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Estimation of parameters in the extended growth
curve model with a linearly structured covariance

matrix

Joseph Nzabanita, Dietrich von Rosen, and Martin Singull

Abstract. In this paper the extended growth curve model with two
terms and a linearly structured covariance matrix is considered. We
propose an estimation procedure that handles linearly structured co-
variance matrices. The idea is first to estimate the covariance matrix
when finding the inner product in a regression space and thereafter re-
estimate it when it should be interpreted as a dispersion matrix. This
idea is exploited by decomposing the residual space, the orthogonal com-
plement to the design space, into three orthogonal subspaces. Studying
residuals obtained from projections of observations on these subspaces
yields explicit consistent estimators of the covariance matrix. An ex-
plicit consistent estimator of the mean is also proposed and numerical
examples are given.

1. Introduction

Growth curve analysis is a topic with many applications in different fields
such as medicine, natural sciences, social sciences, etc. The growth curve
model was introduced in [7]. Since then many authors have been interested
by the model and renown follow-up papers are [8] and [2]. In this paper we
study the extended growth curve model with two terms and a linearly struc-
tured covariance matrix. The extended growth curve model was introduced
in [9] and may be defined as follows:

Definition 1.1 (Extended growth curve model). Let X : p×n, Ai : p×qi,
Bi : qi × ki, Ci : ki × n, r(C1) + p ≤ n, i = 1, 2, . . . ,m, C(C′i) ⊆ C(C′i−1),
i = 2, 3, . . . ,m, where r(·) and C(·) represent the rank and column space of
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a matrix, respectively. The extended growth curve model is given by

X =
m∑

i=1

AiBiCi + E,

where columns of E are assumed to be independently distributed as a
p-variate normal distribution with mean zero and a positive definite dis-
persion matrix Σ; i.e. E ∼ Np,n(0,Σ, In). The matrices Ai and Ci, often
called design matrices, are known matrices whereas matrices Bi and Σ are
unknown parameter matrices.

The main object of this paper is to derive explicit estimators of parameters
in the extended growth curve model with two terms and a linearly structured
covariance matrix, which means that, see [3], for Σ = (σij) the only linear
structure between the elements is given by |σij | = |σkl| 6= 0 and there exist
at least one (i, j) 6= (k, l) so that |σij | = |σkl| 6= 0.

Linear structures for the covariance matrix exist very often in statistical
applications. These structures are, for example, the uniform structure (or
intraclass structure) considered for the first time in [13], the compound sym-
metry structure which is an extension of the uniform structure [12]. Other
linear structures for the covariance matrix often encountered are the ma-
trix with zeros, for example a banded covariance matrix [4], the Toeplitz or
circular Toeplitz [6], etc.

In general there is no problem to estimate the covariance matrix when
it is completely unknown. However, problems arise when one has to take
into account that there exists a structure generated by a few number of pa-
rameters. For the unstructured case, several approaches to find estimators of
parameters in the growth curve model or extended growth curve model exist.
One of those approaches is the maximum likelihood method. The maximum
likelihood estimators of parameters in the growth curve model have been
studied by many authors, see for instance [11] and [9]. For the extended
growth curve model as given in Definition 1.1 an exhaustive description of
how to get those estimators can be found in [3]. For the structured case we
can use, in principle, a maximum likelihood approach. However, this will
no longer give any explicit estimator even for the intraclass structure, which
is among the simplest cases. We must therefore rely on iterative methods.
When data sets are very large, iterative methods perform poorly and non-
iterative methods become of great interest [5]. In [5], the classical growth
curve model with a linearly structured covariance matrix was studied and
explicit estimators were proposed. Our aim here is to obtain explicit esti-
mators in the extended growth curve model with two terms and a linearly
structured covariance matrix. We propose an estimation procedure that
handles linear structured covariance matrices. That procedure is somewhat
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based on the maximum likelihood method for the unstructured case and
Section 2 is devoted to that.

2. Maximum likelihood estimators

In this section we consider the extended growth curve model as given
in Definition 1.1 when m = 2. In this case, under general settings, the
maximum likelihood estimators for the parameter matrices B1 and B2, see
e.g. [3] for derivation, are given by

B̂2 = (A′2P
′
2S
−1
2 P2A2)−A′2P

′
2S
−1
2 XC′2(C2C′2)− + (A′2P2)oZ21 + A′2Z22Co

2
′,

B̂1 = (A′1S
−1
1 A1)−A′1S

−1
1 (X−A2B̂2C2)C′1(C1C′1)− + Ao

1
′Z11 + A′1Z12Co

1
′,

where

S1 = X
(
I−C′1(C1C′1)−C1

)
X′,

P2 = I−A1(A′1S
−1
1 A1)−A′1S

−1
1 ,

S2 = S1 + P2XC′1(C1C′1)−C1

(
I−C′2(C2C′2)−C2

)
C′1(C1C′1)−C1X′P′2,

Zkl are arbitrary matrices, Co stands for any matrix of full rank spanning
C(C)⊥, ⊥ denotes the orthogonal complement, and G− denotes an arbitrary
generalized inverse in the sense that GG−G = G.

