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On estimation in multilevel models with block
circular symmetric covariance structure

Yuli Liang, Dietrich von Rosen, and Tatjana von Rosen

Abstract. In this article we consider a multilevel model with block cir-
cular symmetric covariance structure. Maximum likelihood estimation
of the parameters of this model is discussed. We show that explicit max-
imum likelihood estimators of variance components exist under certain
restrictions on the parameter space.

1. Introduction

Very often data arise in natural hierarchies, for example, children are
nested within families, students are grouped within classrooms and employ-
ees are clustered within workplaces. The existence of such data hierarchies
is not accidental and should be accounted for when conducting a statistical
analysis. Multilevel models (Goldstein, 2003) refer to a class of multivari-
ate statistical models developed for the analysis of hierarchically structured
data. One can note the existence of many other names for these models,
including, hierarchical linear model, random coefficients model, and hier-
archical mixed linear model. To a certain extent, the emergence of names
is due to the statistical properties of different modeling strategies used to
analyze multilevel data.

The distinguishing feature of hierarchical data is that observations within
a corresponding group (hierarchy) are usually more similar than observations
from different groups (hierarchies). Moreover, since hierarchical structures
violate the independence assumption, techniques for dealing with this prob-
lem have to be developed.

In this article we consider the problem of estimation in balanced multi-
level models with a block circular symmetric covariance structure. In the
framework of multilevel models, this structure has been utilized in many
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applications, to describe the situations with a spatial circular layout on one
factor and an exchangeable feature on another factor. Estimation in linear
models with patterned covariance matrices has got a lot of attention. Olkin
and Press (1969) and Olkin (1972) provided maximum likelihood estimators
(MLEs) for the parameters in a circular symmetric model, but without pat-
terned blocks. Szatrowski (1980) and Szatrowski and Miller (1980) discussed
the multivariate normal model with a linear covariance structure and gave
a necessary and sufficient condition of explicit MLEs for both the mean and
covariance matrices. Marin and Dhorne (2002, 2003) gave a necessary and
sufficient condition of an optimal unbiased estimator for a statistical model
with linear Toeplitz covariance structure.

The aim of this article is to extend models that are block circular sym-
metric (Olkin, 1972) to patterned blocks, when both circular symmetry and
exchangeability are present in data. The ultimate goal is to derive explicit
MLEs of all parameters. This can be achieved by first estimating the eigen-
values of the covariance matrix and thereafter imposing conditions on the
parameter space. In this article explicit estimators of the eigenvalues are
presented as well as the number of constraints needed to obtain explicit
estimators of the original parameters. However, the derivations of these
estimators will be postponed to another publication, since there are many
scenarios which should be investigated.

The organization of the article is as follows. Section 2 introduces the ba-
sic model and notation, as well as some results concerning commutativity
and spectral decomposition of the building blocks of the covariance matrix.
In Section 3 the main results concerning the spectral properties of the co-
variance matrix are presented. In Section 4 explicit MLEs of eigenvalues
of the patterned covariance matrices are derived and the estimability of
(co)variance components is discussed in terms of model reparameterization
(restrictions). An illustrative example is given in Section 5.

2. Preliminaries

In this section a model with block circular covariance structure is in-
troduced and spectral properties of the matrices corresponding to such a
dependence structure are given. Let us consider the following mixed linear
model

y = µ1p +Z1γ1 +Z2γ2 + Ipε, (2.1)

where µ is an unknown constant parameter, γ1, γ2 and ε are indepen-
dently normally distributed random variables with zero means and variance-
covariance matrices Σ1, Σ2, and σ2Ip, respectively. Here Z1 = In2 ⊗ 1n1 ,
Z2 = In2⊗In1 , 1s is a column vector of size s with all elements equal to one
and Is is the identity matrix of order s, p = n1n2. The symbol ⊗ denotes
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the Kronecker product. Thus,

y ∼ Np(µ1p,Σ),

Σ = Z1Σ1Z
′
1 + Σ2 + σ2Ip. (2.2)

In our model we suppose that the covariance matrix Σ1 : n2 × n2 has the
following structure (compound symmetry):

Σ1 = aIn2 + b(Jn2 − In2), (2.3)

where a and b are unknown parameters, and Jn2 is a matrix of size n2 × n2

with all elements equal to one. The covariance matrix Σ2 : p × p has a
block compound symmetric pattern with a symmetric circular Toeplitz (SC-
Toeplitz) matrix in each block, i.e.

