicyclic
semigroup for every element g in G+ such that e < a 6 g. Hence the
following conditions hold:

. . . 4 αg
i

gi 4 α
gi−1

gi−1 4 . . . 4 α
g
g 4 α

a
a and

αg
i

gi 6= αg
j

gj , for distinct positive integers i and j,

in E(B+(G)). Since the linearly ordered group G is archimedean we con-
clude that αaaCα

gi

gi for every positive integer i. Since the semigroup C ∗ is
isomorphic to the bicyclic semigroup, Corollary 1.32 of [8] and Lemma 3.1
imply that all idempotents of the semigroup B+(G) are C-equivalent. Since
the semigroup B+(G) is inverse we conclude that the quotient semigroup
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B+(G)/C contains only one idempotent and by Lemma II.1.10 from [20] the
semigroup B+(G)/C is a group. �

Theorem 3.3. Let G be an archimedean linearly ordered group. Then
every non-trivial congruence on B(G) is a group congruence.

Proof. Suppose that C is a non-trivial congruence on the semigroup B(G).
Similar arguments as in the proof of Theorem 3.2 imply that there exist
distinct idempotents αaa and αbb in the semigroup B(G) such that αaaCα

b
b and

αbb 4 α
a
a, for a, b ∈ G with a 6 b in G. Then we have

αea · αaa · αae = αee and αea · αbb · αae = αb·a
−1

b · αae = αb·a
−1

b·a−1 ,

and hence αeeCα
b·a−1

b·a−1 . Since a 6 b in G we conclude that e 6 b · a−1 in G

and hence Theorem 3.2 implies that αccCα
d
d for all c, d ∈ G+.

We fix an arbitrary element g ∈ G\G+. Then we have that g−1 ∈ G+\{e}
and hence αeeCα

g−1

g−1 . Since

αge ·αee ·αeg = αgg and αge ·α
g−1

g−1 ·αeg = αg
−1·e·g
g−1 ·αeg = αeg−1 ·αeg = αeg−1·e·g = αee

we conclude that αeeCα
g
g. Therefore all idempotents of the semigroup B(G)

are C-equivalent. Since the semigroup B(G) is inverse we conclude that the
quotient semigroup B(G)/C contains only one idempotent and by Lemma
II.1.10 from [20] the semigroup B(G)/C is a group. �

Remark 3.4. We observe that Proposition 1.5 implies that if G is a
linearly ordered d-group then the statements similar to Propositions 2.1 and
2.3 and Theorems 3.2 and 3.3 hold for the semigroups

◦
B(G) and

◦
B+(G).

Theorem 3.5. If G is the lexicographic product A×lexH of non-singleton
linearly ordered groups A and H then the semigroups B(G) and B+(G) have
non-trivial non-group congruences.

Proof. We define a relation ∼c on the semigroup B(G) as follows:

α
(a1,b1)
(c1,d1) ∼c α

(a2,b2)
(c2,d2) if and only if a1 = a2, c1 = c2 and d−1

1 b1 = d−1
2 b2.

Simple verifications show that ∼c is an equivalence relation on the semigroup
B(G).
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Next we shall prove that ∼c is a congruence on B(G). Suppose that
α

(a1,b1)
(c1,d1) ∼c α

(a2,b2)
(c2,d2) for some α(a1,b1)

(c1,d1), α
(a2,b2)
(c2,d2) ∈ B(G). Let α(u,v)

(x,y) be an arbi-
trary element of B(G). Then we have

α
(k1,l1)
(m1,n1) =α

(a1,b1)
(c1,d1) · α

(u,v)
(x,y) =

{
α

(u,v)·(c1,d1)−1·(a1,b1)
(x,y) , if (c1, d1)6(u, v);

α
(a1,b1)
(c1,d1)·(u,v)−1·(x,y), if (u, v)6(c1, d1)

=

=

 α
(uc−1

1 a1,vd
−1
1 b1)