Assuming that matrices Ai, Ci are of full rank and that C(A1)∩C(A2) =
{0}, the unique maximum likelihood estimators are

B̂2 = (A′2P
′
2S
−1
2 P2A2)−1A′2P

′
2S
−1
2 XC′2(C2C′2)−1,

B̂1 = (A′1S
−1
1 A1)−1A′1S

−1
1 (X−A2B̂2C2)C′1(C1C′1)−1.

Obviously, under general settings, the maximum likelihood estimators B̂1

and B̂2 are not unique due to the arbitrariness of matrices Zkl. However, it
is worth noting that the estimated mean

Ê[X] = A1B̂1C1 + A2B̂2C2

is always unique and therefore Σ̂ given by

nΣ̂ = (X−A1B̂1C1 −A2B̂2C2)(X−A1B̂1C1 −A2B̂2C2)′ (1)

is also unique.
Now to shorten matrix expressions we introduce different notations that

we will use throughout this paper. For any pair of matrices S and A, where
S is positive definite, we define

PA,S = A(A′S−1A)−A′S−1.

It can be shown, see [3], that PA,S is a projector and that

PA,S = I−P′Ao,S−1 = I− SAo(Ao′SAo)−Ao′.
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Moreover, Po
A,S = I − P′A,S = PAo,S−1 . If S = I, instead of PA,I the

notation PA will be used.
With these notations, it is straightforward to check that the estimated

mean may be written as

A1B̂1C1 + A2B̂2C2 = PA1,S1XPC′1
+ PT1A2,S2XPC′2

, (2)

where T1 = I−PA1,S1 .
This structure reveals a connection to a paradigm used by least squares

or maximum likelihood estimation procedures connected to linear models.
These procedures use the following paradigm: estimators of the mean param-
eters are based on a projection of the observations on the space generated by
the design matrix whereas estimators of the variance parameters are based
on a projection of the observations on the orthogonal complement to the de-
sign space. In principal this also takes place for the extended growth curve
model, although there are some complications.

If Σ would have been known, we would have from least squares theory
the best linear estimator (BLUE) given by

A1B̂1C1 + A2B̂2C2 = PA1,ΣXPC′1
+ PT1A2,ΣXPC′2

,

where T1 = I−PA1,Σ. Thus, we see that in the projections, if Σ is unknown,
the parameter has been replaced with either S1 or S2, which according to
their expressions are not maximum likelihood estimators. However, it can
be shown that n−1S1 → Σ in probability and n−1S2 → Σ in probability.

To summarize we see that estimation is performed through projections
on certain subspaces and indeed the decomposition is essential for both the
model (parameter) interpretation and the model evaluation. Now we indi-
cate how we make such a decomposition that suits our purposes. Applying
the vec-operator on both sides of (2) we get

(C′1 ⊗A1)vecB̂1 + (C′2 ⊗A2)vecB̂2

= [(PC′1
⊗PA1,S1) + (PC′2

⊗PT1A2,S2)]vecX,

where ⊗ denotes the Kronecker product.
Note that the matrix P = (PC′1

⊗PA1,S1)+(PC′2
⊗PT1A2,S2) is a projector.

Moreover,

C(P) = C(C′1)⊗ CS1(A1) + C(C′2)⊗ CS2(T1A2), (3)

where now ⊗ denotes a tensor product of linear spaces. Therefore C(P)
is used to estimate A1B1C1 + A2B2C2 whereas C(P)⊥ is used to create
residuals. Figure 1 illustrates these spaces; it shows that three regions are
describing the mean and six others are describing the residuals.

Notice that the sum in (3) is actually an orthogonal direct sum of two
subspaces. Therefore we may consider the following decomposition of the
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W1 W2 W3

V1

V2

V3

A1B̂1C1 + A2B̂2C2

Ê[X] =

Figure 1. Decomposition of the whole space according to
the within and between individuals designs illustrating the
mean and residual spaces: V1 = CS1(A1), V2 = CS2(T1A2),
V3 = (CS1(A1)+CS2(T1A2))⊥,W1 = (C(C′2),W2 = (C(C′1)∩
C(C′2)⊥, W3 = (C(C′1)⊥.

estimated mean

A1B̂1C1 + A2B̂2C2 = M1 + M2,

where

M1 = PA1,S1XPC′1
and M2 = PT1A2,S2XPC′2

.

