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Markov chain properties in terms of column sums
of the transition matrix

Jeffrey J. Hunter

Abstract. Questions are posed regarding the influence that the column
sums of the transition probabilities of a stochastic matrix (with row sums
all one) have on the stationary distribution, the mean first passage times
and the Kemeny constant of the associated irreducible discrete time
Markov chain. Some new relationships, including some inequalities, and
partial answers to the questions, are given using a special generalized
matrix inverse that has not previously been considered in the literature
on Markov chains.

1. Introduction

Let P = [pij ] be the transition matrix of a finite irreducible, discrete
time Markov chain {Xn}, n ≥ 0, with state space S = {1, 2, ...,m}. Such
chains have a unique stationary distribution {πj}, 1 ≤ j ≤ m. Let Tij =
min

[
n ≥ 1, Xn = j

∣∣X0 = i
]

be the first passage time from state i to state j
(first return when i = j) and define mij = E

[
Tij
∣∣X0 = i

]
as the mean first

passage time from state i to state j. It is well known ([3], [4]) that for such
chains all the mij are well defined and finite.

The stochastic nature of P implies that
∑m

j=1 pij = 1, for all i = 1, 2, ...,m,
i.e., the row sums of P are all one.

Let cj =
∑m

i=1 pij for all j = 1, ...,m, be the respective column sums of
the transition matrix.

We pose the following questions. What influence does the sequence {cj}
have on the stationary distribution {πj}? What influence does the sequence
{cj} have on the mean first passage times {mij}? Are there relationships
connecting the {cj}, the {πj} and the {mij}? Can we deduce bounds on
the {πj} and the {mij} involving {cj}? What effect does the {cj} have
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on Kemeny’s constant K =
∑m

j=1 πjmij , which is in fact independent of
i ∈ {1, 2, ...,m}.

We explore these questions by utilising the generalized matrix inverse
H ≡

[
I − P + ecT

]−1, where e is the column vector of ones and cT =
(c1, c2, ..., cm) is the row vector of column sums of P . We show that this
matrix can also be expressed in terms of Kemeny and Snell’s fundamental
matrix, or Meyer’s group generalized inverse.

Two papers have appeared in the open literature considering the impact
that column sums have on the properties of Markov chains. In [11] Kirkland
considered the subdominant eigenvalue λ2 associated with the set S(c) of
m×m stochastic matrices with column sum vector cT . The quantity λ(c) =
max {|λ2(A)|for A ∈ S(c)} was considered. The vectors cT such that λ(c) <
1 were identified and, in those cases, nontrivial upper bounds on λ(c) and
weak ergodicity results for forward products were provided. In [12] Kirkland
considered an irreducible stochastic matrix P and studied the extent to which
the column sum vector for P provides information on a certain condition
number κ(P ), which measures the sensitivity of the stationary distribution
vector to perturbations in P .

We do not consider these problems in this paper but will focus on the
properties of the stationary distribution and the mean first passage times.

2. Properties of the generalized inverse, H

In Theorem 3.3 of [2] it was shown that if t and u are any m× 1 vectors
such that πT t 6= 0 and uTe 6= 0 then I − P + tuT is non-singular and[
I − P + tuT

]−1 is a generalized inverse (g-inverse) of I − P .
For H, as defined above, since πTe = 1 and cTe = eTPe = eTe = m,

I − P + ecT is non-singular and H is a g-inverse of I − P .

Theorem 1. If H ≡
[
I − P + ecT

]−1 = [hij ], then cTH = πT , implying

πj =
m∑
i=1

cihij for all j = 1, 2, ...,m, (1)

and He = e/m, implying

hi� ≡
m∑
j=1

hij = 1/m, for all i = 1, 2, ...,m, (2)

and hence

cTHe = 1, with cTe =
m∑
i=1

ci = m. (3)
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Proof. Since
[
I − P + ecT

]
H = I we have that

H − PH + ecTH = I. (4)

Pre-multiply (4) by πT , noting that πTP = πT , leads immediately to (1).
Further, since H

[
I − P + ecT

]
= I,

H −HP +HecT = I. (5)

Post-multiply (5) by e, noting that Pe = e, and cTe = m, leads immediately
to (2). Equation (3) follows from (1) and (2). �

The impact of Theorem 1 is that from (1), the stationary probabilities πj ,
for each j, can be expressed as a linear function of the column sums of P ,
the {ci}, and the elements of H = [hij ].

Alternative simple methods for calculating the stationary probabilities
are also given in [7]. The particular method, leading to (1) above, was not
included in [7], although a variety of specific forms of the g-inverses of I−P
were considered, leading to various simple expressions for the stationary
probabilities.

In order to obtain bounds on the stationary probabilities, we need to have
more knowledge of the elements of H, in particular the sign of hij . From (2)
the sum of the elements in each row of H is 1/m, but we need more refined
information to obtain anything useful.