(x,y) , if (c1, d1)6(u, v);

α
(a1,b1)
(c1u−1x,d1v−1y)

, if (u, v)6(c1, d1)
=

=


α

(uc−1
1 a1,vd

−1
1 b1)

(x,y) , if c1 < u;

α
(a1,vd

−1
1 b1)

(x,y) , if c1 = u and d1 6 v;

α
(a1,b1)
(c1u−1x,d1v−1y)

, if u < c1;

α
(a1,b1)
(x,d1v−1y)

, if u = c1 and v 6 d1;

and

α
(k2,l2)
(m2,n2) =α

(a2,b2)
(c2,d2) · α

(u,v)
(x,y) =

{
α

(u,v)·(c2,d2)−1·(a2,b2)
(x,y) , if (c2, d2)6(u, v);

α
(a2,b2)
(c2,d2)·(u,v)−1·(x,y), if (u, v)6(c2, d2)

=

=

 α
(uc−1

2 a2,vd
−1
2 b2)

(x,y) , if (c2, d2)6(u, v);

α
(a2,b2)
(c2u−1x,d2v−1y)

, if (u, v)6(c2, d2),
=

=


α

(uc−1
2 a2,vd

−1
2 b2)

(x,y) , if c2 < u;

α
(a2,vd

−1
2 b2)

(x,y) , if c2 = u and d2 6 v;

α
(a2,b2)
(c2u−1x,d2v−1y)

, if u < c2;

α
(a2,b2)
(x,d2v−1y)

, if u = c2 and v 6 d2.

Since a1 = a2, c1 = c2 and d−1
1 b1 = d−1

2 b2 we conclude that the following
conditions hold:

(1) if c1 = c2 < u then k1 = uc−1
1 a1 = uc−1

2 a2 = k2, m1 = x = m2 and

n−1
1 l1 = y−1vd−1

1 b1 = y−1vd−1
2 b2 = n−1

2 l2;

(2) if c1 = c2 = u and d1 6 v then k1 = a1 = a2 = k2, m1 = x = m2 and

n−1
1 l1 = y−1vd−1

1 b1 = y−1vd−1
2 b2 = n−1

2 l2;

(3) if u < c1 = c2 then k1 = a1 = a2 = k2, m1 = c1u
−1x = c2u

−1x = m2

and
n−1

1 l1 = y−1vd−1
1 b1 = y−1vd−1

2 b2 = n−1
2 l2;
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(4) if u = c1 = c2 and v 6 d1 then k1 = a1 = a2 = k2, m1 = x = m2 and

n−1
1 l1 = y−1vd−1

1 b1 = y−1vd−1
2 b2 = n−1

2 l2.

Hence we get that α(k1,l1)
(m1,n1) ∼c α

(k2,l2)
(m2,n2). Similarly we have

α
(p1,q1)
(r1,s1) =α

(u,v)
(x,y) · α

(a1,b1)
(c1,d1) =

{
α

(a1,b1)·(x,y)−1·(u,v)
(c1,d1) , if (x, y)6(a1, b1);

α
(u,v)
(x,y)·(a1,b1)−1·(c1,d1)

, if (a1, b1)6(x, y)
=

=

 α
(a1x−1u,b1y−1v)
(c1,d1) , if (x, y)6(a1, b1);

α
(u,v)

(xa−1
1 c1,yb

−1
1 d1)

, if (a1, b1)6(x, y),
=

=



α
(a1x−1u,b1y−1v)
(c1,d1) , if x < a1;

α
(u,b1y−1v)
(c1,d1) , if x = a1 and y 6 b1;

α
(u,v)

(xa−1
1 c1,yb

−1
1 d1)

, if a1 < x;

α
(u,v)

(c1,yb
−1
1 d1)

