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On the reliability of errors-in-variables models

Burkhard Schaffrin and Sibel Uzun

Abstract. Reliability has been quantified in a simple Gauss–Markov
model (GMM) by Baarda (1968) for the application to geodetic net-
works as the potential to detect outliers –with a specified significance
and power – by testing the least-squares residuals for their zero expecta-
tion property after an adjustment assuming “no outliers”. It was shown
that, under homoscedastic conditions, the so-called “redundancy num-
bers” could very well serve as indicators for the “local reliability” of an
(individual) observation. In contrast, the maximum effect of any un-
detectible outlier on the estimated parameters would indicate “global
reliability”.

This concept had been extended successfully to the case of corre-
lated observations by Schaffrin (1997) quite a while ago. However, no
attempt has been made so far to extend Baarda’s results to the (ho-
moscedastic) errors-in-variables (EIV) model for which Golub and van
Loan (1980) had found their – now famous – algorithm to generate the
total least-squares (TLS) solution, together with all the residuals. More
recently, this algorithm has been generalized by Schaffrin and Wieser
(2008) to the case where a truly – not just elementwise –weighted TLS
solution can be computed when the covariance matrix has the structure
of a Kronecker–Zehfuss product.

Here, an attempt will be made to define reliability measures within
such an EIV-model, in analogy to Baarda’s original approach.

Introduction

In geodetic science, since Baarda’s (1968) seminal report, reliability anal-
ysis in the frame work of a Gauss–Markov model is firmly based on

• the potential to detect outliers in any given observation (“inner reli-
ability”), and
• the maximum effect of any undetected outlier on the estimated pa-
rameter vector (“outer reliability”).
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Originally formulated for uncorrelated observations only, Baarda’s con-
cept has been generalized since by Schaffrin (1997) to also cover the case of
correlated observations.

The case of an EIV-model with outliers, however, has only recently at-
tracted some attention when Schaffrin (2011) analyzed this situation for al-
gorithms used in mobile mapping applications. In particular, hypothesis tests
were developed to detect outliers in the elements of the coefficient matrix,
should they occur occasionally and not massively there.

After this initial step, Baarda’s quest for reliability measures in such EIV-
models may also find an answer that obviously depends on the willingness to
accept errors of the first or second kind, respectively, when making decisions
on the basis of such tests. After significance level (1 − α) and power of the
test (1−β) have been fixed, it is mainly the response answer of the residuals
to any single outlier that matters, a point stressed by Proszynski (2010)
already; see also the overview by Chatterjee and Hadi (1988) for models of
type Gauss–Markov, with regard to their sensitivity to model changes.

It is this response answer that will now be studied for EIV-models when
the covariance structure for the random errors in the coefficient matrix can
be expressed by a certain Kronecker–Zehfuss product in accordance with
Schaffrin and Wieser (2008), resulting in reliability measures for both “inner”
and “outer reliability.”

In Chapter 1, Baarda’s approach to reliability measures for Gauss–Markov
models will be reviewed both for the cases of the uncorrelated and corre-
lated observations. In Chapter 2, the weighted total-least squares solution
(WTLSS) will be presented before, in Chapter 3, an attempt will be made
to introduce reliability measures when a single outlier occurs either in the
observation vector itself or in the coefficient matrix. Finally, Chapter 4 will
provide conclusions and an outlook on further research.

1. A review of reliability analysis for Gauss–Markov models

Let us assume the following Gauss–Markov model (GMM)

y = A
n×m

ξ + e, e ∼ N (0, σ2
0Q), (1.1)

where
y denotes the n× 1 observation vector,
ξ the (unknown) m× 1 parameter vector,
A the n×m coefficient matrix with n > m = rkA,
e the (unknown) normally distributed n×1 random error vec-

tor,
σ2

0 the (unknown) variance component, and
Q = P−1 the n×n symmetric positive-definite cofactor matrix so that
P becomes the n×n symmetric positive-definite weight matrix.
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The notation (1.1) indicates that the observations are here assumed to be
unbiased and, thus, free of outliers due to the “expectation” of e being zero
E{e} = 0. Hence, the “dispersion matrix” coincides with the mean squared
error matrix of e in the sense:

