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On estimation of loss distributions

and risk measures

Meelis Käärik and Anastassia Žegulova

Abstract. The estimation of certain loss distribution and analyzing its
properties is a key issue in several finance mathematical and actuarial
applications. It is common to apply the tools of extreme value theory
and generalized Pareto distribution in problems related to heavy-tailed
data.

Our main goal is to study third party liability claims data obtained
from Estonian Traffic Insurance Fund (ETIF). The data is quite typical
for insurance claims containing very many observations and being heavy-
tailed. In our approach the fitting consists of two parts: for main part of
the distribution we use lognormal fit (which was the most suitable based
on our previous studies) and a generalized Pareto distribution is used
for the tail. Main emphasis of the fitting techniques is on the proper
threshold selection. We seek for stability of parameter estimates and
study the behaviour of risk measures at a wide range of thresholds. Two
related lemmas will be proved.

1. Introduction

The estimation of loss distributions has several practical and theoretical
aspects, first of them being the choice of theoretical candidate distributions.
There are few intuitive choices like lognormal, gamma, log-gamma, Weibull
and Pareto distributions, but it is not rare that mentioned distributions do
not fit very well. This work is a follow-up to our preliminary research (Käärik
and Umbleja, 2010, 2011) where we established that lognormal distribution
had best fit among the candidates. But the lognormal assumption is too
strong and the tail behaviour needs to be revisited. Therefore, we focus
on a model where the main part of the data follows a (truncated) lognormal
distribution and the tail is fitted by generalized Pareto distribion (for brevity,
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the term composite lognormal/generalized Pareto distribution is also used).
The choice of generalized Pareto distribution for tail fit is based on a well-
known result from extreme values theory, the Pickands–Balkema–de Haan’s
theorem, which states that for a reasonably large class of distributions the
conditional distribution of values exceeding certain threshold is close to a
generalized Pareto distribution. The idea of using certain composite model
is not new, there are several studies conducted in this field (see, e.g., Cooray
and Ananda, 2005; Cooray, 2009; Pigeon and Denuit, 2010, Rooks, et al.,
2010; Scollnik, 2007; Teodorescu and Vernic, 2009).

Our first task is to recall the relevant results from the theory of extreme
values, certain properties of generalized Pareto distribution and the most
common threshold selection methods. We will also provide an alternative
threshold selection method, which is based on the risk measures, and there-
fore should be especially suitable for insurance data.

2. Preliminaries

In this section, we give a short overview about the required tools from the
theory of extreme values. We refer to Beirlant et al. (2004), Coles (2001),
Embrechts et al. (1997), McNeil et al. (2005) and McNeil (1999) for the
results in the following subsections unless specifically stated otherwise.

2.1. Extreme value theory.

2.1.1. Generalized Pareto distribution.

Definition 2.1 (Generalized Pareto distribution). Let us have a nonneg-
ative random variable X with distribution function G. X is said to follow
generalized Pareto distribution, X ∼ GPD(σ, ξ) if

G(y) = 1 −

(
1 +

ξy

σ

)− 1

ξ

, y > 0,

where σ is a scale parameter and ξ is a shape parameter.

The shape parameter ξ determines the upper bound of the distribution: if
ξ < 0 then upper bound exists and is equal to u − σ

ξ
, if ξ > 0 then there is

no upper bound. In case ξ = 0 there is also no upper bound, but it can be
seen easily that the limit of the distribution function is G(y) = 1− exp(− y

σ
),

y > 0, i.e., the distribution function of an exponential distribution.
The expectation of the generalized Pareto distribution is given by

E(X) =

{
σ

1−ξ
if ξ < 1,

∞ if ξ ≥ 1.
(2.1)

The next definition is also required to build up the framework.
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Definition 2.2 (Conditional tail distribution). Let us have a nonnegative
random variable X with distribution function F . Then for each threshold u
the corresponding conditional tail distribution is defined by

Fu(y) = P{X − u ≤ y|X > u} =
F (y + u) − F (u)

1 − F (u)
, (2.2)

with 0 ≤ y < x0, where x0 ≤ ∞.