To estimate Σ, the general idea is to use the variation in the residuals.
For our purposes we decompose the residual space into three orthogonal
subspaces, see Figure 2, as

C(P)⊥ = I � II � III,

where

I = C(C′1)⊥ ⊗ V,

II =
(
C(C′1) ∩ C(C′2)⊥

)
⊗ CS1(A1)⊥,

III = C(C′2)⊗ (CS1(A1) + CS2(T1A2))⊥ ,

V represents the whole space and � denotes the orthogonal direct sum of
tensor spaces.
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Figure 2. Decomposition of the whole space according to
the within and between individuals designs illustrating the
mean and residual spaces: V1 = CS1(A1), V2 = CS2(T1A2),
V3 = (CS1(A1)+CS2(T1A2))⊥,W1 = (C(C′2),W2 = (C(C′1)∩
C(C′2)⊥, W3 = (C(C′1)⊥.

The residuals obtained by projecting data to these subspaces are respec-
tively

R1 = X(I−PC′1
),

R2 = (I−PA1,S1)X(PC′1
−PC′2

),

R3 = (I−PA1,S1 −PT1A2,S2)XPC′2
.

Thus a natural estimator of Σ is obtained from the sum of squared residuals,
i.e.,

nΣ̂ = R1R′1 + R2R′2 + R3R′3.

3. Estimators in the extended growth curve model with a
linearly structured covariance matrix

In this section we derive explicit estimators of parameters in the extended
growth curve model where the covariance matrix Σ is linearly structured.
The linearly structured covariance matrix will be denoted Σ(s). Hence, we
consider the extended growth curve model

X = A1B1C1 + A2B2C2 + E, (4)

deduced from Definition 1.1 for m = 2, but with E ∼ Np,n(0,Σ(s), In).
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The estimation procedure which is proposed in this section will rely on the
decompositions of the whole space generated by design matrices as illustrated
in Figure 3. The only difference with the unstructured case, Figure 2, being
that in Figure 3 we have not replaced Σ(s) with either S1 nor S2 because
now Σ(s) is structured. If Σ(s) would have been known, we would have a
best linear unbiased estimator (BLUE) of the mean

Ẽ[X] = M̃1 + M̃2,

where

M̃1 = PA1,Σ(s)XPC′1
, M̃2 = PT1A2,Σ(s)XPC′2

and T1 = I−PA1,Σ(s) .

W1 W2 W3

V1

V2

V3

M̃2

M̃1

H1

H2

H3

Figure 3. Decomposition of the whole space according
to the within and between individuals designs illustrating
the mean and residual spaces: V1 = CΣ(s)(A1), V2 =
CΣ(s)(T1A2), V3 = (CΣ(s)(A1) + CΣ(s)(T1A2))⊥, W1 =
(C(C′2), W2 = (C(C′1) ∩ C(C′2)⊥, W3 = (C(C′1)⊥.

In Figure 3 we have

Ẽ[X] = M̃1 + M̃2,

H1 = X(I−PC′1
),

H2 = (I−PA1,Σ(s))X(PC′1
−PC′2

),

H3 = (I−PA1,Σ(s) −PT1A2,Σ(s))XPC′2
.

If Σ(s) is unknown, it should be estimated. The idea is first to estimate
Σ(s) when finding the inner product and thereafter reestimate it when it



20 JOSEPH NZABANITA, DIETRICH VON ROSEN, AND MARTIN SINGULL

should be interpreted as a dispersion matrix. Now notice that the projection
H1 is independent of M̃1 and that

S1 =H1H′1 =X(I−PC′1
)X′ ∼Wp(Σ(s), n− r1) and E[S1] = (n− r1) Σ(s),

where r1 = r(C1). So it is natural to use S1 when finding inner product
estimate. In this paper we apply a least square approach, i.e., we minimize

tr
{(

S1 − (n− r1)Σ(s)
)′ (

S1 − (n− r1) Σ(s)
)}

(5)

with respect to Σ(s).
To find the minimizer of (5), we use techniques based on differentiations.

The matrix derivative we use here is defined as follows

Definition 3.1. Let the elements of Y ∈ Rr×s be functions of X ∈ Rp×q.
The matrix dY

dX ∈ Rpq×rs is called matrix derivative of Y by X in a set Ω, if
the partial derivatives ∂ykl

∂xij
exist, are continuous in Ω, and

dY
dX

=
∂

∂vecX
(vec′Y),

where
∂

∂vecX
=
(

∂

∂x11
, . . . ,

∂

∂xp1
, . . . ,

∂

∂x1q
, . . . ,

∂

∂xpq

)′
.