Σ2 = In2 ⊗Σ(1) + (Jn2 − In2)⊗Σ(2), (2.4)

where the SC-Toeplitz matrix Σ(h) = (σ(h)
ij ) depends on [n1/2] + 1 parame-

ters, the symbol [·] stands for the integer part, and for i, j = 1, . . . , n1, h =
1, 2,

σ
(h)
ij =

{
τ|j−i|+(h−1)([n1/2]+1), if |j − i| ≤ [n1

2 ],
τn1−|j−i|+(h−1)([n1/2]+1), otherwise,

(2.5)

and τ ′qs are unknown parameters, q = 0, . . . , 2[n1/2] + 1. For example, when
n1 = 4,

Σ(1) =


τ0 τ1 τ2 τ1
τ1 τ0 τ1 τ2
τ2 τ1 τ0 τ1
τ1 τ2 τ1 τ0

 , Σ(2) =


τ3 τ4 τ5 τ4
τ4 τ3 τ4 τ5
τ5 τ4 τ3 τ4
τ4 τ5 τ4 τ3

 .

The covariance matrix Σ given in (2.2) is a sum of three symmetric matrices
Z1Σ1Z

′
1, Σ2 and σ2Ip, which commute (see Lemma 2.1), and hence can be

simultaneously diagonalized. This property will be utilized to obtain the
eigenvalues of Σ, which in turn can be used to derive explicit maximum
likelihood estimators of the unknown parameters.

Lemma 2.1. The matrices Z1Σ1Z
′
1 and Σ2 are commuting normal ma-

trices.

Proof. Since Z1Σ1Z
′
1 and Σ2 both are symmetric they are also normal

matrices. Due to the specific structure of Σ1 given in (2.3), we first observe
that

Z1Σ1Z
′
1 = aIn2 ⊗ Jn1 + b(Jn2 − In2)⊗ Jn1 . (2.6)

Since both Σ(1) and Σ(2) which define Σ2 in (2.4) commute with Jn1 , it is
straightforward to verify that Z1Σ1Z

′
1Σ2 = Σ2Z1Σ1Z

′
1. �
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In the next theorem we give the eigenvalues and eigenvectors of an
SC-Toeplitz matrix, since they are important for the subsequent inference.

Theorem 2.2. Let T = {tij} : n× n be an SC-Toeplitz matrix, i.e.

tij =

{
t|j−i|, if |j − i| ≤ [n2 ],
tn−|j−i|, otherwise.

(2.7)

The eigenvalues of T are given by

λk =
n−1∑
j=0

tj cos
(

2π
n

(k − 1)(n− j)
)
, k = 1, . . . , n.

The corresponding eigenvectors w1, . . . ,wn are defined through

wkj =
1√
n

(
cos
(

2π
n

(j − 1)(k − 1)
)

+ sin
(

2π
n

(j − 1)(k − 1)
))

, j, k = 1, . . . , n. (2.8)

Proof. For derivation of the eigenvalues and eigenvectors we refer readers
to Basilevsky (1983) and Olkin and Press (1969). �

Corollary 2.3. The matrix T defined in (2.7) has the following proper-
ties.
(i) tij = tij′, j′ = n− j + 2, j = 2, . . . , n.
(ii) λi = λn−i+2, i = 2, . . . , n.
(iii) The eigenvectors of T defined in (2.8) are independent of the elements
of T .
(iv) Let W = (w1, . . . ,wn), with wk = (wk1 , . . . , w

k
n)′, k = 1, . . . , n. Then

WW ′ = In and 1′nW = (
√
n, 0, . . . , 0).