Let eTi be the i-th elementary row vector and ej be the j-th elementary
column vector. Let h(c)

j ≡ Hej denote the j-th column of H and h(r)T
i ≡

eTi H denote the i-th row of H. Let

hrowsum = He =
m∑
j=1

h
(c)
j = [h1�, h2�, ..., hm�]

T

denote the column vector of row sums of H and

hTcolsum = eTH =
m∑
j=1

h
(r)T
j = [h�1, h�2, ..., h�m]

denote the row vector of column sums of H. First note that substitution of
(1) into (4) yields

H − PH + eπT = I. (6)

Further substitution of (2) into (5) yields

H −HP + ecT /m = I. (7)

Relationships between the rows, columns and elements of H follow from (6)
and (7) by pre- and post-multiplication by eTi and ej and the facts that
hi� = h

(r)T
i e, h�j = eTh

(c)
j , hij = eTi Hej .
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The main properties of H, deduced from (6) and (7), are summarised in
the following theorem.

Theorem 2. The g-inverse H = [hij ] = [I − P + ecT ]−1 satisfies the
following properties:

(a) (Row properties) h
(r)T
i − p(r)T

i H = eTi − πT ,

h
(r)T
i − h(r)T

i P = eTi − cT /m,
and hi� = 1/m.

(b) (Column properties) h
(c)
j − Ph

(c)
j = ej − πje,

h
(c)
j −Hp

(c)
j = ej − (cj/m)e,

and h�j = 1− (m− 1)πj .

(c) (Element properties) hij =
∑m

k=1 pikhkj + δij − πj ,
hij =

∑m
k=1 hikpkj + δij − cj/m.

(d) (Row and column sum vectors) hrowsum = e/m,

hTcolsum = eT − (m− 1)πT .

While overall row and column sums of the elements of H can be derived
(Theorem 2(d)), explicit expressions for individual elements of H are not
readily available.

3. Stationary distributions

Irreducible Markov chains have a unique stationary distribution {πj}, 1 ≤
j ≤ m. Let πT = (π1, π2, ..., πm) be the stationary probability vector of the
Markov chain. The stationary distribution {πj}, j ∈ S = {1, 2, ...,m}, which
satisfies the stationary equations:

πj =
m∑
i=1

πipij (j ∈ S) with
m∑
i=1

πi = 1. (8)

While we have not solved equations (8) directly, we have shown that πj =∑m
i=1 cihij with

∑m
i=1 ci = m.

Special results for the stationary distribution, in terms of the column
sums, are well-known in the case of doubly stochastic matrices (see [9]).
The following result is easily established:

Theorem 3. c = e if and only if π = e/m.

In order to obtain relationships between the stationary probabilities we
need to have information regarding relationships between the elements of H.
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4. Relationship between H and Z, the fundamental matrix of
ergodic Markov chains

Let Π = eπT . In Theorem 6.3 of [2] it was shown that for all g-inverses
G of I − P , (I −Π)G(I −Π) is invariant and equals Meyer’s group inverse
of I −P , (I −P )# = Z −Π ([13]), where Z = [I −P +Π]−1 is Kemeny and
Snell’s fundamental matrix of ergodic Markov chains ([10]). We now find
an expression for Z in terms of H and similarly find an expression for H in
terms of Z.

Theorem 4. If H =
[
I − P + ecT

]−1 and Z ≡
[
I − P + eπT

]−1, then

(a) Z = H +Π −ΠH, (9)

(b) H = Z +
1
m
Π − 1

m
ecTZ, (10)

(c) (1 +m)Π = mΠH + ecTZ, (11)

(d) (1 +m)πT = mπTH + cTZ. (12)

Proof. (a) Since (I −Π)H(I −Π) = Z −Π, and

HΠ = HeπT =
1
m
eπT =

1
m
Π

simplification yields

Z = (I −Π)H(I −Π) +Π = (I −Π)
(
H − 1

m
Π

)
+Π = (I −Π)H +Π.

As (I −Π)Π = Π −Π2 = eπT − eπTeπT = eπT − eπT = 0, we reach (9).
(d) Premultiplication of (9) by cT yields cTZ = cTH+cTeπT −cTeπTH

= πT +mπT −mπTH, which leads to (12).
(c) Premultiplication of (12) by e yields (11).
(b) From (11), ΠH = 1

m

(
(1 +m)Π − ecTZ

)
. Substitute for ΠH into

(9) yields Z = H+Π−
(

1
mΠ +Π − 1

mec
TZ
)

= H− 1
mΠ+ 1

mec
TZ, leading

to (10). �

An alternative proof of Theorem 4 can be given based upon the Sherman–
Morrison formula. Expressions for the elements of Z in terms of the elements
of H and vice-versa can be derived from Theorem 4 and are given in Theorem
5 below. The reason we are interested in these interrelationships is that we
know that for ergodic Markov chains the diagonal elements of Z, zjj , are
positive (see below). Matlab examples show that a similar relationship also
holds for the diagonal elements of H, hjj . We seek a theoretical justification
for this although a formal proof will need to wait until the next section.
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Theorem 5. If H = [hij ] and Z = [zij ], then

(a) zij = hij + πj −
m∑
k=1

πkhkj , (13)

(b) hij = zij +
1
m
πj −

1
m

m∑
k=1

ckzkj , (14)

(c) (1 +m)πj = m
m∑
k=1

πkhkj +
m∑
k=1

ckzkj . (15)

Note that from (13) or (14), zij −hij = zjj −hjj , i.e., independent of i, so
that zij−zjj = hij−hjj (see also (20) below for an alternative justification).

