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Another generalization of the bivariate FGM
distribution with two-dimensional extensions

Carles M. Cuadras and Walter D́ıaz

Abstract. The Farlie–Gumbel–Morgenstern family of bivariate distri-
butions with given marginals is frequently used in theory and applica-
tions and has been generalized in many ways. With the help of two
auxiliary distributions, we propose another generalization and study its
properties. After defining the dimension of a distribution as the cardi-
nal of the set of canonical correlations, we prove that some well-known
distributions are practically two-dimensional. Then we introduce an ex-
tended FGM family in two dimensions and study how to approximate
any distribution to this family.

1. Introduction

Constructing dependence models by means of copulas has interest in sta-
tistics, probability, econometrics, informatics, insurance, biometry, physics,
etc. A copula function is a bivariate cumulative distribution function (cdf)
with uniform [0, 1] marginals, that captures the dependence properties of
two random variables (r.v., in short). Many copulas and bivariate fami-
lies of distributions have been described in Hutchinson and Lai (1991), Joe
(1997), Drouet-Mari and Kotz (2001) and Nelsen (2006). Among others, the
so-called Farlie–Gumbel–Morgenstern (FGM) bivariate family is frequently
used in theory and applications. This motivated Huang and Kotz (1999),
Amblard and Girard (2002), Nelsen et al. (1997), Rodŕıguez-Lallena and
Úbeda-Flores (2004), Durante (2007), Cuadras (2009) and Cuadras et al.
(2000) to study proper extensions.

Throughout this paper, x, y in H(x, y), F (x), G(y), as well as u, v in
C(u, v), will be suppressed, unless it is strictly necessary. We write H ∈
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F(F,G), where F(F,G) is the Fréchet family of distribution functions with
marginals F,G. A member of F(F,G) is the FGM family

Hθ = FG[1 + θ(1− F )(1−G)], −1 ≤ θ ≤ 1.

We show that this family is one-dimensional and propose a two-dimensional
extension in a geometric sense.

As in Nelsen et al. (1997), who obtained second-order approximations,
the goal of this paper is to prove that some well-known distributions can be
approximated by the extended family proposed in Section 3.

2. Geometric dimensionality

Suppose that the Radon–Nikodým derivative dH/dFdG exists. A global
measure of dependence is Pearson contingency coefficient φ2 defined by

φ2 =
∫ b

a

∫ d

c
(
dH

dFdG
− 1)2dFdG.

We have φ2 ≥ 0 and φ2 = 0 if and only if there is stochastic independence
between X and Y .

If φ2 is finite, then there exists the diagonal expansion (Lancaster,1958)

dH = dFdG+
∑
n≥1

ρnAnBndFdG, (1)

where An, Bn are unitary functions in L2([a, b]) and L2([c, d]) on F and G
respectively, in the sense that E[An(X)] = E[Bn(Y )] = 0 and E[A2

n(X)] =
E[B2

n(Y )] = 1. Then An(X) and Bn(Y ) are the canonical variables. The
sequence of canonical correlations is ρ1 ≥ ρ2 ≥ · · · ≥ 0. It can be proved
from expansion (1) that Pearson contingency coefficient can be expressed in
terms of this sequence:

φ2 =
∑
n≥1

ρ2
n.

The first canonical correlation ρ1 = sup corr(A(X), B(Y )), where corr
means correlation coefficient, is the maximal correlation between a function
of X and a function of Y . The sequence of canonical correlations captures
the full dependence between X and Y and the coefficient φ2 is an overall
measure of dependence, often presented as the ratio φ2/(1 + φ2).

Definition 1. The geometric dimension of H ∈ F(F,G) such that the
canonical expansion (1) exists, is the cardinal of the set (ρn).

The cdf H with dimension N ≤ ∞, can be approximated by another cdf
HD of smaller dimension D < N , where

dHD = dFdG+
D∑
n=1

ρnAnBndFdG.
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The “proportion of dependence” of H accounted by HD is:

PD =
∑D

n=1 ρ
2
n

φ2
.

This proportion is common in some methods of multivariate analysis. For
instance, it is used in correspondence analysis to measure the quality of the
graphical representation of a contingency table with respect to the chi-square
distance, see Greenacre (1984) and Cuadras et al. (2000).