A useful property of generalized Pareto distribution is that for any thresh-
olds u and u0, u > u0, the conditional tail distribution F (u) for a generalized
Pareto distribution can be calculated as

Fu(y) = 1 −

(
1 +

ξu0
y

σu0
+ ξu0

u

)− 1

ξu0

. (2.3)

The outcome is again a generalized Pareto distribution with parameters
ξu0

and σu = σu0
+ ξu0

u, which means that the shape parameter does not
depend on the threshold u and the scale parameter depends linearly from
threshold u. This result is useful for finding a suitable threshold point later
on.

2.1.2. Pickands–Balkema–de Haan’s theorem. Our main motivation to use a
generalized Pareto distribution for fitting the tail is explained by the following
theorem.

Theorem 2.1 (Pickands–Balkema–de Haan). For a sufficiently large class
of distributions there exists a function σ(u) such that the following equation

lim
u→x0

sup
0≤y<x0−u

|Fu(y) − Gξ,σ(u)(y)| = 0

holds.

The exact class of distributions on which this theorem can be applied is
not of interest, but it is important to note that most distributions used in
actuarial models belong to this class (see, e.g., McNeil, 1999, Embrechts et
al., 1997).

An important step from practical perspective is the estimation of the pa-
rameters of the distribution, which can be done, e.g., using the method of
maximum likelihood. As it is not possible to maximize the likelihood ana-
lytically, various numerical methods can be applied.
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2.2. Composite models.

2.2.1. Composite lognormal/Pareto distribution. In our article, the main
emphasis is on combining lognormal and generalized Pareto distribution. A
particularly interesting research in this area is done by Cooray and Ananda
(2005), who combined lognormal and Pareto distributions with certain differ-
entiability and continuity restrictions at the threshold point. We now briefly
recall this setup and reveal its main strengths and weaknesses.

Let X be a random variable with the probability density function

f(x)=

{
cf1(x) if 0 < x ≤ θ,

cf2(x) if θ ≤ x < ∞,

where c is the normalizing constant, f1(x) has the form of the two-parameter
lognormal density, and the f2(x) has the form of the two-parameter Pareto
density, i.e.

f1(x) =
(2π)−

1

2

xσ
exp

[
−

1

2

(
ln x − µ

σ

)2
]

, x > 0,

f2(x) =
αθ2

xα+1
, x ≥ θ,

where θ > 0, µ ∈ R, σ > 0 and α > 0 are unknown parameters. Thus we
can say X follows a four-parameter composite lognormal/Pareto distribution,
X ∼ LNP (θ, µ, σ, α). Also, to get a smooth probability density function, the
following continuity and differentiability conditions need to be fulfilled:

f1(θ) = f2(θ), f
′

1(θ) = f
′

2(θ). (2.4)

Conditions (2.4) imply that ln θ−µ = ασ2 and exp(−α2σ2) = 2πα2σ2. This
leads to ∫ θ

0
f1(x)dx = Φ(ασ) and c =

1

1 + Φ(ασ)
,

finally resulting that ασ and c are constants. Thus ασ and c do not depend
on the values of the parameters, ασ ≈ 0.372 and c ≈ 0.608. See Cooray and
Ananda (2005) for more details.

The importance of the result is that it allows to reparametrize the distri-
bution and reduce the number of parameters from four to two. But it also
fixes the proportions of lognormal and Pareto parts (approximately 0.392
and 0.608, respectively) regardless of the values of the mixture parameters.
This simplification makes the construction very appealing in case the fixed
proportions are realistic for given problem. The downside is that this cannot
be always assured (in our example in Section 4 all thresholds of interest were
greater than the 0.9-quantile of the lognormal distribution), and either regu-
lar lognormal or Pareto distribution or a mixture with different proportions
can yield better results. The shortcomings and possible extensions of this
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approach are addressed in (Scollnik, 2007) and (Pigeon and Denuit, 2010).
As the threshold of this model does not suit our data, we focus on a different
model, specified in the following subsection.

2.2.2. Composite lognormal/generalized Pareto distribution. Our research is
motivated by the Pickands–Balkema–de Haan’s theorem and thus we choose
the model where the main part of the distribution is lognormal and after
certain threshold u it is truncated and tail is substituted with generalized
Pareto distribution, resulting in certain composite lognormal/generalized
Pareto model.

By Theorem 2.1, the conditional tail distribution Fu has the following
form:

Fu(y) = Gξ,σ(u)(y),

where σ(u) = σ + ξu. Defining x := u + y and using the last result together
with (2.2) implies

Fu(x − u) =
F (x) − F (u)

1 − F (u)
= Gξ,σ(u)(x − u),

which leads us to

F (x) = (1−F (u))Gξ,σ(u)(x− u) + F (u) = 1− (1−F (u))

(
1 + ξ

x − u

σ(u)

)−
1

ξ

,

(2.5)
where x > u.