MSE{e} = D{e}+ E{e} · E{e}T = D{e} = E{eeT } = σ2
0Q. (1.2)

Consequently, the least-squares solution (LESS) of ξ represents the best
linear uniformly unbiased estimate (BLUUE) of ξ, which may be obtained
from the “normal equations”

Nξ̂ = c for [N, c] := ATP [A, y] (1.3)

as
ξ̂ = N−1c ∼ N (ξ, σ2

0N
−1). (1.4)

In addition, the best linear prediction (BLIP) of the vector e results in the
“residual vector”

ẽ := y −Aξ̂ = (QẽP )y ∼ N (0, σ2
0Qẽ), (1.5a)

with

Qẽ := P−1 −AN−1AT (1.5b)

as its cofactor matrix. Moreover, the (weighted) sum of squared residuals
(SSR) can be computed via

Ω := ẽTP ẽ = yTPy − cT ξ̂ ∼ σ2
0 · χ2(n−m), (1.6a)

resulting in the best invariant quadratic uniformly unbiased estimate
(BIQUUE) of the variance component

σ̂2
0 = Ω/(n−m) ∼ (σ2

0, 2(σ2
0)2/(n−m)). (1.6b)

All the above results can be found in many textbooks on the subject matter
such as that by Rao and Toutenburg (1995), for instance.

In case of a single outlier in one of the observations, however, the model
(1.1) needs to be modified into

y = Aξ + ηjξ
(j)
0 + e, e ∼ N (0, σ2

0Q), (1.7)

where
ηj is the j-th n× 1 unit vector with rk[A, ηj ] = m+ 1, and
ξ
(j)
0 is an additional unknown parameter.

The rank condition ensures that any suspected outlier in the j-th obser-
vation will not easily be smeared over all or some of the other observations.
Obviously, for every j ∈ {1, . . . , n} there will be a different modified model
that needs to be considered, for all of which the model (1.1) can be inter-
preted as “constrained model,” with a vanishing outlier

ξ
(j)
0 = 0. (1.8)
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Later on, this constraint may serve as the null hypothesis which will be
tested against its alternative, namely that there is actually one outlier that
affects the j-th observation. The smaller the outlier that can still be detected
by such hypothesis tests, the better the (local) reliability according to Baarda
(1968). So, let us derive update formulas for all the above formulas when
such an outlier may have occurred.

First, the “extended normal equations” will read[
N ATPηj

ηT
j PA ηT

j Pηj

][
ξ̂(j)

ξ̂
(j)
0

]
=
[

c
ηT

j Py

]
, (1.9)

resulting in the updated estimate of the original parameter vector

ξ̂(j) = ξ̂ −N−1ATPηj · ξ̂(j)0 , (1.10)

where

ξ̂
(j)
0 = [ηT

j (PQẽP )ηj ]−1 · [ηT
j (PQẽP )y] (1.11a)

= ηT
j (PQẽP )ηj ]−1 · [ηT

j P ẽ] (1.11b)

denotes the estimated size of an outlier that may have affected the j-th
observation (and only this one). It will be an unbiased estimate with

ξ̂
(j)
0 ∼ N (ξ(j)0 , σ2

0[ηT
j (PQẽP )ηj ]−1) (1.11c)

under the model (1.7), leading to the updated residual vector

ẽ(j) := y −Aξ̂(j) − ηj · ξ̂(j)0 = ẽ− (QẽP )ηj · ξ̂(j)0 , (1.12a)

with

ẽ(j) ∼ N (0, σ2
0[Qẽ +QẽPηj(ηT

j PQẽPηj)−1ηT
j PQẽ]). (1.12b)