The common difference zij − hij can be expressed, using (13), as πj −∑m
k=1 πkhkj or, by using (14), as (

∑m
k=1 ckzkj − πj)

/
m leading also to (15),

which is the elemental expression of (12).
In [5] parametric forms of generalized inverses of Markovian kernels were

derived. Each one-condition g-inverse G of I − P can be expressed in a
parametric form as G = G(α,β, γ) = [I − P + αβT ]−1 + γeπT , where
α = [I − (I − P )G]e, βT = πT [I −G(I − P )] and γ + 1 = βTGα.

The matrix Z = [I−P +eπT ]−1 is actually expressed in parametric form
with α = e, βT = πT and γ = 0.

For H it is easily verified that the parameters are α = e, βT = cT /m and
γ = 1/m−1 so thatH = [I−P+ecT ]−1 =

[
I − P + 1

mec
T
]−1+

(
1
m − 1

)
eπT ,

leading to an alternative form for H.

Theorem 6. If ck = 1 for all k, then if E = eeT ,

H = Z +
(

1−m
m2

)
E. (16)

Proof. From Theorem 3 πk = 1/m for all k, and hence from Theorem
2(b) and Theorem 5(c), z�j = 1, h�j = 1

m . Thus, from Theorem 5(b), hij =
zij + 1−m

m2 , leading to expression (16). �

5. Mean first passage times

Let M = [mij ] be the matrix of expected first passage times from state
i to state j in an irreducible finite Markov chain with transition matrix P .
The following result is well known. (See, for example, [2] (Section 5.1), [4]
(Corollary 7.3.3B), [10] (Theorem 4.4.4).)

Theorem 7. The matrix M satisfies the matrix equation

(I − P )M = E − PMd, (17)
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where E = eeT = [1]. Here Md = [δijmij ] is a diagonal matrix with elements
the diagonal elements of M . Further, Md = (Πd)−1 ≡ D, where Π = eπT .

It is well known that the solution of equations of the form of (16) can be
effected using g-inverses of I − P , (see e.g. [2] and [4]). Any g-inverse of
I − P has the form G =

[
I − P + tuT

]−1 + efT + gπT , where uTe 6= 0,
πT t 6= 0 and f and g are arbitrary vectors.

The following result (18) appears in [2] (Theorem 5.1) and [4] (Theorem
7.3.6) and while result (19) appears in [8] (Corollary 2.3.2).

Theorem 8. If G is any g-inverse of I − P , then

M = [GΠ − E(GΠ)d + I −G+ EGd]D. (18)

Further, under any of the following three equivalent conditions,

(i) Ge = ge, g being a constant,

(ii) GE − E(GΠ)dD = 0,

(iii) GΠ − E(GΠ)d = 0,

M = [I −G+ EGd]D. (19)

As a result of (2), H as defined satisfies condition (i) of Theorem 8 so that
expression (19) is valid for G = H. Other special cases for equation (19)
are G = Z, Kemeny and Snell’s fundamental matrix Z = [I − P −Π]−1

(since Ze = e and g = 1, as given initially in [10] (Theorem 4.4.7)) and
G = (I−P )# = Z−Π, Meyer’s group inverse of I−P (with (I−P )#e = 0
and g = 0) as given in [13] (Theorem 3.3).

Elemental expressions for the mij follow from Theorem 8, as follows:

Theorem 9. If G = [gij ] is any generalized inverse of I − P , then

mij =
(
[gjj − gij + δij ]

/
πj
)

+ (gi� − gj�), for all i, j. (20)

Further, when Ge = ge,

mij = [gjj − gij + δij ]
/
πj , for all i, j. (21)

Proof. Expressing (18) and (19) in elemental form leads to (20) and (21),
respectively. �

We have some key observations from Theorem 9. Since H = [hij ] satisfies
the required condition for (21), we have that

mij =


1
πj

=
1∑m

i=1 cihij
, i = j,

hjj − hij
πj

=
hjj − hij∑m
i=1 cihij

, i 6= j.

(22)
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Thus a knowledge of the column sums {ci} and the elements hij leads
directly to expressions for the mean first passage times.

Relationships between the {πj}, {mij} and {cj} can be derived from Theo-
rems 7 and 8.

Theorem 10. For all j ∈ {1, 2, ...,m},
m∑
i=1

mij −
m∑
i=1

cimij = m− cj
πj

= m− cjmjj , (23)

m∑
i=1

cimij =
cj
πj
− 1 +

mhjj
πj

= cjmjj − 1 +mhjjmjj , (24)

and hence
m∑
i=1

mij = m�j = m− 1 +
mhjj
πj

= m− 1 +mhjjmjj . (25)

Proof. Pre-multiplication of (17) by eT , since eTP = cT , yields

eTM − cTM = meT − cTMd.