It can be shown that the identity

dY
dX

=
d vec′Y
d vecX

holds. For more details on matrix differentiation one can consult [3].
For convenience we define and denote by vecΣ(K) the columnwise vector-

ization of Σ(s) where all 0’s and repeated elements (by modulus) have been
disregarded. Then there exists, see [3], a transformation matrix T such that

vecΣ(K) = TvecΣ(s) or vecΣ(s) = T+vecΣ(K), (6)

where T+ denotes the Moore-Penrose generalized inverse of T. Moreover

dΣ(s)

dΣ(K)
= (T+)′. (7)

The expression (5) gives

tr
{

(S1 − (n− r1)Σ(s))′( )
}

= (vecS1 − (n− r1)vecΣ(s))′( ),

where the notation (Q)′() stands for (Q)′(Q).
Differentiating with respect to vecΣ(K) and equalizing to 0, we get

−2(n− r1)
dΣ(s)

dΣ(K)
vec(S1 − (n− r1) Σ(s)) = 0. (8)
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From (6), (7) and (8) we obtain the linear equation

(T+)′vecS1 = (n− r1) (T+)′T+vecΣ(K),

which is consistent and its general solution is given by

vecΣ(K) =
1

n− r1
(
(T+)′T+

)− (T+)′vecS1 +
(
(T+)′T+

)o z,

where z is an arbitrary vector. Hence, using (6) we obtain the unique mini-
mizer of (5) given by

vecΣ(s) = T+vecΣ(K) =
1

n− r1
T+

(
(T+)′T+

)− (T+)′vecS1.

Thus, a first estimator for Σ(s) is given by

vecΣ̂(s)
1 =

1
n− r1

T+
(
(T+)′T+

)− (T+)′vecS1. (9)

Now suppose Σ̂(s)
1 is positive definite (which always holds for large n).

Then using Σ̂(s)
1 to define the inner product, we may consider C

Σ̂
(s)
1

(A1)

instead of CΣ(s)(A1). Thus an estimator of M1, and also that of H2 are found
by projecting observations on C(C′1) ⊗ C

Σ̂
(s)
1

(A1) and
(
C(C′1) ∩ C(C′2)⊥

)
⊗

C
Σ̂

(s)
1

(A1)⊥ respectively, i.e.,

M̂1 = P
A1,Σ̂

(s)
1

XPC′1
, (10)

Ĥ2 = (I−P
A1,Σ̂

(s)
1

)X(PC′1
−PC′2

).

To derive a second estimator of Σ(s) we use a similar idea as above but
now we consider the sum of S1 and Ĥ2Ĥ′2. Notice that

Ĥ2Ĥ′2 = (I−P
A1,Σ̂

(s)
1

)X(PC′1
−PC′2

)X′(I−P
A1,Σ̂

(s)
1

)′.

Put T̂1 = I−P
A1,Σ̂

(s)
1

and W0 = X(PC′1
−PC′2

)X′. Then Ĥ2Ĥ′2 = T̂1W0T̂′1
and S1 is independent of W0. Therefore it is natural to condition Ĥ2Ĥ′2 with
respect to S1 and

Ĥ2Ĥ′2|S1 ∼Wp

(
T̂1Σ(s)T̂′1, r1 − r2

)
,

where r2 = r(C′2).
Again we apply a least squares approach and minimize

tr
{

(S1 + Ĥ2Ĥ′2 − [(n− r1) Σ(s) + (r1 − r2) T̂1Σ(s)T̂′1])′ ( )
}

(11)

with respect to Σ(s).
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The expression (11) gives

tr
{

(S1 + Ĥ2Ĥ′2 − [(n− r1) Σ(s) + (r1 − r2) T̂1Σ(s)T̂′1])′ ( )
}

= (vec(S1 + Ĥ2Ĥ′2)− Υ̂vecΣ(s))′( ) (12)

where

Υ̂ = (n− r1)I + (r1 − r2)T̂1 ⊗ T̂1.

Differentiating the expression in righthand side of (12) with respect to
vecΣ(K) and equalizing to 0, we get

−2
dΣ(s)

dΣ(K)
Υ̂′(vec(S1 + Ĥ2Ĥ′2)− Υ̂vecΣ(s)) = 0. (13)

From (6), (7) and (13) we obtain the linear equation

(T+)′Υ̂′Υ̂T+vecΣ(K) = (T+)′Υ̂′vec(S1 + Ĥ2Ĥ′2),

which is consistent and a general solution is given by

vecΣ(K) =
(

(T+)′Υ̂′Υ̂T+
)−

(T+)′Υ̂′vec(S1 + Ĥ2Ĥ′2) + ((T+)′Υ̂′Υ̂T+)oz,

where z is an arbitrary vector. Hence, using (6) we obtain a second estimator
of Σ(s) given by

vecΣ̂(s)
2 = T+

(
(T+)′Υ̂′Υ̂T+

)−
(T+)′Υ̂′vec(S1 + Ĥ2Ĥ′2). (14)