, if a1 = x and b1 6 y,

and

α
(p2,q2)
(r2,s2) =α

(u,v)
(x,y) · α

(a2,b2)
(c2,d2) =

{
α

(a2,b2)·(x,y)−1·(u,v)
(c2,d2) , if (x, y)6(a2, b2);

α
(u,v)
(x,y)·(a2,b2)−1·(c2,d2)

, if (a2, b2)6(x, y)
=

=

 α
(a2x−1u,b2y−1v)
(c2,d2) , if (x, y)6(a2, b2);

α
(u,v)

(xa−1
2 c2,yb

−1
2 d2)

, if (a2, b2)6(x, y)
=

=



α
(a2x−1u,b2y−1v)
(c2,d2) , if x < a2;

α
(u,b2y−1v)
(c2,d2) , if x = a2 and y 6 b2;

α
(u,v)

(xa−1
2 c2,yb

−1
2 d2)

, if a2 < x;

α
(u,v)

(c2,yb
−1
2 d2)

, if a2 = x and b2 6 y.

Since a1 = a2, c1 = c2 and d−1
1 b1 = d−1

2 b2 we conclude that the following
conditions hold:

(1) if x < a1 = a2 then p1 = a1x
−1u = a2x

−1u = p2, r1 = c1 = c2 = r2
and

s−1
1 q1 = d−1

1 b1y
−1v = d−1

2 b2y
−1v = s−1

2 q2;
(2) if x = a1 = a2 and y 6 b1 then p1 = u = p2, r1 = c1 = c2 = r2 and

s−1
1 q1 = d−1

1 b1y
−1v = d−1

2 b2y
−1v = s−1

2 q2;

(3) if a1 = a2 < x then p1 = u = p2, r1 = xa−1
1 c1 = xa−1

2 c2 = r2 and

s−1
1 q1 = d−1

1 b1y
−1v = d−1

2 b2y
−1v = s−1

2 q2;
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(4) if a1 = a2 = x and b1 6 y then p1 = u = p2, r1 = c1 = c2 = r2 and

s−1
1 q1 = d−1

1 b1y
−1v = d−1

2 b2y
−1v = s−1

2 q2.

Hence we get that α(p1,q1)
(r1,s1) ∼c α

(p2,q2)
(r2,s2).

We fix any a1, a2, b1, b2 ∈ G. If a1 6= a2 then the elements α(a1,b1)
(a1,b1) and

α
(a2,b2)
(a2,b2) are idempotents of the semigroup B(G), and moreover, the elements

α
(a1,b1)
(a1,b1) and α

(a2,b2)
(a2,b2) are not ∼c-equivalent. Since a homomorphic image

of an idempotent is an idempotent too, we conclude that
(
α

(a1,b1)
(a1,b1)

)
πc 6=(

α
(a2,b2)
(a2,b2)

)
πc, where πc : B(G) → B(G)/ ∼c is the natural homomorphism

which is generated by the congruence ∼c on the semigroup B(G). This im-
plies that the quotient semigroup B(G)/∼c is not a group, and hence ∼c is
not a group congruence on the semigroup B(G).

The proof of the statement that the semigroup B+(G) has a non-trivial
non-group congruence is similar. �

Theorem 3.6. Let G be a commutative linearly ordered group. Then the
following conditions are equivalent:

(i) G is archimedean;
(ii) every non-trivial congruence on B(G) is a group congruence;

(iii) every non-trivial congruence on B+(G) is a group congruence.

Proof. Implications (i) ⇒ (ii) and (i) ⇒ (iii) follow from Theorems 3.3
and 3.2, respectively.

(ii)⇒ (i) Suppose the contrary that there exists a non-archimedean com-
mutative linearly ordered group G such that every non-trivial congruence on
B(G) is a group congruence. Then by Hahn’s theorem (see [12] or [16, Sec-
tion VII.3, Theorem 1])G is isomorphic to a lexicographic product

∏
α∈J

lexHα

of some family of non-singleton subgroups {Hα | α ∈ J } of the additive
group of real numbers with a non-singleton linearly ordered index set J .
We fix a non-maximal element α0 ∈J , and put

A =
∏

lex{Hα | α 6 α0} and H =
∏

lex{Hα | α0 < α}.