On the other hand, from the canonical expansion (1), we can also consider
the following nested family

dHλ = dFdG+
k∑
i=1

λiAiBidFdG,

depending on the parameters λ1, λ2, . . . , λk, where |λi| ≤ ρi, for i = 1, . . . , k.
Next, let us consider the FGM copula. Recall that a bivariate copula is

a function C : I2 → I, with I = [0, 1]. such that C(u, 0) = C(0, v) = 0,
C(u, 1) = u,C(1, v) = v, and for 0 ≤ u1 ≤ u2 ≤ 1 and 0 ≤ v1 ≤ v2 ≤ 1
satisfies C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.

Copulas are important because of Sklar’s theorem. Let H(x, y) be the
bivariate cdf of (X,Y ), with univariate marginal distribution functions F (x),
G(y) and supports [a, b], [c, d], respectively. Then this bivariate cdf can be
expressed as H(x, y) = C(F (x), G(y)), where C is a copula related to H.
Thus modeling copulas is an interesting task.

The related copula for the FGM distribution is

Cθ = uv[1 + θ(1− u)(1− v)], −1 ≤ θ ≤ 1.

The density is c(u, v) = 1 + θ(1 − 2u)(1 − 2v). Since the only canonical
correlation is ρ1 = |θ|/3, clearly this distribution has geometric dimension
one. In general, the dimension is higher.

We are interested in two-dimensional distributions as possible approxima-
tions to a given distribution. For example, for the following copulas (see
Nelsen, 2006, Çelebioğlu, 1997, Cuadras, 2009):

Ali–Mikhail–Haq: uv/[1− θ(1− u)(1− v)], −1 ≤ θ ≤ 1,
Gumbel–Barnett: uv exp(−θ lnu ln v), 0 ≤ θ ≤ 1,
Çelebioğlu–Cuadras: uv exp[θ(1− u)(1− v)], −1 ≤ θ ≤ 1.

The classical FGM family is the first order approximation from a Taylor
expansion. However, the full dimension in these three copulas is countable
(i.e., κ0), whereas the approximation using only two dimensions is very
accurate, as the proportion of dependence is P2 ' 0.99.

The extension of the FGM family proposed below is two-dimensional in
the above geometric sense.
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3. Two-dimensional extension

Recall that the supports of F,G are [a, b], [c, d]. Let Φ, Ψ be univariate
distribution functions with the same supports. An extension of FGM is the
bivariate family

H(x, y) = F (x)G(y) + λ1[F (x)− Φ(x)][G(y)−Ψ(y)]
+λ2[1

2F
2(x) + (FΦ − 1

2)F (x)− FΦ(x)][1
2G

2(y) + (GΨ − 1
2)G(y)−GΨ(y)],

(2)
where

FΦ(x)=
∫ x

a
Φ(t)dF (t), GΨ(y)=

∫ y

c
Ψ(t)dG(t), FΦ =FΦ(b), GΨ =GΨ(d).

The density function (Lebesgue measure) is

h = fg + λ1f(1− ϕf−1)g(1− ψg−1) + λ2f(F − Φ− γ)g(G−Ψ− δ), (3)

where

γ =
∫ b

a
(F − Φ)dF = 1/2− FΦ, δ =

∫ d

c
(G−Ψ)dG = 1/2−GΨ.

Of course, (2) reduces to FGM for Φ = F 2, Ψ = G2 and λ2 = 0.
This family is diagonal and the canonical correlations are

ρ1 = λ1

√
(α− 1)(β − 1),

ρ2 = λ2

√
1/3 + FΦ2 − (1/2− FΦ)2 − 2

∫ b
a FΦdF

×
√

1/3 +GΨ2 − (1/2−GΨ)2 − 2
∫ b
a GΨdG,

where

α =
∫ b

a
(
dΦ
dF

)2dF, β =
∫ d

c
(
dΨ
dG

)2dG,

and FΦ2 =
∫ b
a Φ2dF , GΨ2 =

∫ d
c Ψ2dG.

To prove this write (2) as

dH = dFdG+ λ1a1dFb1dG+ λ2a2dFb2dG,

where a1 = 1−dΦ/dF , b1 = 1−dΨ/dG, a2 = (F−Φ−γ) and b2 = (G−Ψ−δ).
It is readily proved that E(a1) = E(a2) = 0 and E(b1) = E(b2) = 0.
Note that∫ b
a (1− dΦ/dF )(F − Φ− γ)dF = 0,∫ b

a (F − Φ− γ)2dF = 1/3 + FΦ2 − (1/2− FΦ)2 − 2
∫ b
a FΦdF,∫ d

c (G−Ψ− δ)2dG = 1/3 +GΨ2 − (1/2−GΨ)2 − 2
∫ d
c GΨdG.