Now using Σ̂(s)
2 , again assumed to be positive definite, to define the inner

product, we may consider C
Σ̂

(s)
2

(T̂1A1) instead of CΣ(s)(T1A1). Thus an
estimator of M2, and also that of H3 are found by projecting observations
on

C(C′2)⊗ C
Σ̂

(s)
2

(T̂1A1) and C(C′2)⊗
(
C

Σ̂
(s)
1

(A1) + C
Σ̂

(s)
2

(T̂1A2)
)⊥

respectively, i.e.,

M̂2 = P
T̂1A2,Σ̂

(s)
2

XPC′2
, (15)

Ĥ3 = (I−P
A1,Σ̂

(s)
1

−P
T̂1A2,Σ̂

(s)
2

)XPC′2
.

To derive a final estimator of Σ(s), the idea is to use the total sum of
squared residuals and proceed similarly as above. So, we now consider the
sum of S1 + Ĥ2Ĥ′2 and Ĥ3Ĥ′3. Notice that

Ĥ3Ĥ′3 = T̂2XPC′2
X′T̂′2,
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where T̂2 = I − P
A1,Σ̂

(s)
1

− P
T̂1A2,Σ̂

(s)
2

. Then, letting W1 = XPC′2
X′, we

get Ĥ2Ĥ′2 = T̂2W1T̂′2 and S1 + Ĥ2Ĥ′2 is independent of W1. So again it is
natural to condition Ĥ3Ĥ′3 with respect to S1 + Ĥ2Ĥ′2 and

Ĥ3Ĥ′3|S1 + Ĥ2Ĥ′2 ∼Wp

(
T̂2Σ(s)T̂′2, r2

)
.

Again we apply a least squares approach and minimize

tr
{

(S− [(n− r1) Σ(s) + (r1 − r2) T̂1Σ(s)T̂′1 + r2T̂2Σ(s)T̂′2]) ()′
}

= (vecS− Φ̂vecΣ(s))′ () (16)

with respect to Σ(s), where S = S1 + Ĥ2Ĥ′2 + Ĥ3Ĥ′3 and

Φ̂ = (n− r1) I + (r1 − r2) T̂1 ⊗ T̂1 + r2T̂2 ⊗ T̂2.

We notice that (16) resembles to (12). So using this analogy, we find that
the final estimator of Σ(s) is given by

vecΣ̂(s) = T+
(

(T+)′Φ̂′Φ̂T+
)−

(T+)′Φ̂′vecS.

We suppose Σ̂(s) to be positive definite. The following theorem summa-
rizes what we discussed above and gives the proposed estimators of parame-
ters in the extended growth curve model with a linearly structured covariance
matrix.

Theorem 3.2. Let the extended growth curve model be given by (4). Then
(1) The estimator of the structured covariance matrix Σ(s) is given by

vecΣ̂(s) = T+
(

(T+)′Φ̂′Φ̂T+
)−

(T+)′Φ̂′vecS. (17)

Here, Σ̂(s) is assumed to be positive definite (which always holds for
large n).

(2) The estimated mean is given by

Ê[X] = P
A1,Σ̂

(s)
1

XPC′1
+ P

T̂1A2,Σ̂
(s)
2

XPC′2
. (18)

4. Properties of the proposed estimators

In this section we study some properties, like unbiasedness and consis-
tency, of the estimators we proposed in Section 3. We start with studying
properties of estimators for the covariance matrix Σ(s) given in (9), (14) and
(17).

Lemma 4.1. The estimator Σ̂(s)
1 given in (9) is a consistent estimator

of Σ(s), i.e., Σ̂(s)
1

p−→ Σ(s).
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Proof. We know that 1
n−r1

vecS1
p−→ vecΣ(s). So, from (6) and (9), we

have

vecΣ̂(s)
1 =

1
n− r1

T+
(
(T+)′T+

)− (T+)′vecS1

p−→ T+
(
(T+)′T+

)− (T+)′vecΣ(s)

= T+
(
(T+)′T+

)− (T+)′T+vecΣ(K)

= T+vecΣ(K) = vecΣ(s),

which concludes the proof. �

Lemma 4.2. The estimator Σ̂(s)
2 given in (14) is a consistent estimator

of Σ(s), i.e., Σ̂(s)
2

p−→ Σ(s).

Proof. By Lemma 4.1 and Cramer-Slutsky’s theorem [1], we have

T̂1 = I−P
A1,Σ̂

(s)
1

p−→ T1 = I−PA1,Σ(s) ,

Υ̂ = (n− r1)I + (r1 − r2)T̂1 ⊗ T̂1
p−→ Υ = (n− r1)I + (r1 − r2)T1 ⊗T1.