Secondly, the (weighted) SSR needs to be updated, too, giving us

Ωj := (ẽ(j))TP ẽ(j) = Ω−Rj ∼ σ2
0 · χ2(n−m− 1), (1.13a)

with

Rj := (ξ̂(j)0 )2 · [ηT
j (PQẽP )ηj ] ∼ σ2

0 · χ′2(1; 2ϑj) (1.13b)

and the non-centrality parameter

2ϑj := (ξ(j)0 )2 · [ηT
j (PQẽP )ηj ]/σ2

0 = E{Rj/σ
2
0}. (1.13c)

The new (modified) estimate of the variance component will thus be ob-
tained from

(σ̂2
0)j := Ωj/(n−m− 1) ∼ (σ2

0, 2(σ2
0)2/(n−m− 1)). (1.14)

Also note that, under model (1.7), the distribution of Ω will as well become
non-central, changing (1.6a) into

Ωnew ∼ σ2
0 · χ′2(n−m; 2ϑj). (1.15)
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Now, following Koch (1999, chapter 44), for instance, the constraint (1.8)
may be tested as the j-th null hypothesis

H
(j)
0 : ξ(j)0 = 0 vs. H(j)

a : ξ(j)0 6= 0 (1.16)

as “alternative”, using the test statistic

Tj := Rj/(σ̂2
0)j = Rj(n−m− 1)/Ωj ∼ F ′(1, n−m− 1; 2ϑj), (1.17)

which would be centrally F -distributed under H(j)
0 . So, after specifying the

error probability α, a fractile Ta can be determined on this basis. Further-
more, after specifying the power of the test

1− β =

∞∫
Tα

f ′(t; 2ϑj)dt, (1.18)

where f ′(t; 2ϑj) denotes the probability density function (p.d.f.) of the non-
central F -distribution, the non-centrality parameter can be computed nu-
merically and compared with (1.13c), resulting in the formula

(ξ(j)0 )min =
√

2ϑj(n−m− 1;α, β) · σ2
0/[η

T
j (PQẽP )ηj ] (1.19)

for the “minimum detectible outlier” that can still be identified by hypothesis
testing in the j-th observation with a significance level of (1−α) and a power
of (1− β). This quantity, beside the redundancy n−m− 1, mainly depends
on the factor

σ2
0/[η

T
j (PQẽP )ηj ] = D{ξ̂(j)0 } = σ

2
j/rj , (1.20a)

with

σ
2
j := σ2

0/(η
T
j Pηj), and rj := [ηT

j (PQẽP )ηj ]/(ηT
j Pηj). (1.20b)

Now, following Schaffrin (1997), the number rj can be shown to fall into
the interval [0, 1) with a larger number being more desirable than a smaller
one. Hence, rj may serve as indicator for the “inner reliability”, originally
defined by Baarda (1968) for diagonal matrices P = Diag(p1, . . . , pn) as

rj := ηT
j (QẽP )ηj = pj · [ηT

j (QẽP )ηj ]/(ηT
j Pηj) = rj , (1.21a)

with

σ2
j = σ2

0/pj = σ
2
j (1.21b)

as variance of the j-th observation. Note that, in this case, rj also defines
the response of the estimated outlier ξ̂(j)0 on the j-th residual in accordance
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with (1.11b) and (1.12a), namely via

ẽ
(j)
j := ηT

j ẽ
(j) = ηT

j ẽ− ηT
j (QẽP )ηj · ξ̂(j)0

= ẽj − rj · [(pj · ẽj)/(pjrj)] = 0, (1.22a)

and thus

ẽj = rj · ξ̂(j)0 or ξ̂
(j)
0 = ẽj/rj . (1.22b)

In the general case, however, the response relationship is more complex as
can be found out by translating (1.11b) into

ξ̂
(j)
0 = [(ηT

j P ẽ)/η
T
j Pηj)]/rj . (1.23)

The “outer reliability” may now be introduced by the effect that the “max-
imum undetectible outlier” may have on the estimated parameters following
(1.10), namely

max
j

[∥∥∥N−1ATPηj ·
(
ξ
(j)
0

)
max

∥∥∥2

N

/
(
ξ
(j)
0

)2

max

]
= max

j
[ηT

j (P − PQẽP )ηj ] = max
j

[(ηT
j Pηj)(1− rj)].