Hence E(a1a2) =
∫ b
a a1a2dF = 0 and similarly E(b1b2) = 0.
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The other covariances are:

cov(a1, b1) =
∫ b
a

∫ d
c a1b1(dH − dFdG)

= λ1

∫ b
a a

2
1dF

∫ d
c b

2
1dG+ λ2

∫ b
a a1a2dF

∫ d
c b1b2dG

= λ1(α− 1)(β − 1),
cov(a1, b2) = λ1

∫ b
a a

2
1dF

∫ d
c b1b2dG+ λ2

∫ b
a a1a2dF

∫ d
c b

2
2dG

= 0,

and similarly cov(a2, b1) = 0. Also

cov(a2, b2) = 0 + λ2

∫ b
a a

2
2dF

∫ d
c b

2
2dG

= λ2[1/3 + FΦ2 − (1/2− FΦ)2 − 2
∫ b
a FΦdF ]

×[1/3 +GΨ2 − (1/2−GΨ)2 − 2
∫ d
c GΨdG].

The variances are

E(a2
1) = α− 1

E(a2
2) = 1/3 + FΦ2 − (1/2− FΦ)2 − 2

∫ b
a FΦdF, etc.

Next, we study the corresponding copula. First note that Q = Φ ◦ F−1

and R = Ψ ◦G−1 are distribution functions with support in [0, 1].
Since FΦ =

∫ b
a ΦdF =

∫ 1
0 Q(t)dt = 1 − µQ, where µQ is the mean of the

r.v. with cdf Q, and similarly µR, the copula corresponding to (2) is

C(u, v) = uv + λ1[u−Q(u)][v −R(v)]
+λ2

[
1
2u

2 + (1
2 − µQ)u−

∫ u
0 Q(t)dt

] [
1
2v

2

+(1
2 − µR)v −

∫ v
0 R(t)dt

]
.

(4)

For Φ = F k,Ψ = Gl, family (2) has the copula

C(u, v) = uv + λ1u(1− uk−1)v(1− vl−1)
+λ2[1

2u
2−u(k − 1)/(2(k + 1))−uk+1/(k + 1)] [similar term in v, l]

and Spearman’s correlation ρS = 12
∫
I2 Cdudv − 3 is

ρS =
(k − 1)(l − 1)
(k + 1)(l + 1)

[
3λ1 +

λ2(k − 2)(l − 2)
12(k + 2)(l + 2)

]
.

In particular, for Φ = F 2,Ψ = G2, the copula is

C = uv + uv(1− u)(1− v)[λ1 + λ2(1− 2u)(1− 2v)], (5)

where λ2 = λ2/36.
Nelsen et al. (1997) studied the copula (5) as a member of the family of

symmetric copulas with cubic sections in both u and v, providing Spearman’s
rho, Kendall’s tau, certain dependence properties and showing that they
are second-degree Maclaurin approximations to members of the Frank and
Plackett copula families.
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4. Approximating a bivariate cdf for another one

Let us consider Ha ∈ F(F,G) and suppose that the canonical expansion
dHa = dFdG+

∑
n≥1 ρnAndFBndG exists, where An, Bn are unitary cano-

nical functions. Let Ht ∈ F(F,G) be the “true” cdf of two observable
random variables (X,Y ). We are interested in approximating Ht by means
of a finite linear combination of canonical functions obtained from Ha:

dHt ' dFdG+
k∑
i=1

λiAidFBidG.

In a more precise way, we seek for the approximation

dHt

dFdG
' 1 +

k∑
i=1

λiAiBi,

where λ1, . . . , λk are real coefficients such that∫ b

a

∫ d

c

(
dHt − dFdG

dFdG
−

k∑
i=1

λiAiBi

)2

dFdG (6)

is minimized. If the densities ht, f, g exist, then ht is approximated by

ĥt = fg(1 +
k∑
i=1

λiAiBi).

Theorem 1. Suppose (X,Y ) ∼ Ht ∈ F(F,G). The coefficients minimiz-
ing (6) are λi = ρi, where

ρi = corr(Ai(X), Bi(Y )), i = 1, . . . , k.