Hence, from (14), we have

vecΣ̂(s)
2 = T+

(
(T+)′Υ̂′Υ̂T+

)−
(T+)′Υ̂′vec(S1 + Ĥ2Ĥ′2)

p−→ T+
(
(T+)′Υ′ΥT+

)− (T+)′Υ′vec
(

(n− r1)Σ(s)

+(r1 − r2)T1Σ(s)T′1
)

= T+
(
(T+)′Υ′ΥT+

)− (T+)′Υ′ ((n− r1)I

+(r1 − r2)T1 ⊗T1) vecΣ(s)

= T+
(
(T+)′Υ′ΥT+

)− (T+)′Υ′ΥvecΣ(s)

= T+
(
(T+)′Υ′ΥT+

)− (T+)′Υ′ΥT+vecΣ(K)

= T+vecΣ(K) = vecΣ(s),

since Υ has a full rank and thus the proof is complete. �

Theorem 4.3. The estimator Σ̂(s) given in (17) is a consistent estimator
of Σ(s), i.e., Σ̂(s) p−→ Σ(s).
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Proof. Using Lemma 4.1, Lemma 4.2, we have

T̂2 = I−P
A1,Σ̂

(s)
1

−P
T̂1A2,Σ̂

(s)
2

p−→ T2 = I−PA1,Σ(s) −PT1A2,Σ(s) ;

Φ̂ = (n− r1) I + (r1 − r2) T̂1 ⊗ T̂1 + r2T̂2 ⊗ T̂2
p−→ Φ = (n− r1) I + (r1 − r2) T1 ⊗T1 + r2T2 ⊗T2;

vecS = vec(S1 + Ĥ2Ĥ′2 + Ĥ3Ĥ′3)
p−→ vec

(
(n− r1)Σ(s) + (r1 − r2) T1Σ(s)T′1 + r2T2Σ(s)T′2

)
= ((n− r1)I + (r1 − r2) T1 ⊗T1 + r2T2 ⊗T2) vecΣ(s)

= ΦvecΣ(s).

Hence, from (17), we have

vecΣ̂(s) = T+
(

(T+)′Φ̂′Φ̂T+
)−

(T+)′Φ̂′vecS
p−→ T+

(
(T+)′Φ′ΦT+

)− (T+)′Φ′ΦvecΣ(s)

= T+
(
(T+)′Φ′ΦT+

)− (T+)′Φ′ΦT+vecΣ(K)

= T+vecΣ(K) = vecΣ(s),

since Φ has a full rank and thus the proof is complete. �

Now we show that the estimator for the mean given in (18) is unbiased.

Theorem 4.4. Let the estimator Ê[X] be given in (18), i.e.,

Ê[X] = P
A1,Σ̂

(s)
1

XPC′1
+ P

T̂1A2,Σ̂
(s)
2

XPC′2
.

Then Ê[X] is an unbiased estimator of E[X] = A1B1C1 + A2B2C2, i.e.,

E[Ê[X]] = A1B1C1 + A2B2C2.

Proof. From (18), we can write

Ê[X] = P
A1,Σ̂

(s)
1

X(PC′1
−PC′2

) + (P
A1,Σ̂

(s)
1

+ P
T̂1A2,Σ̂

(s)
2

)XPC′2
. (19)

Let A be the partitioned matrix (A1 : A2). Using the fact that

C(A1) � C(T̂1A2) = C(A1) + C(A2),

and uniqueness of projectors property, we can write (19) as

Ê[X] = P
A1,Σ̂

(s)
1

X(PC′1
−PC′2

) + P
A,Σ̂

(s)
2

XPC′2
.

Using linearity of expectation, we have

E[Ê[X]] = E
[
P

A1,Σ̂
(s)
1

X(PC′1
−PC′2

)
]

+ E
[
P

A,Σ̂
(s)
2

XPC′2

]
.



26 JOSEPH NZABANITA, DIETRICH VON ROSEN, AND MARTIN SINGULL

Next,

E
[
P

A1,Σ̂
(s)
1

X(PC′1
−PC′2

)
]

= E
[
P

A1,Σ̂
(s)
1

]
E
[
X(PC′1

−PC′2
)
]

= E
[
P

A1,Σ̂
(s)
1

]
(A1B1C1 + A2B2C2) (PC′1

−PC′2
)

= A1B1C1 −A1B1C1PC′2
,

where we used the independence of P
A1,Σ̂

(s)
1

and X(PC′1
− PC′2

), the fact

that E[X] = A1B1C1 + A2B2C2, P
A1,Σ̂

(s)
1

A1 = A1, C1PC′1
= C1 and

C2(PC′1
−PC′2

) = 0.
Similarly,

E
[
P

A,Σ̂
(s)
2

XPC′2

]
= E

[
P

A,Σ̂
(s)
2

]
E
[
XPC′2

]
= E

[
P

A,Σ̂
(s)
2

]
(A1B1C1 + A2B2C2) PC′2

= A1B1C1PC′2
+ A2B2C2,

since P
A,Σ̂

(s)
2

A1 = A1, P
A,Σ̂

(s)
2

A2 = A2 and C2PC′2
= C2.