(1.24)

Of course, this number ought to be small in order to ensure that unde-
tectible outliers have no major effects on the outcome in terms of estimated
parameters.

2. The weighted total least-squares approach

In the following, let us assume that the elements of the coefficient matrix
A are also observed and hence affected by random errors. This provision
leads to the so-called errors-in-variables (EIV) model

y = (A− EA)︸ ︷︷ ︸
n×m

ξ + e (2.1a)

[
e
eA

]
∼ N (

[
0
0

]
, σ2

0

[
Q 0
0 Im ⊗Q

]
), Q = P−1, (2.1b)

where
EA is the n×m matrix of additional random errors, and
eA := vecEA the same in nm× 1 vector form.

Here, ⊗ denotes the “Kronecker–Zehfuss product” of matrices, defined by

G⊗H := [gij ·H] if G = [gij ]. (2.2)

The EIV-model can obviously be transformed into a nonlinear Gauss–
Helmert model (GHM) by rewriting (2.1a) as
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y = Aξ + [B1|B2]
[
e
eA

]
, (2.3a)

B := [B1|B2] =
[
In| −

(
ξT ⊗ In

)]
= B(ξ), (2.3b)

which nicely shows how the n×n(m+ 1) matrix B depends on the unknown
parameter vector ξ.

Now, the total least-squares (TLS) approach is characterized by minimiz-
ing the “total (weighted) SSR” subject to the EIV-model (2.1a-b), which can
be achieved by making the equivalent Lagrange target function stationary,
namely

Φ (e, eA, ξ, λ) := eTPe+ eTA (Im ⊗ P ) eA+

+2λT
[
y − e−

(
ξT ⊗ In

)
(vecA− eA)

]
= stationary.

(2.4)

Then the necessary Euler–Lagrange conditions read:

1
2
∂Φ
∂e

= P ẽ− λ̂ .= 0 (2.5a)

1
2
∂Φ
∂eA

= (Im ⊗ P ) ẽA +
(
ξ̂ ⊗ In

)
λ̂
.= 0 (2.5b)

1
2
∂Φ
∂ξ

= −AT λ̂+ ẼT
Aλ̂

.= 0 (2.5c)

1
2
∂Φ
∂λ

= y − ẽ−
(
ξ̂T ⊗ In

)
(vecA− ẽA) = y − ẽ−

(
A− ẼA

)
ξ̂
.= 0 (2.5d)

In addition, the sufficient condition for a multivariate minimum is also
fulfilled, due to the fact that

1
2

∂2Φ

∂

[
e
eA

]
∂
[
eT , eTA

] =
[
P 0
0 Im ⊗ P

]
is positive-definite. (2.6)

From (2.5a-b), it is obvious that both ẽ and ẽA can be represented in terms
of λ̂ via

ẽ = P−1λ̂ and ẽA = −(ξ̂ ⊗ P−1)λ̂, (2.7a)

respectively

ẼA = −P−1λ̂ξ̂T = −ẽξ̂T , (2.7b)

which turns (2.5c-d) into

AT λ̂ = ẼT
Aλ̂ = −ξ̂ ·

(
λ̂TP−1λ̂

)
(2.8a)
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and

P (y −Aξ̂) = P ẽ− PẼAξ̂ = λ̂(1 + ξ̂T ξ̂) (2.8b)

such that

λ̂ = P (y −Aξ̂)(1 + ξ̂T ξ̂)−1 = P ẽ. (2.8c)

Summarizing, the new (nonlinear) normal equations may be stated as

c−Nξ̂ = ATP
(
y −Aξ̂

)
= AT λ̂

(
1 + ξ̂T ξ̂

)
= −ξ̂ ·

(
λ̂TP−1λ̂

)(
1 + ξ̂T ξ̂

)
= −ξ̂ ·

(
y −Aξ̂

)T
P
(
y −Aξ̂

)(
1 + ξ̂T ξ̂

)−1
=: −ξ̂ · ν̂ (2.9a)

with

ν̂
(

1 + ξ̂T ξ̂
)