Further, eTM = (m�1, ...,m�j , ...,m�m), where m�j =
∑m

i=1mij , and cTMd

=
(
c1
π1
, ...,

cj
πj
, ..., cmπm

)
, and (23) follows upon extracting the j-th element.

From (19) with G = H, pre-multiplication by cT gives

cTM = cTD − cTHD + cTeeTHdD.

Observing that

cTM =

(
m∑
i=1

cimi1, ...,
m∑
i=1

cimij , ...,
m∑
i=1

cimim

)
,

cTD = cTMd as above,

cTHD = πTMd = (1, ..., 1, ..., 1) = eT ,

and cTeeTHdD = meTHdMd = m
(
h11
π1
, ...,

hjj

πj
, ..., hmm

πm

)
, it is easily seen,

upon extracting the j-th element in the combined expression, that (24) fol-
lows.

Expression (25) follows from (23) upon substitution of
∑m

i=1 cimij , from
(24). �

Expression (23) gives a new interesting connection between the {cj} and
the {mij}, unhindered by the elements of H. A simple extension of Theo-
rem 10, re-expressing (23) and (24) in terms of the stationary probability
πj , yields the following new results, where the second expressions of (26),
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(27) and (28) follow by multiplying out the first expressions and using the
observation that πjmjj = 1:

πj =
cj

m−
m∑
i=1

mij +
m∑
i=1

cimij

=
1

m−
∑
i 6=j

mij +
∑
i 6=j

cimij
, (26)

πj =
cj +mhjj

1 +
m∑
i=1

cimij

=
mhjj

1 +
∑
i 6=j

cimij
, (27)

πj =
mhjj

1 +
m∑
i=1

mij −m
=

mhjj − 1
1 +

∑
i 6=j

mij −m
. (28)

Now note that from (22), and (21), since Z, as well as H, also satisfies the
required condition for (21), with Ze = e, we have that πjmij = hjj − hij =
zjj − zij > 0 for all i 6= j.

From [4] (Theorem 7.3.8), πTM = eTZdD =
(
z11
π1
, ...,

zjj

πj
, ..., zmm

πm

)
so that

it is clear that since all the terms on the left hand side are positive we deduce
that zjj > 0 for all j.

Theorem 11. For all i, j ∈ {1, 2, ...,m},

hij =

 πj

(
1 +

∑
k 6=j ckmkj

)/
m, i = j,

πj

(
1−mmij +

∑
k 6=j ckmkj

)/
m, i 6= j.

(29)

implying that H = 1
mΠ +

(
1
mC − I

)
(M −Md)Πd, where Π = eπT and

C = ecT .

Proof. The expression for hjj follows from (27) while the expression for
hij follows from the observation that hij = hjj − πjmij for i 6= j. The
expression for H follows from (29). �

As a further observation note that CH = Π, CΠ = mΠ and C2 = mC.
An important consequence of (29) is that hjj > 0. The usefulness of

this is that we now know that in the key relationship πj =
∑m

i=1 cihij , the
coefficient of cj is always positive. However we have no surety regarding the
positivity of any of the remaining terms hij when i 6= j. We explore some
further consequences in the next section.

From (26) and (27) we have some new bounds for the stationary proba-
bility πj :

πj > max

[
1

m+
∑

i 6=j cimij
,

cj
1 +

∑m
i=1 cimij

]
.

For all finite irreducible Markov chains πi ≤ πj ⇐⇒ mjj ≤ mii since mii =
1/πi.
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Theorem 12. If ci = 1 for all i, then

m�j = m− 1 +m2hjj = m2zjj . (30)

Proof. From Theorem 3, πi = 1/m for all i, and the first expression of
(30) follows from (25). From (16), m2hjj = m2zjj + 1 −m, so that m�j =
m2zjj . �

This is an extension of the results derived in [9] for doubly stochastic
Markov chains. We explore results for mi� in the next section.

Thus for the situation of constant column sums,

m�j ≤ m�i ⇐⇒ zjj ≤ zii ⇐⇒ hjj ≤ hii.

6. Kemeny’s constant

Kemeny [10] made the observation that the following expression Ki =∑m
j=1mijπj is in fact independent of i ∈ {1, 2, ...,m}, so that Ki = K. It

has since been realised that this constant has many important interpreta-
tions in terms of properties of the Markov chain, in particular being used
in the properties of mixing (expected time to stationarity) and a constant
used in bounding overall differences in the stationary probabilities of a chain
subjected to perturbations ([6]).

We have the following general results, initially derived in [6] (Theorem
2.4) (see also [8], Theorem 3.2) that if G = [gij ] is any g-inverse of I − P ,
then Kemeny’s constant K has the form

K = 1 + tr(G)− tr(GΠ) = 1 +
m∑
j=1

(gjj − gj�πj). (31)

This leads to the following specific expressions for K.