Then G is isomorphic to a lexicographic product A×lex H of non-singleton
linearly ordered groups A and H, and hence by Theorem 3.5 the semigroup
B(G) has a non-trivial non-group congruence. The obtained contradiction
implies that the group G is archimedean.

The proof of implication (iii)⇒ (i) is similar to (ii)⇒ (i). �

On the semigroup B(G) (resp., B +(G)) we determine a relation ∼id in
the following way. We define a map id : B(G)→ B(G) (resp., id : B +(G)→
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B +(G)) by the formulae (αgh)id = ◦
αgh and ( ◦αgh)id = αgh for g, h ∈ G (resp.,

g, h ∈ G+). We put

α ∼id β if and only if α = β or (α)id = β or (β)id = α

for α, β ∈ B(G) (resp., α, β ∈ B +(G)). Simple verifications show that ∼id

is an equivalence relation on the semigroup B(G) (resp., B +(G)).

Proposition 3.7. If G is a linearly ordered d-group then ∼id is a con-
gruence on semigroups B(G) and B +(G). Moreover, quotient semigroups
B(G)/∼id and B(G) +/∼id are isomorphic to semigroups B(G) and B +(G),
respectively.

Proof. It is sufficient to show that if α ∼id β and γ ∼id δ then (α · γ) ∼id

(β ·δ) for α, β, γ, δ ∈ B(G) (resp., α, β, γ, δ ∈ B +(G)). Since the case α = β
and γ = δ is trivial we consider the following cases:

(i) α = αab , β = ◦
αab and γ = δ = αcd;

(ii) α = αab , β = ◦
αab and γ = δ = ◦

αcd;
(iii) α = ◦

αab , β = αab and γ = δ = αcd;
(iv) α = ◦

αab , β = αab and γ = δ = ◦
αcd;

(v) α = αab , β = ◦
αab , γ = ◦

αcd and δ = αcd;
(vi) α = αab , β = ◦

αab , γ = αcd and δ = ◦
αcd;

(vii) α = ◦
αab , β = αab , γ = ◦

αcd and δ = αcd;
(viii) α = ◦

αab , β = αab , γ = αcd and δ = ◦
αcd;

(ix) α = β = αab , γ = ◦
αcd and δ = αcd;

(x) α = β = ◦
αab , γ = ◦

αcd and δ = αcd;
(xi) α = β = αab , γ = αcd and δ = ◦

αcd; and
(xii) α = β = ◦

αab , γ = αcd and δ = ◦
αcd,

where a, b, c, d ∈ G (resp., a, b, c, d ∈ G+).
In case (i) we have that

α·γ = αab ·αcd=

 αc·b
−1·a

d , if b < c;
αad, if b = c;
αab·c−1·d, if b > c,

and β·δ = ◦
αab ·αcd=


◦
αc·b

−1·a
d , if b < c;
◦
αad, if b = c;
αab·c−1·d, if b > c,

and hence (α · γ) ∼id (β · δ) in B(G) (resp., in B +(G)). In other cases
verifications are similar.

Since the restriction Φ∼id
|B(G) : B(G)→ B(G) of the natural homomor-

phism Φ∼id
: B(G) → B(G) is a bijective map we conclude that the semi-

group (B(G))Φ∼id
is isomorphic to the semigroup B(G). Similar arguments

show that the semigroup B +(G)/∼id is isomorphic to B +(G). �

Theorem 3.8. Let G be an archimedean linearly ordered d-group. If C
is a non-trivial congruence on B(G) (resp., on B +(G)) then the quotient
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semigroup B(G)/C (resp., B +(G)/C) is either a group or B(G)/C (resp.,
B +(G)/C) is isomorphic to the semigroup B(G) (resp., B +(G)).