= yTP
(
y −Aξ̂

)
− ξ̂T

(
c−Nξ̂

)
= yTP

(
y −Aξ̂

)
+
(
ξ̂T ξ̂
)
· ν̂

(2.9b)

or, in compact form,

ν̂ = yTPy − cT ξ̂ = ẽTP ẽ+ ẽA
T (Im ⊗ P )ẽA =: TSSR. (2.10a)

Thus, the TLS-solution ξ̂ may be obtained by inverting

(N − ν̂Im)ξ̂ = c (2.10b)

with a modified matrix in each iteration, or by inverting

Nξ̂ = c+ ξ̂ · ν̂ (2.10c)

with a modified RHS vector in each iteration. Experience shows that alter-
nating (2.10b) with (2.10a) converges faster than alternating (2.10c) with
(2.10a), but requires more operations per iteration step.

Since ν̂ already represents the TSSR (total sum of squared residuals), a
convenient estimate of the variance component is provided by

σ̂2
0 = ν̂/(n−m), (2.11)

where (n−m) denotes the redundancy in the EIV-model (2.1a-b). Note that
(2.10a) and (2.10c) can be combined to[

N c
cT yTPy

] [
ξ̂
−1

]
=
[

ξ̂
−1

]
· ν̂, (2.12)

which allows the interpretation of the TLS problem as “eigenvalue problem”,
in accordance with Golub and van Loan (1980) where ν̂, as TSSR, represents
the minimum eigenvalue.
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3. Reliability analysis for errors-in-variables models

3.1. Outliers affecting the observation vector. In the following, a sin-
gle outlier may have occurred in the observation vector y, but not in the ob-
served coefficient matrix A. Thus the family of modified EIV-models would
read:

y = A
n×m

ξ + ηj · ξ(j)0 + (e− EA
n×m
·ξ), (3.1a)[

e
eA

]
∼ N (

[
0
0

]
, σ2

0

[
Q 0
0 Im ⊗Q

]
), (3.1b)

where, again,
ηj denotes the j-th n× 1 unit vector, and
ξ
(j)
0 is the unknown size of the potential outlier.

After setting up the Lagrange target function as

Φ
(
e, eA, ξ, ξ

(j)
0 , λ

)
:= eTPe+ eTA (Im ⊗ P ) eA

+2λT
[
y − e−

(
ξT ⊗ In

)
(vecA− eA)− ηjξ

(j)
0

]
= stationary

(3.2)

in analogy to (2.4), a system of nonlinear normal equations similar to (2.10c)
will be obtained, namely[

N ATPηj

ηT
j PA ηT

j Pηj

][
ξ̂(j)

ξ̂
(j)
0

]
=
[
c+ ξ̂(j) · ν̂(j)

ηT
j Py

]
, (3.3a)

with

ν̂(j) = yTP
(
y −Aξ̂(j) − ηj ξ̂

(j)
0

)
= yTPy − cT ξ̂(j) −

(
yTPηj

)
· ξ̂(j)0 (3.3b)

as (TSSR)j , modifying the original TSSR from (2.10a). An estimate of the
j-th outlier size is readily derived from (3.3a) as

ξ̂
(j)
0 =

ηT
j

[
P − PA

(
N − ν̂(j)Im

)−1
ATP

]
y

ηT
j

[
P − PA

(
N − ν̂(j)Im

)−1
ATP

]
ηj

(3.4a)

=
[
ηT

j (PQẽP ) ηj

]−1
[
ηT

j (PQẽP ) y − ηT
j PAN

−1ξ̂(j)ν̂(j)
]
, (3.4b)

and it may be conjectured that the test statistic

Tj :=
ν̂ − ν̂(j)

ν̂(j)/(n−m− 1)
∼ F (1, n−m− 1) (3.5)

is centrally F -distributed under the j-th null hypothesis

H
(j)
0 : ξ(j)0 = 0 vs. H(j)

a : ξ(j)0 6= 0 (3.6)
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as “alternative”. On the other hand, using (2.8c)and (2.9a) in conjunction
with (3.4b), leads to the expression