Theorem 13. The Kemeny’s constant K can be presented in the following
way:

K = 1− (1/m) + tr(H) = 1− (1/m) +
m∑
j=1

hjj , (32)

= tr(Z) =
m∑
j=1

zjj . (33)

Proof. If for some g, Ge = ge, then from (31) above K = 1 − g + tr(G).
G = H and G = Z both have the required property of Ge = ge, since
He = 1/m e and Ze = e, and (32) and (33) both follow from (31) with
g = 1/m and 1, respectively. �
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Substitution for hjj from the second expression of (27) into (32) leads to

K = 1− 1
m

+
1
m

m∑
j=1

πj

1 +
∑
k 6=j

ckmkj

 ,

= 1− 1
m

+
1
m

m∑
j=1

πj +
1
m

m∑
j=1

πj

(∑
k

ckmkj

)
− 1
m

m∑
j=1

cj ,

=
1
m

m∑
j=1

m∑
k=1

ckπjmkj =
1
m

m∑
k=1

ck

m∑
j=1

πjmkj .

Note however that this follows directly from the definition of Ki =
m∑
j=1

πjmij

and the facts that Ki = K and
∑m

k=1 ck = m.
In [4] it was shown that for any irreducible m-state Markov chain, K ≥

m+1
2 , so that from (32), after simplification,

tr(H) =
m∑
j=1

hjj ≥
m− 1

2
+

1
m
. (34)

Further we have the following key properties: hjj > 0 (from (27)), and,
for i 6= j, hjj > hij (from (22)), with

∑m
j=1 hij = 1/m (from (2)). These

results lead to the following observation.

Theorem 14. For all j ∈ S = {1, 2, ...,m},

πj < mhjj . (35)

Proof. From (1),

πj =
m∑
i=1

cihij = c1h1j + ...+ cjhjj + ...+ cmhmj

< c1hjj + ...+ cjhjj + ...+ cmhjj =

(
m∑
k=1

ck

)
hjj = mhjj ,

using (22) and (3). This result also follows from (27) since

hjj = πj

1 +
∑
k 6=j

ckmkj

/m > πj
/
m.

�

Result (35) implies that m
∑m

j=1 hjj >
∑m

j=1 πj = 1 and hence that∑m
j=1 hjj > 1/m, a much weaker bound than that given by (34).
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Theorem 15. If ci = 1 for all i, then

mi� = mK = m− 1 +mtr(H) = mtr(Z). (36)

Further m�� = mmi� = m2K, and hence

K =
m��

m2
= tr(Z). (37)

Proof. The conditions imply a uniform stationary distribution so that
Ki =

∑m
j=1mijπj = mi�

m = K for all i, so that the mean first passage time
matrix has constant row sums given by (36), as also observed in [9].

Also in this case, from (30), m�j = m2zjj so that m�� =
∑m

j=1m�j =
m2
∑m

j=1 zjj = m2tr(Z), leading to (37) (consistent with (33)). �

Note also for constant column sums of the transition matrix that taking
into account (36) and the lower bound on K, we get for all i a new result
mi� ≥ m(m+1)

2 .
We illustrate some of these properties with a series of examples.

7. Examples

Example 1 (Two-state Markov chain). Let

P =
[
p11 p12

p21 p22

]
=
[

1− a a
b 1− b

]
, 0 ≤ a ≤ 1, 0 ≤ b ≤ 1,

be the transition matrix of a two-state Markov chain with state space S =
{1, 2}. Let d = 1− a− b.

To ensure that the Markov chain is irreducible we henceforth assume that
−1 ≤ d < 1 so that the Markov chain has a unique stationary probability
vector given by [4], p.71, as

πT = (π1, π2) =
(

b

a+ b
,

a

a+ b

)
.

(If −1 < d < 1, the Markov chain is regular and the stationary distribution
is in fact the limiting distribution. If d = −1 the Markov chain is irreducible
and periodic with period 2.)

The row vector of column sums is given by cT = (c1, c2) = (1− (a− b),
1 + (a− b)). Note that where as the parameters a and b specify all the
transition probabilities, the parameters c1 and c2 do not uniquely specify
the transition probabilities since c1 + c2 = 2 with c2 − c1 = 2(a− b), and we
cannot solve for a and b in terms of c1 and c2.

The matrix of mean first passage times is given by

M =
[
m11 m12

m21 m22

]
=
[

(a+ b)/b 1/a
1/b (a+ b)/a

]
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([4], p. 135), or ([10], p. 94)). The H matrix is given by

H =
[
I − P + ecT

]−1
=

1
2(a+ b)

[
1 + a −(1− b)
−(1− a) 1 + b

]
.

Kemeny’s constant is given, by ([6]), K = 1 + 1
a+b , with the property that

K ≥ 1.5 with the minimum value occurring when a = b = 1.
It is easy to verify that for this two-state case

c1 ≤ c2 ⇐⇒ b ≤ a⇐⇒ π1 ≤ π2 ⇐⇒ m22 ≤ m11,

and
h11 ≤ h22 ⇐⇒ a ≤ b⇐⇒ m11 +m21 = m�1 ≤ m�2 = m12 +m22.

This suggests some possibilities that need to be explored for larger state
spaces.