Proof. Write z = (dHt − dFdG)/dFdG. Then∫ b
a

∫ d
c (z −

∑k
i=1 λiAiBi)

2dFdG = φ2
t +

∫ b
a

∫ d
c

∑k
i=1 λ

2
iA

2
iB

2
i dFdG

−2
∫ b
a

∫ d
c (
∑k

i=1 λiAiBi)(dHt − dFdG)
+
∑k

i 6=j=1 λiλj
∫ b
a AidF

∫ d
c BjdG

= φ2
t +

∑k
i=1 λ

2
i − 2

∑k
i=1 λiρi,

where φ2
t is the Pearson contingency coefficient. Taking the partial derivative

with respect to λi on the left hand side of this equation, and equating to
zero, we obtain λi = ρi, i = 1, . . . , k. �

Note that each ρi is the correlation between the canonical variables Ai, Bi
obtained from Ha, but the correlation is taken with respect to the “true” cdf
Ht. That is, the observed data used in computing ρi comes from (X,Y ) ∼
Ht. This result is useful when the canonical functions of Ha are known, as
it occurs in the above generalized FGM.
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5. Examples

5.1. Ali–Mikhail–Haq copula. We first study the approximation of the
Ali–Mikhail–Haq (AMH) copula (Nelsen, 2006)

Ct =
uv

1− θ(1− u)(1− v)
, −1 ≤ θ ≤ 1,

to the copula (5). The density for this generalized FGM copula is

c = 1 +
λ1

3

√
3(1− 2u)

√
3(1− 2v) +

λ2

5

√
5(6u2 − 6u+ 1)

√
5(6v2 − 6v + 1).

The canonical functions are A1 =
√

3(1− 2u), A2 =
√

5(6u2− 6u+ 1) and
similarly B1,B2. To be sure that c is a density, the canonical correlations
should belong to the region R = {(ρ1, ρ2)|c ≥ 0}, see Figure 1.

Figure 1. Region of the correlations (parameters) for which
the density is positive.

We should calculate the correlations

ρ1 = corr(U, V ), ρ2 = corr(U2 − U, V 2 − V ),

where (U, V ) ∼ C. By using the following formula

cov(ν(U), ξ(V )) =
∫
I2

[C(u, v)− uv]dν(u)dξ(v),
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which provides the covariance between functions of U and V (Cuadras, 2002),
we have

ρ1 = 12
∫
I2 C(u, v)dudv − 3,

ρ2 = 180
∫
I2 C(u, v)(4uv − 2u− 2v + 1)dudv − 5.

Of course, ρ1 is Spearman’s rho correlation.
Expanding the AMH copula Ct, which plays the role of “true” copula,

uv

1− θ(1− u)(1− v)
= uv[1 +

∞∑
i=1

θi(1− u)i(1− v)i],

we obtain

ρ1 = 12
∞∑
i=1

θiB(2, i+ 1)2,

and

ρ2 = 180
∞∑
i=1

θi[4B(3, i+ 1)2 − 4B(2, i+ 1)B(3, i+ 1) +B(2, i+ 1)2],

where B(·, ·) is the beta function. All pairs (ρ1, ρ2) belong to R and the
AMH copula can be approximated by

C2 = uv + ρ13u(1− u)v(1− v) + ρ25(2u3 − 3u2 + u)(2v3 − 3v2 + v).

Kendall’s tau τ = 4
∫
I2 CdC − 1 for copula C2 is (Nelsen et al., 1997):

τ(C2) =
2
3
ρ1 +

2
15
ρ1ρ2.

See Nelsen (2006) for the exact expressions for τ and ρS in the AMH family.
If M = min{u, v} and W = max{u+ v − 1, 0} are the Fréchet–Hoeffding

upper and lower bounds, two measures of fit are

η1 = maxu,v∈I |Ct(u, v)− C2(u, v)|,
η2 = D(Ct, C2)/D(M,W ),

where

D(Ct, C2) =
∫
I2

(Ct − C2)2dudv,

which satisfies D(Ct, C2) < D(M,W ) = 1/24. Thus 0 < ηi < 1, i = 1, 2.

Table 1. Canonical correlations and fit for the AMH copula.