ξ̂
(j)
0 =

[
ηT

j (PQẽP ) ηj

]−1
ηT

j P
[
ẽ
(

1 + ξ̂T ξ̂
)

+AN−1
(
ξ̂ · ν̂ − ξ̂(j)ν̂(j)

)]
(3.7)

for the estimated size of the outlier in the j-th observation yj . Under the
assumption that the difference (ξ̂ · ν̂ − ξ̂(j)ν̂(j)) is negligible in this context,
this means that the response of the outlier on the corresponding residual
is only scaled by the factor (1 + ξ̂T ξ̂) when compared with the analogous
response in the Gauss–Markov model.

We may, therefore, use the scaled quantities

rj

(
1 + ξ̂T ξ̂

)−1
=
[
ηT

j (PQẽP ) ηj

] [(
ηT

j Pηj

)
·
(

1 + ξ̂T ξ̂
)]−1

(3.8a)

to indicate “inner reliability” for this case in an EIV-model. For similar
reasons, the quantity describing the “outer reliability” in this case may be
approximated by

max
j

[∥∥∥N−1ATPηj ·
(
ξ
(j)
0

)
max

+N−1
(
ξ̂ · ν̂ − ξ̂(j) · ν̂(j)

)∥∥∥2

N

/
(
ξ
(j)
0

)2

max

]
≈ max

j

[
ηT

j

(
PAN−1ATP

)
ηj

]
= max

j

[(
ηT

j Pηj

) (
1− rj

)]
, (3.8b)

which nicely coincides with (1.24) for the Gauss–Markov model.

3.2. Outliers affecting the observed coefficient matrix. Now, in con-
trast to the Gauss–Markov model, single outliers may have occurred in the
observed coefficient matrix, say in its component

ajk = ηT
j Aηk,

where

ηj is the j-th n× 1 unit vector, and
ηk is the k-th m× 1 unit vector.

So, the family of modified EIV-models reads:

y = (A− ηjξ
(jk)
0 ηT

k )︸ ︷︷ ︸
n×m

ξ + (e− EA︸︷︷︸
n×m

ξ), (3.9a)

[
e
eA

]
∼ N (

[
0
0

]
, σ2

0

[
Q 0
0 Im ⊗Q

]
), (3.9b)

with ξ(jk)
0 as unknown size of the potential outlier. Again, the corresponding

Lagrange target function is set up via
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Φ
(
e, eA, ξ, ξ

(jk)
0 , λ

)
:= eTPe+ eTA (Im ⊗ P ) eA

+2λT
[
y − e−

(
ξT ⊗ In

) (
vecA− eA − (ηk ⊗ ηj)ξ

(jk)
0

)]
= stationary

(3.10)

and, after a few steps, leads to the following system of nonlinear normal
equations, similar to (3.3a), namely[

N ATPηj

ηT
j PA ηT

j Pηj

][
ξ̂(jk)

−ξ̂(jk)
0 · ξ̂(jk)

k

]
=
[
c+ ξ̂(jk) · ν̂(jk)

ηT
j Py

]
, (3.11a)

with

ν̂(jk) = yTP
(
y −Aξ̂(jk) + ηj(ξ̂

(jk)
0 · ξ̂(jk)

k )
)

= yTPy − cT ξ̂(jk) +
(
yTPηj

)
· (ξ̂(jk)

0 · ξ̂(jk)
k ) (3.11b)

as newly modified (TSSR)jk, similar to (3-3b). Consequently, under the
assumption

ξ̂
(jk)
k := ηT

k ξ̂
(jk) 6= 0, (3.12a)

the estimated size of the outlier in this case can be expressed as

ξ̂
(jk)
0 =

−ηT
j

[
P − PA

(
N − ν̂(jk)Im

)−1
ATP

]
y

ηT
j

[
P − PA

(
N − ν̂(jk)Im

)−1
ATP

]
ηj · (ηT

k ξ̂
(jk))

(3.12b)