Note that this is a general result, there are no additional assumptions made
for the main part distribution (i.e., for the value of F (u)). If we assume now
that up to threshold u the distribution is lognormal, say, with parameters µl

and σl, then formula (2.5) modifies to

F (x) = 1 −

(
1 − Φ

(
ln u − µl

σl

))(
1 + ξ

x − u

σ + ξu

)− 1

ξ

. (2.6)

We denote the corresponding distribution by LNGP (u, µl, σl, ξ, σ), i.e.,
if a random variable X has distribution function (2.6), we write
X ∼ LNGP (u, µl, σl, ξ, σ).

2.3. Threshold selection techniques. Since we only want to fit the (con-
ditional) tail by generalized Pareto distribution, the most important thing is
to choose the right threshold, for our particular case data below threshold is
fitted by a lognormal distribution.

Also, although all the techniques rely on mathematical tools, there is al-
ways a subjectivity factor involved. Therefore, we test different methods and
choose threshold which seems acceptable by all methods. More details can
be found, e.g., in Coles (2001), Čižek et al. (2005) and Ribatet (2006).
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2.3.1. Mean excess function. In this section, we recall the definition of mean
excess function and provide some of its relevant basic properties.

Definition 2.3. For any random variable X, the mean excess function
e(x) is defined by

e(x) = E(X − x|X > x).

If we apply this result to the generalized Pareto distribution, then by
equation (2.1) we can write the conditional expectation of values exceeding
threshold u0 as

e(u0) = E(X − u0|X > u0) =
σu0

1 − ξ
,

where ξ < 1 and σu0
is a scale parameter corresponding to values exceeding

threshold u0. The last result together with equation (2.3) yields that for all
u > u0 we have

e(u) =
σu

1 − ξ
=

σu0
+ ξu

1 − ξ
. (2.7)

This means the mean excess function of a GPD-distributed random variable
is linear. Similarly, the empirical mean excess function is calculated as

en(u) =
1

nu

nu∑

i=1

(x(i) − u),

where x(1), . . . , x(nu) are the nu observations exceeding u. The threshold
selection based on empirical mean excess function consists in analyzing the
empirical function en(u) and determining the value u0 starting from which
this function stays linear.

2.3.2. Threshold choice plot. From formula (2.3), we know that if the values
exceeding threshold u0 follow a generalized Pareto distribution, then the same
holds for any higher thresholds u, u > u0. Moreover, the shape parameters
are equal for all u and the scale parameter is a linear function of u. By
a simple reparametrization of the scale parameter we obtain the so-called
modified scale parameter:

σ∗ = σu − ξu,

which does not depend on threshold u anymore. In summary, we have
reparametrized the distribution in such way that for all thresholds u > u0 the
parameters of the distributions remain constant, providing us another tool
for selecting a proper threshold. In threshold choice plot the maximum like-
lihood estimates for the shape parameter ξ and the modified scale parameter
σ∗ are plotted against the thresholds.

In practical situations, we cannot expect that the fitted parameters remain
constant, because they are estimated from a sample. Nevertheless, we could
also estimate the corresponding confidence intervals and choose the threshold
from where the confidence intervals remain constants (or close to constants).
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3. Risk measures: value at risk and expected shortfall

3.1. Definitions. Since we are only dealing with continuous and strictly
increasing distributions there exists an inverse F−1 of distribution function
F . So, the value at risk can be simply defined as q-quantile of corresponding
distribution as follows (see, e.g., Artzner et al., 1999; Kaas et al., 2008).

Definition 3.1. Value at risk (VaR) for random variable X (with con-
tinuous and strictly increasing distribution function F ) at given confidence
level q ∈ (0, 1) is defined as

V aR(q) = F−1(q). (3.8)

Definition 3.2 (Expected shortfall). Let us have a random variable X
with distribution function F and with E(|X|) < ∞. The expected shorfall
of X at confidence level q ∈ (0, 1) is defined as

ES(q) =
1

1 − q

∫ 1

q

F−1(l)dl.