Eigenvalues of the matrices Z1Σ1Z
′
1 and Σ2 together with the corresponding

eigenvectors will be presented in the following theorems.

Theorem 2.4. A symmetric matrix Z1Σ1Z
′
1 : n1n2 × n1n2 of the form

given in (2.6) has three distinct eigenvalues:
λ1 = n1(a− b) + n2n1b with multiplicity 1,
λ2 = n1(a− b) with multiplicity (n2 − 1),
λ3 = 0 with multiplicity n2(n1 − 1).

The set (v1,v2, . . . ,vn2 ,vn2+1, . . . ,vn1n2) comprises the eigenvectors of
Z1Σ1Z

′
1 which are of the form

vh = wi2
2 ⊗w

i1
1 , (2.9)

where elements of the vectors wik
k are defined by (2.8), ik = 1, . . . , nk, h=

1, . . . , n1n2, and k= 1, 2. Moreover, the eigenvector corresponding to λ1 is
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v1 = w1
2 ⊗ w1

1 = (n1n2)−1/21n2 ⊗ 1n1; the eigenvectors corresponding to
λ2 are vh = wh2

2 ⊗ w1
1 = wh2

2 ⊗ n
−1/2
1 1n1, h2 = 2, . . . , n2; and the eigen-

vectors corresponding to λ3 are vh = wh2
2 ⊗ w

h1
1 , where h2 = 1, . . . , n2,

h1 = 2, . . . , n1.

Proof. Let us define the following orthogonal matrix

Γ = Γ2 ⊗ Γ1,

where the matrix Γk comprises eigenvectors of an SC-Toeplitz matrix of
order nk which are specified by (2.8), i.e. Γk = (w1

k, . . . ,w
nk
k ), k = 1, 2.

Observing that the first column in Γk is w1
k = n

−1/2
k 1nk

, it follows that

Γ′kJnk
Γk =

(
nk 0
0 0nk−1

)
,

where 0nk−1 : (nk− 1)× (nk− 1) is a matrix with all elements equal to zero.
Using the expression for Z1Σ1Z

′
1 given in (2.6) we obtain

Γ′Z1Σ1Z
′
1Γ = (a− b)In2 ⊗

(
n1 0
0 0n1−1

)
+ b

(
n2 0
0 0n2−1

)
⊗
(
n1 0
0 0n1−1

)
.

This is a diagonal matrix and therefore the eigenvalues follow immediately.
Due to the structure of the matrix Z1Σ1Z

′
1 the eigenvectors defined in (2.9)

can be easily verified. �

In the next theorem the eigenvalues and the eigenvectors of the matrix Σ2

are presented, using the block structure of Σ2.

Theorem 2.5. Let Σ2 follow the structure specified in (2.4), and let
λ

(i)
1 , . . . , λ

(i)
n1 be eigenvalues given in Theorem 2.2 of the SC-Toeplitz matrix

Σ(i) in (2.5), i = 1, 2. Then, Σ2 has eigenvalues

λ1h = λ
(1)
h + (n2 − 1)λ(2)

h , (2.10)

λ2h = λ
(1)
h − λ

(2)
h , (2.11)

where h = 1, . . . , n1.
Furthermore, if n1 is odd, the multiplicity of λi1 is (n2 − 1)i−1, and the

eigenvalues λi2, . . . , λin1 are of multiplicity 2(n2 − 1)i−1, i = 1, 2. If n1

is even, the multiplicities of both λi1 and λin1
2

are (n2 − 1)i−1, and other
eigenvalues λi2, . . . , λin1 are of multiplicity 2(n2 − 1)i−1, i = 1, 2. Thus, the
number of distinct eigenvalues for Σ2 is 2([n1/2] + 1).
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The set (v1
1 . . . ,v

n1
1 ,v1

2, . . . ,v
n1(n2−1)
2 ) comprises the eigenvectors of Σ2

which are of the following form:

vi1 = w1
2 ⊗w

h1
1 = n

−1/2
2 1n2 ⊗w

h1
1 , i, h1 = 1, . . . , n1,

vj2 = wh2
2 ⊗w

h1
1 , j=1, . . . , n1(n2 − 1), h2 =2, . . . , n2,

where elements of the vectors wik
k are defined in (2.8), ik = 1, . . . , nk and

k = 1, 2.