= −
[
(ηT

k ξ̂
(jk))ηT

j (PQẽP ) ηj

]−1 [
ηT

j (PQẽP ) y − ηT
j PAN

−1ξ̂(jk)ν̂(jk)
]
,

(3.12c)

leading to the conjecture that the test statistic

Tjk :=
ν̂ − ν̂(jk)

ν̂(jk)/(n−m− 1)
∼ F (1, n−m− 1) (3.13)

is centrally F -distributed under the (jk)-th null hypothesis

H
(jk)
0 : ξ(jk)

0 = 0 vs. H(jk)
a : ξ(jk)

0 6= 0 (3.14)

as “alternative”. A simple modification in analogy to (3.7) allows for the
representation

ξ̂
(jk)
0 = −

[
(ηT

k ξ̂
(jk))ηT

j (PQẽP ) ηj

]−1

· ηT
k P

[
(y −Aξ̂) +AN−1

(
ξ̂ · ν̂ − ξ̂(jk)ν̂(jk)

)]
(3.15)
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of the estimated outlier size in the j-th row and k-th column of the matrix
A. Here, (y −Aξ̂) may be rewritten as

y −Aξ̂ = ẽ(1 + ξ̂T ξ̂) = −(ξ̂T ⊗ In)ẽA · (1 + ξ̂T ξ̂)/(ξ̂T ξ̂), (3.16)

following (2.8c) and (2.8b), thus leading to

ξ̂
(jk)
0 =

[
(ηT

k ξ̂
(jk))ηT

j (PQẽP ) ηj

]−1

· ηT
j P

[
(ẼAξ̂ · (1 + ξ̂T ξ̂)/(ξ̂T ξ̂))−AN−1

(
ξ̂ · ν̂ − ξ̂(jk)ν̂(jk)

)]
.

(3.17)

Again, assuming that the difference (ξ̂ · ν̂ − ξ̂(jk)ν̂(jk)) is negligible in this
context, (3.17) shows how the response of the outlier on the corresponding
residual is to be scaled, in comparison to the previous case. For the “inner
reliability”, therefore, the scaled quantities[

ηT
j (PQẽP ) ηj

] [
ηT

j P
(
ξ̂T ⊗ In

)
(ηk ⊗ ηj)

]−1

·
(

1 + ξ̂T ξ̂
)−1 [

(ξ̂T ξ̂) · (ηT
k ξ̂

(jk))
]

= rj ·
[(
ξ̂T ξ̂
)
/
(

1 + ξ̂T ξ̂
)]
·
[(
ηT

k ξ̂
(jk)
)
/ηT

k ξ̂
]

(3.18a)

may be applied as indicators for this case in an EIV-model. Similarly, the
indicator for the “outer reliability” may be approximated by

max
j

[∥∥∥N−1ATPηj ·
(
ξ
(jk)
0

)
max
· ξ̂(jk)

k

− N−1
(
ξ̂ · ν̂ − ξ̂(jk) · ν̂(jk)

)∥∥∥2

N

/
(
ξ
(jk)
0

)2

max

]
≈ max

j

[
ηT

j

(
PAN−1ATP

)
ηj

(
ηT

k ξ̂
(jk)
)2
]

= max
j

[(
ηT

j Pηj

) (
1− rj

) (
ηT

k ξ̂
(jk)
)2
]

(3.18b)

which nicely corresponds to (3.8b).

4. Conclusions and outlook

In this contribution, reliability measures have been studied for the errors-
in-variables model, following the ideas of Baarda (1968). It turned out that
both the “inner reliability” as well as the “outer reliability” can be measured
by the same quantities that served this purpose in the Gauss–Markov model,
after proper rescaling. This is a somewhat surprising result insofar as outliers
for the coefficient matrix are not allowed in the Gauss–Markov model, at all,
but may occur in the EIV-model.
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These results have been achieved under the assumption that a certain
term in the response relationship between outlier and corresponding residual
is small and can be neglected. In a future study, the maximum effect of this
neglected term will be investigated in worst case scenarios.
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