Proof. Since the subsemigroup of idempotents of the semigroup B(G) is
linearly ordered, similar arguments as in the proof of Theorem 3.2 imply
that there exist distinct idempotents ε and ι of B(G) such that εCι and
ε 4 ι. If the set (ε, ι) = {υ ∈ E(B(G)) | ε ≺ υ ≺ ι} is non-empty then
Lemma 3.1 and Theorem 3.2 imply that the quotient semigroup B(G)/C
is inverse and has only one idempotent, and hence by Lemma II.1.10 from
[20] it is a group. Otherwise there exists g ∈ G such that ι = αgg and
ε = ◦

αgg. Since αkl = αkg · α
g
g · αgl and ◦

αkl = αkg ·
◦
αgg · αgl for every k, l ∈ G we

conclude that the congruence C coincides with the congruence ∼id on B(G),
and hence by Proposition 3.7 the quotient semigroup B(G)/C is isomorphic
to the semigroup B(G).

In the case of the semigroup B +(G) the proof is similar. �

Theorem 3.9. Let G be a commutative linearly ordered d-group. Then
the following conditions are equivalent:

(i) G is archimedean;
(ii) every non-trivial congruence on

◦
B(G) is a group congruence;

(iii) every non-trivial congruence on
◦
B+(G) is a group congruence;

(iv) the semigroup B(G) has a unique non-trivial non-group congruence;
(v) the semigroup B +(G) has a unique non-trivial non-group congru-

ence.

Proof. The equivalence of statements (i), (ii) and (iii) follows from Propo-
sition 1.5 and Theorem 3.6. Also Theorem 3.8 implies that implications
(i)⇒ (iv) and (i)⇒ (v) hold.

Next we shall show that implication (iv) ⇒ (i) holds. Suppose the con-
trary: there exists a commutative linearly ordered non-archimedean d-group
G such that the semigroup B(G) has a unique non-trivial non-group con-
gruence. Then by Proposition 3.7 we have that ∼id is a unique non-trivial
non-group congruence on the semigroup B(G). Therefore, similarly as in the
proof of Theorem 3.6 we get that G is isomorphic to the lexicographic prod-
uct A×lex H of non-singleton linearly ordered groups A and H, and hence
by Theorem 3.5 the semigroup B(G) has a non-trivial non-group congruence
∼. We define a relation ∼ on the semigroup B(G) as follows:

(i)
(
α

(a,b)
(c,d), α

(p,q)
(r,s)

)
∈ ∼ if and only if

(
α

(a,b)
(c,d), α

(p,q)
(r,s)

)
∈∼, for α(a,b)

(c,d), α
(p,q)
(r,s) ∈

B(G) ⊂ B(G);
(ii)

(
α

(p,q)
(r,s) ,

◦
α

(p,q)
(r,s)

)
,
(
◦
α

(p,q)
(r,s) , α

(p,q)
(r,s)

)
,
(
◦
α

(p,q)
(r,s) ,

◦
α

(p,q)
(r,s)

)
∈ ∼, for all p, r ∈ A

and q, s ∈ H;
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(iii)
(
◦
α

(a,b)
(c,d),

◦
α

(p,q)
(r,s)

)
∈ ∼ if and only if

(
α

(a,b)
(c,d), α

(p,q)
(r,s)

)
∈∼, for α(a,b)

(c,d), α
(p,q)
(r,s) ∈

B(G) ⊂ B(G) and ◦
α

(a,b)
(c,d),

◦
α

(p,q)
(r,s) ∈

◦
B(G) ⊂ B(G);

(iv)
(
◦
α

(a,b)
(c,d), α

(p,q)
(r,s)

)
∈ ∼ if and only if

(
α

(a,b)
(c,d), α

(p,q)
(r,s)

)
∈∼, for α(a,b)

(c,d), α
(p,q)
(r,s) ∈

B(G) ⊂ B(G) and ◦
α

(a,b)
(c,d) ∈

◦
B(G) ⊂ B(G);

(v)
(
α

(a,b)
(c,d),

◦
α

(p,q)
(r,s)

)
∈ ∼ if and only if

(
α

(a,b)
(c,d), α

(p,q)
(r,s)

)
∈∼, for α(a,b)

(c,d), α
(p,q)
(r,s) ∈

B(G) ⊂ B(G) and ◦
α

(p,q)
(r,s) ∈

◦
B(G) ⊂ B(G).