Proof. Let us define the following orthogonal matrix

Γ = Γ2 ⊗ Γ1 = (v1
1 . . . ,v

n1
1 ,v1

2, . . . ,v
n1(n2−1)
2 ),

where the matrix Γk consists of eigenvectors of an SC-Toeplitz matrix of
order nk which are specified in (2.8), i.e. Γk = (w1

k, . . . ,w
nk
k ), k = 1, 2, and

Γ′1Σ
(i)Γ1 = Λ(i) = diag(λ(i)

1 , λ
(i)
2 , . . . , λ(i)

n1
), i = 1, 2. (2.12)

Observing that the first column in Γk is w1
k = n

−1/2
k 1nk

, k = 1, 2, it follows
that

Γ′kJnk
Γk =

(
nk 0
0 0nk−1

)
.

Then

Γ′Σ2Γ = (Γ′2 ⊗ Γ′1)
[
In2 ⊗

(
Σ(1) −Σ(2)

)
+ Jn2 ⊗Σ(2)

]
(Γ2 ⊗ Γ1)

= In2 ⊗ (Λ(1) −Λ(2)) +
(
n2 0
0 0n2−1

)
⊗Λ(2). (2.13)

From the expression in (2.13) the eigenvalues with corresponding multiplic-
ities can be obtained.

To verify that vhi is an eigenvector of Σ2 corresponding to the eigenvalue
λih, i = 1, 2 one should check that Σ2v

h
i = λ1hv

h
i , h = 1, . . . , n1. Indeed, for

vh1 = w1
2 ⊗w

h1
1 = n

−1/2
2 1n2 ⊗w

h1
1 , we have

Σ2v
h
1 =

(
In2 ⊗Σ(1) + (Jn2 − In2)⊗Σ(2)

)
(n−1/2

2 1n2 ⊗w
h1
1 )

= n
−1/2
2 1n2 ⊗Σ(1)wh1

1 + n
−1/2
2 (n2 − 1)1n2 ⊗Σ(2)wh1

1

= n
−1/2
2 1n2 ⊗ (λ(1)

h w
h1
1 ) + n

−1/2
2 (n2 − 1)1n2 ⊗ (λ(2)

h w
h1
1 )

= (λ(1)
h + (n2 − 1)λ(2)

h )(n−1/2
2 1n2 ⊗w

h1
1 )

= λ1hv
h1
1 ,

where h1 = 1, . . . , n1. Similarly, one can verify that Σ2v
h
2 = λ2hv

h
2 , h =

1, . . . , n1(n2 − 1). �

An alternative formulation of the spectrum of Σ2 in Theorem 2.5 is given in
the following corollary.
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Corollary 2.6. Let τ and λ be the vectors representing distinct elements
and distinct eigenvalues of Σ2, given in (2.5) and Theorem 2.5, respectively.
Then

λ = B2τ ,

where the nonsingular coefficient matrix B2 has the following form:

B2 =
(
A (n2 − 1)A
A −A

)
,

where A = {aij} is a ([n1
2 ] + 1)× ([n1

2 ] + 1) matrix and

aij = 21{1<j<[n1/2]+1}cos(2π(i− 1)(n1 − j + 1)/n1), i, j = 1, . . . , n1,

and 1{·} is the indicator function.
Moreover, by inverting B2, τ can be expressed as follows:

τ = B−1
2 λ,

where, since A2 = n1In1,

B−1
2 =

1
n1n2

(
A (n2 − 1)A
A −A

)
.

3. Spectral properties of Σ

In this section we will present the spectral properties of the covariance
matrix Σ given in (2.2) which will be used when deriving MLEs for the
variance-covariance parameters.