We can also derive a simple but useful formula describing the connection
between expected shortfall and value at risk:

ES(q) = E(X|X > V aR(q)) (3.9)

or, equivalently,

ES(q) = V aR(q) + E(X − V aR(q)|X > V aR(q)) = V aR(q) + e(V aR(q)).
(3.10)

If a theoretical distribution fits the data, then the values of risk measures
based on empirical and theoretical distributions should be close as well. This
argumentation motivates us to formulate another method for threshold se-
lection: if the values of risk measures for the theoretical distribution (in our
example lognormal) at some point are too different from the corresponding
values from data, then this point should be chosen as threshold, and the tail
part will be substituted with generalized Pareto distribution.

More formally, from our data (or corresponding empirical distribution) we
can always find estimates for value at risk and expected shortfall (denote
them by V̂ aRemp and ÊSemp) for any confidence level q and compare these
values with corresponding values of proposed theoretical distributions V̂ aRth

and ÊSth. From the insurance perspective, the theoretical values should not
be too optimistic compared to the empirical ones.

In the following subsections we study more closely the calculation of V aR
and ES with distributions of our special interest: lognormal distribution and
composite lognormal/generalized Pareto distribution.
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3.2. Estimation for lognormal distribution. Suppose now that X is a
lognormally distributed random variable and study the behaviour of V aR
and ES in this case.

Lemma 3.1. Value at risk and expected shortfall for a lognormally dis-
tributed random variable X ∼ LN(µl, σl) have the following forms:

V aR(q) = exp(µl + σlΦ
−1(q)) (3.11)

and

ES(q) =
eµl+

σ2

l
2

1 − q
(1 − Φ(Φ−1(q) − σl)), (3.12)

where Φ−1(q) is the q-quantile of the standard normal distribution

Proof. The results follow from the definition of lognormal distribution and
from the fact that lognormal distribution is strictly increasing, which allows
us to use formula (3.8) to calculate the value at risk. The calculation of
expected shortfall is straightforward using formula (3.9). Details are omitted.

3.3. Estimation for composite lognormal/generalized Pareto dis-
tribution. Now, we turn our attention to the composite model defined in
(2.5) and, more precisely, to the composite lognormal/generalized Pareto dis-
tribution. Let us note that the calculation of F (x) in (2.5) requires besides
estimating the parameters ξ and σ of generalized Pareto distribution also
the estimation of F (u). There are two main approaches for the estimation
of F (u). Empirical method uses empirical estimate (n − Nu)/n, where n is
the number of observations and Nu is the number of observations exceeding
threshold u. The other idea is to use the value of proposed theoretical dis-
tribution (in our case lognormal, which gives us the LNGP -model) at u as
estimate.

Substituting ξ and σ with estimates ξ̂ and σ̂ and also x = V̂ aR(q) and
F̂ (x) = q into equation (2.5) we get the following formulas for estimating the
value at risk:

a) the semi-parametric estimate using the empirical method (also called
historical simulation method) (see, e.g., McNeil, 1999)

V̂ aR(q) = u +
σ̂

ξ̂

((
n

Nu
(1 − q)

)−ξ̂

− 1

)
; (3.13)

b) the parametric estimate with the value of F (u) from proposed theo-
retical distribution

V̂ aR(q) = u +
σ̂

ξ̂

((
1 − q

1 − F (u)

)−ξ̂

− 1

)
. (3.14)
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In case of our special interest, i.e., if the observable variable follows LNGP -
distribution, the proposed theoretical distribution in (3.14) is lognormal.
Thus the value of F (u) in Equation (3.14) is calculated as F (u) = Φ( ln u−µ̂l

σ̂l
),

where µ̂l and σ̂l are the (maximum likelihood) estimates for parameters of
the fitted lognormal distribution.

By construction of the composite distribution, equations (3.13) and (3.14)
hold only for q > F (u). When q ≤ F (u), the estimate of V aR(q) equals to
the q-quantile of non-truncated distribution, calculated by (3.11).

Let us now find the formula for expected shortfall, assuming that after
certain threshold the tail follows generalized Pareto distribution. Then, from
Theorem 2.1 and formula (2.3), it follows that

(X − V aR(q)|X > V aR(q)) ∼ GPD(ξ, σ + ξ(V aR(q) − u)).