Example 2 (Three-state Markov chain). Let

P =

 p11 p12 p13

p21 p22 p23

p31 p32 p33

 =

 1− p2 − p3 p2 p3

q1 1− q1 − q3 q3
r1 r2 1− r1 − r2


be the transition matrix of a Markov chain with state space S = {1, 2, 3},
where we have used the parametrisation as used in [6], [8]. Note that for the
six constrained parameters we have 0 < p2 + p3 ≤ 1, 0 < q1 + q3 ≤ 1 and
0 < r1 + r2 ≤ 1.

Let ∆1 ≡ q3r1+q1r2+q1r1, ∆2 ≡ r1p2+r2p3+r2p2, ∆3 ≡ p2q3+p3q1+p3q3,
∆ ≡ ∆1 + ∆2 + ∆3.

The Markov chain, with the above transition matrix, is irreducible (and
hence a stationary distribution exists) if and only if ∆1 > 0, ∆2 > 0, ∆3 > 0.

It is easily shown that the stationary probability vector is given by

(π1, π2, π3) =
1
∆

(∆1,∆2,∆3) .

Define τ12 = p3 + r1 + r2, τ13 = p2 + q1 + q3, τ21 = q3 + r1 + r2, τ23 =
q1+p2+p3, τ31 = r2+q1+q3, τ32 = r1+p2+p3, τ = p2+p3+q1+q3+r1+r2,
so that τ = τ12 + τ13 = τ21 + τ23 = τ31 + τ32.

In [6], a general expression for any generalized inverse of I−P of the form
[I − P + tuT ]−1 was given. In particular

G(e,u) = [I − P + euT ]−1 =
1
u�

[Π + u1A1 + u2A2 + u3A3] ,

where u� = u1 + u2 + u3,

Π =
1
∆

 ∆1 ∆2 ∆3

∆1 ∆2 ∆3

∆1 ∆2 ∆3

 , A1 =

 0 0 0
−τ21 τ12 τ21 − τ12

−τ31 τ31 − τ13 τ13

 ,
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A2 =
1
∆

 τ21 −τ12 τ12 − τ21

0 0 0
τ32 − τ23 −τ32 τ23


and

A3 =
1
∆

 τ31 τ13 − τ31 −τ13

τ23 − τ32 τ32 −τ23

0 0 0

 .
From the above general expression, since H = G(e, c),

H =
1
3

[Π + c1A1 + c2A2 + c3A3]

Since uTG = πT and since uTΠ = uTeπT = u�π
T , we must have

uT (u1A1 + u2A2 + u3A3) = 0T .

Thus cTH = πT (taking uT = cT with cTe = c� = 3) as previously estab-
lished for all irreducible finite state cases.

Upon substitution,

H =

 h11 h12 h13

h21 h22 h23

h31 h32 h33


where

3∆h11 = ∆1 + c2τ21 + c3τ31, 3∆22 = ∆2 + c1τ12 + c3τ32,
3∆h33 = ∆3 + c1τ13 + c2τ23,
3∆h12 = ∆2 − c2τ12 + c3(τ13 − τ31), 3∆h21 = ∆1 − c1τ21 + c3(τ23 − τ32)
3∆h13 = ∆3 + c2(τ12 − τ21)− c3τ13, 3∆h31 = ∆1 − c1τ31 + c2(τ32 − τ23)
3∆h23 = ∆3 + c1(τ21 − τ12)− c3τ23, 3∆h32 = ∆2 + c1(τ31 − τ13)− c2τ32

Note that it is easily seen by examining the diagonal elements that hii > 0
for all i, as established in general in (29). The non-negativity of hjj − hij
for all i 6= j leads (using (22)) to the following expression for the mean first
passage time matrix (see also [6]):

M =



∆
∆1

τ12

∆2

τ13

∆3

τ21

∆1

∆
∆2

τ23

∆3

τ31

∆1

τ32

∆2

∆
∆3

 .

The expected “time to mixing” is given (see [6]), as K = 1 + (τ/∆).
In [6] it was shown that for all three-state irreducible Markov chains, K ≥

2 (with K = 2 achieved in “the minimal period 3” case when p2 = q3 = r1).
We now explore some possible relationships alluded to in the two-state

case.
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Under the imposition of column totals with c1 +c2 +c3 = 3, we can reduce
the free parameters to p2, p3, q1, q3, c1 and c2 by taking r1 = c1 − 1 + p2 +
p3 − q1, r2 = c2 − 1− p2 + q1 + q3.

Let α1 ≡ q1 + q3 − p2, α2 ≡ p2 + p3 − q1, then

π1 ≤ π2 ⇐⇒ m22 ≤ m11 ⇐⇒ ∆1 ≤ ∆2

⇐⇒ q3r1 + q1r2 + q1r1 ≤ r1p2 + r2p3 + r2p2

⇐⇒ r1α1 ≤ r2α2, c1 ≤ c2 ⇐⇒ 2q1 + q3 + r1 ≤ 2p2 + p3 + r2

⇐⇒ r1 + α1 ≤ r2 + α2.