Hence,

E[Ê[X]] = A1B1C1 −A1B1C1PC′2
+ A1B1C1PC′2

+ A2B2C2

= A1B1C1 + A2B2C2,

which completes the proof of Theorem 4.4. �

5. Numerical examples

Example 5.1 (Simulation with a banded covariance matrix). Data is
generated from X ∼ Np,n(A1B1C1 + A2B2C2,Σ, I), with p = 5, n = 500,
design matrices are, using the notation 1n/2 (respectively 0n/2) for a n/2-
dimension column vector of 1’s (respectively of 0’s),

A′1 =
(

1 1 1 1 1
1 2 3 4 5

)
, C1 =

(
1′n/2 ⊗

(
1
0

)
: 1′n/2 ⊗

(
0
1

))
A′2 =

(
12 22 32 42 52

)
, C2 = (0′n/2 : 1′n/2).

The parameter matrices are

B1 =
(

1 1
1 2

)
, B2 = 3,

and the covariance matrix has a banded structure of the form

Σ(s) =


α β 0 0 0
β δ −α 0 0
0 −α γ −β 0
0 0 −β φ α
0 0 0 α ψ

 , provided that Σ(s) is positive definite.
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For this structure, the transformation matrix T in (6) is

T′ =
1
20



4 0 0 0 0 0
0 5 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 5 0 0 0 0
0 0 20 0 0 0
−4 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−4 0 0 0 0 0
0 0 0 20 0 0
0 −5 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −5 0 0 0 0
0 0 0 0 20 0
4 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
4 0 0 0 0 0
0 0 0 0 0 20


The estimates of

Σ(s) =


2 1 0 0 0
1 3 −2 0 0
0 −2 4 −1 0
0 0 −1 5 2
0 0 0 2 6


based on average estimates from 200 simulations using (9), (14) and (17)
are, respectively

Σ̂(s)
1 =


2.0024 0.9963 0 0 0
0.9963 2.9974 −2.0024 0 0

0 −2.0024 4.0107 −0.9963 0
0 0 −0.9963 5.0006 2.0024
0 0 0 2.0024 5.9980

 ,
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Σ̂(s)
2 =


2.0020 0.9960 0 0 0
0.9960 2.9973 −2.0020 0 0

0 −2.0020 4.0097 −0.9960 0
0 0 −0.9960 5.0020 2.0020
0 0 0 2.0020 5.9964

 ,

Σ̂(s) =


2.0059 0.9956 0 0 0
0.9956 2.9983 −2.0059 0 0

0 −2.0059 4.0102 −0.9956 0
0 0 −0.9956 5.0041 2.0059
0 0 0 2.0059 6.0273

 .

Example 5.2 (Simulation with a circular Toeplitz covariance matrix).
Data is generated from X ∼ Np,n(A1B1C1 + A2B2C2,Σ, I), with p = 5,
n ∈ {10, 50, 100}, design matrices are

A′1 =
(

1 1 1 1
1 2 3 4

)
, C1 =

(
1′n/2 ⊗

(
1
0

)
: 1′n/2 ⊗

(
0
1

))
A′2 =

(
12 22 32 42

)
, C2 = (0′n/2 : 1′n/2).

The parameter matrices are

B1 =
(

1 1
1 2

)
, B2 = 3,

and the covariance matrix has a Toeplitz structure

Σ(s) =


σ ρ1 ρ2 ρ1

ρ1 σ ρ1 ρ2

ρ2 ρ1 σ ρ1

ρ1 ρ2 ρ1 σ

 , provided that Σ(s) is positive definite.
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For this structure, the transformation matrix T in (6) is

T′ =
1
8



2 0 0
0 1 0
0 0 2
0 1 0
0 1 0
2 0 0
0 1 0
0 0 2
0 0 2
0 1 0
2 0 0
0 1 0
0 1 0
0 0 2
0 1 0
2 0 0



.

The estimates of

Σ(s) =


1 0.5 0.25 0.5

0.5 1 0.5 0.25
0.25 0.5 1 0.5
0.5 0.25 0.5 1


based on average estimates from 200 simulations using (17) are hereafter.
For n = 10:

Σ̂(s) =


0.9929 0.4854 0.2374 0.4854
0.4854 0.9929 0.4854 0.2374
0.2374 0.4854 0.9929 0.4854
0.4854 0.2374 0.4854 0.9929

 .

For n = 50:

Σ̂(s) =


1.0090 0.5095 0.2635 0.5095
0.5095 1.0090 0.5095 0.2635
0.2635 0.5095 1.0090 0.5095
0.5095 0.2635 0.5095 1.0090

 .