Now assuming ξ < 1, we apply the result about the expectation of gener-
alized Pareto distribution (2.1) to formula (3.10). We get

ES(q) = V aR(q) + E(X − V aR(q)|X > V aR(q))

= V aR(q) +
σ + ξ(V aR(q) − u)

1 − ξ
=

V aR(q)

1 − ξ
+

σ − ξu

1 − ξ
(3.15)

and similarly for the estimates

ÊS(q) =
V̂ aR(q)

1 − ξ̂
+

σ̂ − ξ̂u

1 − ξ̂
, (3.16)

where ξ̂, σ̂ and V̂ aR(q) are estimates for GPD parameters and for the value
at risk, respectively (see also McNeil, 1999). Depending on the calculation
of V̂ aR(q) (see formulas (3.13) and (3.14)), formula (3.16) may give us para-
metric or semi-parametric estimate for ES(q).

Similarly to the formulas for value at risk, the formulas (3.15) and (3.16)
only hold for q > F (u). When q ≤ F (u), the estimate of V aR(q) equals to
the q-quantile of lognormal distribution, the calculation of expected shortfall
is addressed in the next section.

3.4. Expected shortfall for composite lognormal/generalized Pareto
distribution when q ≤ F (u). As already mentioned, by the construction of
the composite distribution, the general formulas for expected shortfall (3.15)
and (3.16) are only applicable for q > F (u). On the other hand, in many
situations it is important to know the value of expected shortfall for lower
confidence levels as well. Let us study this situation more thoroughly.

Lemma 3.2. Consider the composite lognormal/generalized Pareto distri-
bution (up to threshold u it is lognormal, and conditionally generalized Pareto
after). Let µl and σl be the parameters of the lognormal distribution and let
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ξ and σu be the parameters for generalized Pareto distribution. Then the
corresponding expected shortfall ES(q) for q ≤ F (u) can be calculated as

ES(q) =
1

1 − q

(
eµl+

σ2

l
2

(
Φ

(
ln u − µl − σ2

l

σl

)
(3.17)

−Φ

(
ln(V aR(q)) − µl − σ2

l

σl

)))

+
1

1 − q

((
1 − Φ

(
ln u − µl

σl

))(
u +

σu

1 − ξ

))
. (3.18)

Proof. By construction, the expected shortfall can be written as

ES(q) =
1

P{X > V aR(q)}

(∫ u

V aR(q)
xfl(x)dx + P{X ≥ u}E(X|X ≥ u)

)
,

where fl(·) is the probability density function of lognormal distribution, i.e.
fl(x) = 1

x
φ( ln x−µl

σl
) with φ(·) being the standard normal probability density

function.
Now the first (integral) term can be simplified using the properties of

lognormal distribution together with equation (3.12) and to the second term
we can apply formula (2.7). This implies (3.17), the lemma is proved. �

A result similar to (3.17) can be obtained for the estimate ÊS(q) as well,
one can simply substitute the estimates for parameter values and V aR(q) into
(3.17). As for value at risk, it is also possible to use the empirical estimator
of the value at risk when estimating the expected shortfall. In that case

ÊS(q) =
1

P{X > V̂ aR(q)}

(
P{V̂ aR(q) < X < u}x̄∗

+P{X ≥ u}E(X|X ≥ u)) ,

where x̄∗ is the arithmetic mean over the sample values which are greater
than V̂ aR(q) but less than u. The weight probabilities can be found from

P{V̂ aR(q) < X < u} =
#{x|V̂ aR(q) < x < u}

n
=: w1

and

P{X ≥ u} =
#{x|x ≥ u}

n
=: w2,

resulting in the following final formula for estimation of expected shortfall
(with F (u) estimated by empirical method):

ÊS(q) =
1

1 − q

(
w1 · x̄∗ + w2

(
u +

σ̂u

1 − ξ̂

))
. (3.19)
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4. Case study: Estonian traffic insurance

4.1. Description of data. The data is provided by Estonian Traffic In-
surance Fund (ETIF) and contains Estonian third party liability insurance
claims from 01.07.06 - 30.06.07. There are 39 306 claims in total, with aver-
age claim being 22 450 EEK (Estonian kroons) and most frequent claims are
between 5000 and 15 000 EEK. Short summary of characteristics for claim
severity is provided in Table 1.

Min. 1st Quartile Median Mean 3rd Quartile Max.
80 6 725 11 800 22 450 22 090 5 258 000

Table 1. Descriptive statistics for claim severity (in EEK)

There are also 8 different types of vehicles, with cars being prevalent
(77.1%), followed by small trucks, trucks, buses, etc.