Unfortunately we cannot deduce universal, if and only if, inequalities con-
necting c1 ≤ c2 with π1 ≤ π2. The following table gives parameter regions
where the stated inequalities occur, in the case where r1 > 0.

c1 ≤ c2 c1 ≥ c2
π1 ≤ π2 α1 ≤ min

((
r2
r1

)
α2, r2 − r1 + α2

)
r2 − r1 + α2 ≤ α1 ≤

(
r2
r1

)
α2

π1 ≥ π2

(
r2
r1

)
α2 ≤ α1 ≤ r2 − r1 + α2 α1 ≥ max

((
r2
r1

)
α2, r2 − r1 + α2

)
r1 + α1 ≤ r2 + α2 r2 + α2 ≤ r1 + α1

When r1 = 0 we require for irreducibility that ∆1 = q1r2 > 0 implying
r2 > 0 and q1 > 0. Further, we require ∆2 = (p2 + p3)r2 > 0 so that
(p2 + p3) > 0. Note also that we require ∆3 ≡ (p2 + p3)q3 + p3q1 > 0 so that
either q3 > 0 and/or p3 > 0. Now α1 ≡ q1 + q3− p2, α2 ≡ p2 + p3− q1. Thus
0 ≤ α2 ⇐⇒ q1 ≤ p2 + p3 and α1 ≤ r2 + α2 ⇐⇒ 2q1 + q3 ≤ r2 + 2p2 + p3.

c1 ≤ c2 c1 ≥ c2
π1 ≤ π2 α1 ≤ r2 + α2, 0 ≤ α2 r2 + α2 ≤ α1, 0 ≤ α2

π1 ≥ π2 α1 ≤ r2 + α2, α2 ≤ 0 r2 + α2 ≤ α1, α2 ≤ 0
α1 ≤ r2 + α2 r2 + α2 ≤ α1

In terms of relationships between the m�1 and m�2 we do not have any
inequalities expressed in terms of the column sums, but in terms of the
stationary probabilities:

m�2 ≤ m�1 ⇐⇒ ∆1 (∆ + τ12 + τ32) ≤ ∆2 (∆ + τ21 + τ31)
⇐⇒ ∆ (∆1 −∆2) ≤ ∆2 (τ21 + τ31)−∆1 (τ12 + τ32)
⇐⇒ ∆1 −∆2 ≤ π2 (τ21 + τ31)− π1 (τ12 + τ32) .

It is possible that these inequalities are related to inequalities involving the
diagonal elements of theH matrix, as below, but no obvious universal bounds
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appear:

h11 ≤ h22 ⇐⇒ ∆1 + c2τ21 + c3τ31 ≤ ∆2 + c1τ12 + c3τ32

⇐⇒ ∆1 −∆2 ≤ c1τ12 − c2τ21 + c3(τ32 − τ31).

Example 3 (Five state Markov chain). We consider the following irre-
ducible five state Markov chain example taken from Kemeny and Snell [10]
(p. 199) with transition matrix given by

0.831 0.033 0.013 0.028 0.095
0.046 0.788 0.016 0.038 0.112
0.038 0.034 0.785 0.036 0.107
0.054 0.045 0.017 0.728 0.156
0.082 0.065 0.023 0.071 0.759

 .
The column sum vector for this transition matrix is given by (1.051, 0.965,

0.854, 0.901, 1.229). Let us rearrange the states in the order {5, 1, 2, 4, 3} so
that the column sums are ordered as cT = (c1, c2, c3, c4, c5) with c1 ≥ c2 ≥
c3 ≥ c4 ≥ c5 so that cT = (1.229, 1.051, 0.965, 0.910, 0.854). The transition
matrix for this particular Markov chain is then represented as

P =


0.759 0.082 0.065 0.071 0.023
0.095 0.831 0.033 0.028 0.013
0.112 0.046 0.788 0.038 0.016
0.156 0.054 0.045 0.728 0.017
0.107 0.038 0.034 0.036 0.785

 .
Henceforth, we consider the properties of the chain with this reordered state
space relabelled as states {1, 2, 3, 4, 5}.

The stationary probability vector is given by πT = (0.3216, 0.2705, 0.1842,
0.1476, 0.0761) implying that π1 ≥ π2 ≥ π3 ≥ π4 ≥ π5. Thus the stationary
probabilities appear as in the same order as in the vector of column sums.
This is not the result that we necessarily expected.

H =


2.1984 −0.5537 −0.4911 −0.3007 −0.6530
−0.8883 3.5691 −0.9174 −0.7613 −0.8021
−0.6457 −1.0375 3.2047 −0.5873 −0.7342
−0.2485 −0.8505 −0.6652 2.6746 −0.7104
−0.7023 −1.2092 −0.8680 −0.6157 3.5952

 .
ThisH matrix has the property that all the diagonal elements are positive (as
expected by result (28)). The off-diagonal terms are all negative, although
this is not an expected result in general (see the eight state example to
follow). Each row sum is 0.200, consistent with (2) in Theorem 1 and the co-
lumn sums are given as hTcolsum = (−0.2863,−0.0818, 0.2631, 0.4096, 0.6955),
also ordered according to the order in cT .
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The mean first passage time matrix is given by

M =


3.1097 15.2435 20.0601 20.1581 55.7987
9.5987 3.6974 22.3742 23.2789 57.7567
8.8444 17.0326 5.4278 22.1001 56.8645
7.6091 16.3412 21.0051 6.7752 56.5528
9.0204 17.6672 22.1062 22.2926 13.1345

 .