For n = 100:

Σ̂(s) =


1.0007 0.4987 0.2502 0.4987
0.4987 1.0007 0.4987 0.2502
0.2502 0.4987 1.0007 0.4987
0.4987 0.2502 0.4987 1.0007

 .
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From the above simulated examples, Example 1 and Example 2, we see
that the estimates of the linearly structured covariance matrices are in a well
agreement with the true covariance matrices. However, through simulations
for the structure in Example 1, it was noted that the estimates of the co-
variance matrix may not be positive definite for small n whereas it is always
positive definite for the structure in Example 2. More studies on the positive
definiteness of the estimates is of interest.

Example 5.3 (Potthoff and Roy (1964) dental data). The aim of this
example is to illustrate the theory developed in this paper with real data
set and we do not pretend to carry out data analysis. Dental measurements
on eleven girls and sixteen boys at four different ages (t1 = 8, t2 = 10,
t3 = 12, and t4 = 14) were taken. Each measurement is the distance, in
millimeters, from the center of pituitary to pteryo-maxillary fissure. These
data are presented in Table 1.

Table 1. Dental data

id gender t1 t2 t3 t4 id gender t1 t2 t3 t4
1 F 21.0 20.0 21.5 23.0 12 M 26.0 25.0 29.0 31.0
2 F 21.0 21.5 24.0 25.5 13 M 21.5 22.5 23.0 26.0
3 F 20.5 24.0 24.5 26.0 14 M 23.0 22.5 24.0 27.0
4 F 23.5 24.5 25.0 26.5 15 M 25.5 27.5 26.5 27.0
5 F 21.5 23.0 22.5 23.5 16 M 20.0 23.5 22.5 26.0
6 F 20.0 21.0 21.0 22.5 17 M 24.5 25.5 27.0 28.5
7 F 21.5 22.5 23.0 25.0 18 M 22.0 22.0 24.5 26.5
8 F 23.0 23.0 23.5 24.0 19 M 24.0 21.5 24.5 25.5
9 F 20.0 21.0 22.0 21.5 20 M 23.0 20.5 31.0 26.0
10 F 16.5 19.0 19.0 19.5 21 M 27.5 28.0 31.0 31.5
11 F 24.5 25.0 28.0 28.0 22 M 23.0 23.0 23.5 25.0

23 M 21.5 23.5 24.0 28.0
24 M 17.0 24.5 26.0 29.5
25 M 22.5 25.5 25.5 26.0
26 M 23.0 24.5 26.0 30.0
27 M 22.0 21.5 23.5 25.0

Suppose that for both girls and boys we have a linear growth component
but additionally for the boys there also exists a second order polynomial
structure. Then, the extended growth curve model with two terms is appro-
priate to model this data:

X ∼ Np,n(A1B1C1 + A2B2C2,Σ, I).

In this model, the observation matrix is X = (x1,x1, . . . ,x27), in which
eleven first columns correspond to measurements on girls and sixteen last
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columns correspond to measurements on boys. The design matrices are

A′1 =
(

1 1 1 1
8 10 12 14

)
, C1 =

(
1′11 ⊗

(
1
0

)
: 1′16 ⊗

(
0
1

))
A′2 =

(
82 102 122 142

)
, C2 = (0′11 : 1′16).

The matrices B1 and B2 are parameter matrices and Σ is the unknown
positive definite covariance matrix.
The maximum likelihood estimate for the non-structured covariance matrix
computed using (1) is

Σ̂ML =


5.0272 2.5066 3.6410 2.5099
2.5066 3.8810 2.6961 3.0712
3.6410 2.6961 6.0104 3.8253
2.5099 3.0712 3.8253 4.6164

 .

Assume that the covariance matrix has a Toeplitz structure, i.e.,

Σ(s) =


σ ρ1 ρ2 ρ3

ρ1 σ ρ1 ρ2

ρ2 ρ1 σ ρ1

ρ3 ρ2 ρ1 σ

 ,

the estimate of the structured covariance matrices given by (17) is

Σ̂(s) =


5.2128 3.2953 3.6017 2.7146
3.2953 5.2128 3.2953 3.6017
3.6017 3.2953 5.2128 3.2953
2.7146 3.6017 3.2953 5.2128

 ,

and the MLE computed with Proc Mixed in SASr [10] is

Σ̂(s)
ML =


4.9368 3.0747 3.4559 2.2916
3.0747 4.9368 3.0747 3.4559
3.4559 3.0747 4.9368 3.0747
2.2916 3.4559 3.0747 4.9368

 .

From this example, we see that the proposed estimates are close to the
maximum likelihood estimates and the conclusion is that the proposed esti-
mators perform well.
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