4.2. Results. According to our preliminary research (Käärik and Umbleja,
2011), where several classical distributions (Weibull, gamma, beta, lognor-
mal, Pareto) were used to fit the given data, lognormal distribution with
parameters µl = 9.4 and σl = 1.1 had the best fit. It is important to re-
member that nevertheless both Kolmogorov-Smirnov and χ2-test rejected all
distributions and the tail behaviour was clearly too optimistic.
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Figure 1. Probability plot for lognormal distribution

On Figure 1, we observe that the q-quantile of the fitted lognormal distri-
bution underestimates the observed one, starting from q ≥ 0.99.

The problem of data having a heavy tail is actually quite widespread prob-
lem in insurance field and thus one of the main motivators of this study was
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to modify the tail estimate and to obtain a more conservative results. We
will use the composite lognormal/generalized Pareto model described before,
and search for a proper threshold that divides the main and tail part of the
data. This will be done by applying the results and methods from Sections
2 and 3 to given data.
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Figure 2. Empirical mean excess function

Based on the behaviour of the empirical mean excess function (Figure
2) and the parameter estimates (Figure 3), a suitable threshold would be
u = 500 000, while the quantile fitting of risk measures (by formulas (3.13)–
(3.19)) also proposes 0.98-quantile u∗ = 121 729 as a possible candidate.

q 0.8 0.9 0.95 0.98 0.99 0.999
V̂ aRemp(q) 26 847 42 975 68 607 121 730 180 959 606 138
V̂ aRLN (q) 29 694 47 452 69 810 107 870 144 175 325 047

V̂ aR
121 729

LN (q) 29 694 47 452 69 810 107 870 182 165 643 763

Table 2. VaRs for candidate distributions on different con-
fidence levels q

The relevant values for value at risk and expected shortfall are given in

the Tables 2 and 3, where V̂ aRemp, V̂ aRLN and V̂ aR
121 729

LN denote VaR of
empirical distribution, VaR of lognormal distribution and VaR of LNGP -
distribution with threshold 121 729, respectively. Wa also note that the
value at risk for composite LNGP -distribution with threshold 500 000 is not
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Figure 3. Maximum likelihood estimates for parameterers
of generalized Pareto distribution

present in the Table 2 as it equals to V̂ aRLN (q) for all values of q (since
the threshold 500 000 exceeds all quantiles of lognormal distribution given
in Table 2).

The notation for expected shortfall is similar, with ÊS
500 000

emp being ex-
pected shortfall for distribution with empirical estimate for main part and
conditional generalized Pareto tail from threshold 500 000.

q 0.8 0.9 0.95 0.98 0.99 0.999
ÊSemp(q) 69 600 105 564 158 195 261 627 375 106 1 215 392
ÊSLN (q) 62 810 88 492 119 939 172 172 220 982 456 734

ÊS
500 000

emp (q) 67 335 101 124 149 136 238 997 329 903 1 417 023

ÊS
121 729

LN (q) 76 409 115 627 174 335 308 161 379 574 973 689

Table 3. Expected shortfalls for candidate distributions on
different confidence levels q

It can be seen that the best performing distribution overall is the LNGP -
distribution with threshold 121 729, but for especially conservative results on
high quantiles, the estimates with threshold 500 000 and empirical method
may be useful.
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Most of the calculations are done using R statistical software (R Devel-
opment Core Team, 2012) package actuar (Dutang et al., 2008), figures are
created with R statistical software package POT (Ribatet, 2006).

4.3. Conclusions. The following findings can be pointed out. The pro-
posed idea of threshold selection using the values of risk measures provides
valuable information from a different viewpoint than the classical methods.
The difference between proposed candidate thresholds is large, confirming
the fact that the threshold selection is still a very subjective task. The
best candidate distribution for a given data set is the composite lognor-
mal/generalized Pareto distribution LNGP (121 729, 9.4, 1.1, 0.22, 1.4 · 105),
i.e., a lognormal distribution with parameters µl = 9.4 and σl = 1.1 for the
main part and generalized Pareto with parameters σ = 1.4 ·105 and ξ = 0.22
for the (conditional) tail part, with threshold u∗ = 121 729 dividing the
main and tail parts. For especially conservative estimates for high quantiles
(q ≥ 0.999) one can use the estimates obtained by empirical method with
threshold u = 500 000.
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