Then simple verifications show that ∼ is a congruence on the semigroup
B(G), and moreover, the quotient semigroup B(G)/∼ is isomorphic to the
quotient semigroup B(G)/ ∼. This implies that the congruence ∼ is differ-
ent from ∼id. This contradicts that ∼id is a unique non-trivial non-group
congruence on the semigroup B(G). The obtained contradiction implies
implication (iv)⇒ (i).

The proof of implication (v) ⇒ (i) is similar to the proof of implication
(iv)⇒ (i). �

Theorem 3.10. Let G be a linearly ordered group and let Cmg be the
least group congruence on the semigroup B(G) (resp., B+(G)). Then the
quotient semigroup B(G)/Cmg (resp., B+(G)/Cmg) is antiisomorphic to the
group G.

Proof. By Proposition 1.2(ii) and Lemma III.5.2 from [20] we have that
elements αab and αcd are Cmg-equivalent in B(G) (resp., in B+(G)) if and
only if there exists x ∈ G such that αab ·αxx = αcd ·αxx. Then Proposition 2.1(i)
implies that αab · α

g
g = αcd · α

g
g for all g ∈ G such that g > x in G. If g > b

and g > d then the definition of the semigroup operation in B(G) (resp., in
B+(G)) implies that αab ·α

g
g = αg·b

−1·a
g and αcd ·α

g
g = αg·d

−1·c
g , and since G is

a group we get that b−1 · a = d−1 · c.
Conversely, suppose that αab and αcd are elements of the semigroup B(G)

(resp., B+(G)) such that b−1 · a = d−1 · c. Then for any element g ∈ G such
that g > b and g > d in G we have αab · α

g
g = αg·b

−1·a
g and αcd · α

g
g = αg·d

−1·c
g ,

and hence, since b−1 ·a = d−1 · c, we get that αabCmgα
c
d. Therefore, αabCmgα

c
d

in B(G) (resp., in B+(G)) if and only if b−1 · a = d−1 · c.
We determine a map f : B(G)→ G (resp., f : B+(G)→ G) by the formula

(αab )f = b−1 · a, for a, b ∈ G. Then we have

(αab · αcd)f =

 (αc·b
−1·a

d )f, if b < c;
(αad)f, if b = c;
(αab·c−1·d)f, if b > c,

=

 d−1 · c · b−1 · a, if b < c;
d−1 · a, if b = c;
(b · c−1 · d)−1 · a, if b > c,

=

=

 d−1 · c · b−1 · a, if b < c;
d−1 · c · b−1 · a, if b = c;
d−1 · c · b−1 · a, if b > c,

= d−1 · c · b−1 · a = (αcd)f · (αab )f,
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for a, b, c, d ∈ G. This completes the proof of the theorem. �

Hölder’s theorem and Theorem 3.10 imply the following.

Theorem 3.11. Let G be an archimedean linearly ordered group and let
Cmg be the least group congruence on the semigroup B(G) (resp., B+(G)).
Then the quotient semigroup B(G)/Cmg (resp., B+(G)/Cmg) is isomorphic
to the group G.

Theorems 3.2, 3.3 and 3.11 imply the following.

Corollary 3.12. Let G be an archimedean linearly ordered group and let
Cmg be the least group congruence on the semigroup B(G) (resp., B+(G)).
Then every non-isomorphic image of the semigroup B(G) (resp., B+(G))
is isomorphic to some homomorphic image of the group G.