θ ρ1 ρ2 η1 η2 ρS(AMH) τ(AMH) τ(C2)
-1 -0.2711 0.0217 0.0055 0.0002 -0.2710 -0.1817 -0.1815
-.5 -0.1489 0.0080 0.0017 0.0000 -0.1489 -0.0995 -0.0995
.5 0.1924 0.0223 0.0032 0.0001 0.1924 0.1288 0.1286
1 0.4783 0.2323 0.0261 0.0029 0.4784 0.3333 0.3335
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Table 1 reports a numerical illustration, showing that the fit is quite good,
practically preserving Spearman’s rho and Kendall’s tau.

5.2. Clayton–Oakes copula. We consider the Clayton–Oakes copula
(Nelsen, 2006):

Ct = [max(u−θ + v−θ − 1, 0)]−1/θ, −1 ≤ θ <∞.

The correlations ρ1 and ρ2 have been obtained numerically. However, now
the results can provide FGM approximations which are not copulas, i.e., the
density c(u, v) is negative for some values of u, v. Then we take (ρ∗1, ρ

∗
2) ∈ R

with the smallest Euclidean distance to (ρ1, ρ2). Thus the Clayton–Oakes
copula can be approximated by

C2 = uv + ρ∗13u(1− u)v(1− v) + ρ∗25(2u3 − 3u2 + u)(2v3 − 3v2 + v).

Table 2. Canonical correlations and fit for the Clayton–
Oakes copula.

θ ρ1 ρ2 ρ∗1 ρ∗2 η1 η2 λL(CO)
-1 -1 1 -0.5085 0.2950 0.0625 0.0060 -

-0.5 -0.4667 0.1997 -0.4665 0.1995 0.0263 0.0036 -
0.5 0.2950 0.1150 0.2950 0.1150 0.0162 0.0014 0.2500

1 0.4784 0.2337 0.4785 0.2335 0.0261 0.0029 0.5000
2 0.6822 0.4104 0.5495 0.2620 0.0349 0.0035 0.7071
5 0.8846 0.6809 0.5190 0.2875 0.0385 0.0030 0.8706

10 0.9582 0.8470 0.5190 0.2875 0.0387 0.0037 0.9330

The fit is acceptably good for intermediate (positive) values of the para-
meter θ, see Table 2. However, there are differences in the upper and lower
tail dependence parameters λL, λU . In both families λU = 0, whereas λL = 0
for C2. The Clayton–Oakes copula has λL = 2−1/θ if θ ≥ 0, but there is no
mass in the lower-left corner if θ < 0, so λL does not exist if the parameter
is negative.
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Çelebioğlu, S. (1997), A way of generating comprehensive copulas, J. Inst. Sci. Tech. Gazi
Univ. 10, 57–61.

Cuadras, C. M. (2002), On the covariance between functions, J. Multivariate Anal. 81,
19–27.

Cuadras, C. M. (2009), Constructing copula functions with weighted geometric means,
J. Statist. Plann. Inference 139, 3766–3772.



12 REFERENCES

Cuadras, C. M., Fortiana, J., and Greenacre, M. J. (2000), Continuous extensions of
matrix formulations in Correspondence Analysis, with applications to the FGM family
of distributions; In: Innovations in Multivariate Statistical Analysis, R. D. H. Heijmans,
D. S. G. Pollock and A. Satorra (eds.), Kluwer Academic Publishers, Dordrecht, pp.
101–116.

Druet-Mari, D., and Kotz, S. (2001), Correlation and Dependence, Imperial College Press,
London.

Durante, F. (2007), A new family of symmetric bivariate copulas, C. R. Acad. Sci. Paris
Ser. I 344, 195–198.

Greenacre, M. J. (1984), Theory and Applications of Correspondence Analysis, Academic
Press, London.

Huang, J. S., and Kotz, S. (1999), Modifications of the Farlie-Gumbel-Morgenstern distri-
butions. A tough hill to climb, Metrika 49, 135–145.

Hutchinson, T. P., and Lai, C. D. (1991), The Engineering Statistician’s Guide to Conti-
nuous Bivariate Distributions, Rumsby Scientific Publishing, Adelaide.

Joe, H. (1997), Multivariate Models and Dependence Concepts, Chapman and Hall,
London.

Lancaster, H. O. (1958), The structure of bivariate distributions, Ann. Math. Statist. 29,
719–736.

Nelsen, R. B. (2006), An Introduction to Copulas. 2nd Ed., Springer, New York.
Nelsen, R. B., Quesada-Molina, J. J., and Rodŕıguez-Lallena, J. A. (1997), Bivariate copu-
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