There is no ordered relationship within the row sums with (m1�,m2�,m3�,
m4�,m5�) = (114.3702, 116.7059, 110.2695, 108.2834, 84.2210) but the vec-
tor of column sums is (m�1,m�2,m�3,m�4,m�5) = (38.1824, 69.9820, 90.9734,
94.6048, 240.1074), all with ci ≥ cj implying for mi� ≤ mj� for i ≤ j. We have
not been able to establish any general results of such a nature for general
finite Markov chains. Kemeny’s constant for this chain is 16.042.

This example poses some unexpected inequalities that are not true in
general, as seen in the following example.

Example 4 (Eight state Markov chain). Funderlic and Meyer ([1]) pro-
vide an example involving the analysis of radiophosphorous kinetics in an
aquarium system. This leads to a Markov chain with eight states. The
states have been reordered so that the transition matrix has column sums
with ci > cj for each state i < j.

P =



0.478 0.270 0 0 0.150 0 0.055 0.047
0.130 0.870 0 0 0 0 0 0
0.320 0 0.669 0.011 0 0 0 0
0.088 0 0 0.912 0 0 0 0
0.150 0 0 0 0.740 0.110 0 0
0.300 0 0 0.011 0 0.689 0 0
0.260 0 0 0 0 0 0.740 0
0.600 0 0.400 0 0 0 0 0


,

with column sum vector

cT = (2.326, 1.140, 1.069, 0.934, 0.890, 0.799, 0.795, 0.047) ,

and stationary probability vector

πT = (0.2378, 0.4938, 0.0135, 0.0078, 0.1372, 0.0485, 0.0503, 0.0112) .

In this example the ordering of the stationary probabilities does not follow
that of the column sums with, for example, π1 < π2 even though c1 > c2.
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The H matrix is given by

1.0361 1.0557 −0.3520 −1.4033 0.1698 −0.2611 −0.1630 0.0428
−0.792 4.9494 −0.4558 −1.4630 −0.8853 −0.6343 −0.5499 −0.043
0.228 −0.623 2.623 −1.052 −0.296 −0.426 −0.334 0.005
−1.666 −4.556 −0.505 9.872 −1.389 −0.812 −0.735 −0.084
−0.242 −1.599 −0.425 −1.275 3.279 0.839 −0.434 −0.017
0.176 −0.731 −0.401 −1.029 −0.326 2.779 −0.345 0.002
0.122 −0.844 −0.404 −1.433 −0.358 −0.448 3.490 −0.000
0.475 −0.110 0.825 −1.271 −0.154 −0.376 −0.282 1.017


.

The row sums of H are all the same at the value 0.125 ( =1/8, consistent
with (2)). The column sums do not exhibit any pattern except through
the relationship given by Theorem 2(b). The non-negativity of the diagonal
elements hjj is consistent with (29) but the variation of the signs associated
with the off-diagonal elements bears no discernible pattern.

The mean first passage time matrix M is given by

M =



4.21 7.88 220.32 1454.40 22.66 62.66 72.62 87.13
7.69 2.03 228.01 1462.09 30.35 70.35 80.32 94.82
3.40 11.28 74.05 1409.09 26.06 66.06 76.02 90.53
11.36 19.25 231.68 128.99 34.03 74.02 83.99 98.49
5.38 13.26 225.69 1437.84 7.29 39.99 78.00 92.50
3.62 11.50 223.93 1406.17 26.23 20.61 76.24 90.74
3.85 11.73 224.16 1458.24 26.51 66.50 19.88 90.97
2.36 10.24 133.19 1437.27 25.02 65.02 74.98 89.49


.

As in the previous example there is no ordered relationship within the row
sums of the mean first passage times, nor within the column sums. Kemeny’s
constant for this chain is 29.9194.

8. Summary

By introducing the matrix H = [hij ] =
[
I − P + ecT

]−1 where cT is
the row vector of column sums of the transition matrix P , the stationary
probability of being in state j can be expressed in terms of the elements
of H and cT as πj =

∑m
i=1 cihij for all j = 1, 2, ...,m. It is also shown

that H can be expressed in terms of Z, Kemeny and Snell’s fundamental
matrix, thereby comparing the properties of the two matrices. The mean
first passage times can also be expressed in terms of the elements of H and cT

as mii = 1
/∑m

i=1 cihij and mij = (hjj − hij)
/

(
∑m

i=1 cihij) for i 6= j. Some
new relationship connecting the {ci} and mij were derived; in particular

πj = cj
/(

m−
m∑
i=1

mij +
m∑
i=1

cimij

)
= 1
/m−∑

i 6=j
mij +

∑
i 6=j

cimij

 .
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Inter-relationships between these aforementioned quantities were explored,
including Kemeny’s constant. Some general inequalities, based upon knowl-
edge of the {ci} were explored and a variety of examples considered. Uni-
versal relationships were not achieved but some useful relationships were
explored leaving some unanswered questions with scope for further investi-
gations.
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