Theorem 3.13. Let G be a linearly ordered d-group and let Cmg be the
least group congruence on the semigroup B(G) (resp., B +(G)). Then the
quotient semigroup B(G)/Cmg (resp., B +(G)/Cmg) is antiisomorphic to the
group G.

Proof. Similar arguments as in the proofs of Theorem 3.10 and Proposi-
tion 3.7 show that the following assertions are equivalent:

(i) αabCmgα
c
d in B(G) (resp., in B +(G));

(ii) αabCmg
◦
αcd in B(G) (resp., in B +(G));

(iii) ◦
αabCmg

◦
αcd in B(G) (resp., in B +(G));

(iv) b−1 · a = d−1 · c.
We determine a map f : B(G)→ G (resp., f : B+(G)→ G) by the formu-

lae (αab )f = b−1 · a and ( ◦αab )f = b−1 · a, for a, b ∈ G. Then we have

(αab · αcd)f = (αcd)f · (αab )f,

( ◦αab ·
◦
αcd)f =

 ( ◦αc·b
−1·a

d )f, if b < c;
( ◦αad)f, if b = c;
( ◦αab·c−1·d)f, if b > c,

=

 d−1 · c · b−1 · a, if b < c;
d−1 · a, if b = c;
(b · c−1 · d)−1 · a, if b > c,

=

=

 d−1 · c · b−1 · a, if b < c;
d−1 · c · b−1 · a, if b = c;
d−1 · c · b−1 · a, if b > c,

= d−1 · c · b−1 · a = ( ◦αcd)f · (
◦
αab )f,

(αab ·
◦
αcd)f =

 ( ◦αc·b
−1·a

d )f, if b < c;
( ◦αad)f, if b = c;
(αab·c−1·d)f, if b > c,

=

 d−1 · c · b−1 · a, if b < c;
d−1 · a, if b = c;
(b · c−1 · d)−1 · a, if b > c,

=

=

 d−1 · c · b−1 · a, if b < c;
d−1 · c · b−1 · a, if b = c;
d−1 · c · b−1 · a, if b > c,

= d−1 · c · b−1 · a = (αcd)f · (
◦
αab )f,
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( ◦αab · αcd)f =

 (αc·b
−1·a

d )f, if b < c;
( ◦αad)f, if b = c;
( ◦αab·c−1·d)f, if b > c,

=

 d−1 · c · b−1 · a, if b < c;
d−1 · a, if b = c;
(b · c−1 · d)−1 · a, if b > c,

=

=

 d−1 · c · b−1 · a, if b < c;
d−1 · c · b−1 · a, if b = c;
d−1 · c · b−1 · a, if b > c,

= d−1 · c · b−1 · a = ( ◦αcd)f · (αab )f,

for a, b, c, d ∈ G. This completes the proof of the theorem. �

Hölder’s theorem and Theorem 3.13 imply the following.

Theorem 3.14. Let G be an archimedean linearly ordered d-group and let
Cmg be the least group congruence on the semigroup B(G) (resp., B +(G)).
Then the quotient semigroup B(G)/Cmg (resp., B +(G))/Cmg) is isomorphic
to the group G.

Theorems 3.8 and 3.14 imply the following.

Corollary 3.15. Let G be an archimedean linearly ordered d-group, T be a
semigroup and h : B(G)→ T

(
resp., h : B +(G)→ T

)
be a homomorphism.

Then only one of the following conditions holds:
(i) h is a monomorphism;

(ii) the image
(
B(G)

)
h
(
resp.,

(
B +(G)

)
h
)

is isomorphic to some ho-
momorphic image of the group G;

(iii) the image
(
B(G)

)
h
(
resp.,

(
B +(G)

)
h
)

is isomorphic to the semi-
group B(G) (resp., B +(G)).
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