Theorem 3.1. Let the matrix Σ be defined as in (2.2). There exists an
orthogonal matrix Q such that Q′ΣQ = D, where D is an diagonal matrix
containing the eigenvalues of Σ. Moreover,

D = Diag{D1, In2−1 ⊗D2},where

D1 = diag(σ2 + n1a+ n1(n2 − 1)b+λ11, σ
2+λ12, . . . , σ

2+λ1n1),
D2 = diag(σ2 + n1(a− b) + λ21, σ

2 + λ22, . . . , σ
2 + λ2n1),

and λih are given by (2.10)-(2.11) in Theorem 2.5, i = 1, 2, h = 1, . . . , n1.
The matrix Q which columns are the orthonormal eigenvectors of Σ equals

Q = VD1 ⊗ VD2 , (3.1)where

VD1 =
(
w1

2, . . . ,w
n2
2

)
, VD2 =

(
w1

1, . . . ,w
n1
1

)
,

and the vectors wi
k are given by (2.8), k = 1, 2, i = 1, . . . , nk.



90 YULI LIANG, DIETRICH VON ROSEN, AND TATJANA VON ROSEN

Proof. Recall that Σ is a sum of three symmetric commuting matrices
σ2Ip, Z1Σ1Z

′
1 and Z2, and hence they can be simultaneously diagonalized.

Define Q as in (3.1) and then we get

Q′ΣQ = Q′(σ2Ip +Z1Σ1Z
′
1 + Σ2)Q

= σ2Ip +
[
In2⊗

(
(a− b)n1 0

0 0n1−1

)
+
(
n2 0
0 0n2−1

)
⊗
(
bn1 0
0 0n1−1

)]
+
[
In2 ⊗ (Λ(1) −Λ(2)) +

(
n2 0
0 0n2−1

)
⊗Λ(2)

]
,

where Λ(i), i = 1, 2 are defined in (2.12). From the last expression, the
distinct eigenvalues ηi of Σ with the corresponding multiplicities mi, i =
1, . . . , 2([n1/2] + 1), can be obtained directly.

Both of the two following tables present the spectrum of Σ. It is seen
from Table 1 that there are four types of eigenvalues of Σ. There is a clear
picture of how the results of Theorem 2.4 and Theorem 2.5 are connected
and build up the eigenstructure of Σ.

Table 1. Let di be the eigenvalues of Σ given in (2.2) with
the corresponding eigenvectors ui and multiplicities mi, i=
1, . . . , n1n2. Here w1

k=n
−1/2
k 1nk

, and vectors whk
k are defined

in (2.8), hk = 2, . . . , nk, k = 1, 2. The eigenvalues λkh1 are
defined in Theorem 2.5.

di mi ui

σ2 + n1(a− b) + n2n1b+ λ11 1 w1
2 ⊗w1

1

σ2 + λ1h1 1 w1
2 ⊗w

h1
1

σ2 + n1(a− b) + λ21 n2 − 1 wh2
2 ⊗w1

1

σ2 + λ2h1 n2 − 1 wh2
2 ⊗w

h1
1

However, taking into account that λks = λkr, where r = n1−s+2, k = 1, 2,
s = 2, . . . , n1, in Table 2 the distinct eigenvalues of Σ are presented.

The eigenvectors for Σ corresponding to the distinct eigenvalues provided
in Table 2 can be easily verified. Thus, the proof of Theorem 3.1 is completed.

�

Now let θ be a vector of the unknown (co)variance parameters in Σ, i.e.

θ = (σ2, a, b, τ0, . . . , τ2[n1/2]+1)′. (3.2)
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Table 2. Distinct eigenvalues ηi of Σ given in (2.2) with
corresponding multiplicities mi.

mi

ηi odd n1 even n1

η1 1 1
η2, . . . , η[

n1
2

]+1 2 2, ηn1
2

has multiplicity 1.
η[

n1
2

]+2 n2 − 1 n2 − 1

η[
n1
2

]+3, . . . , η2([
n1
2

]+1) 2(n2 − 1) 2(n2 − 1), ηn1+1 has
multiplicity n2 − 1.

One important observation is that all the information about the unknown
parameters in Σ, equivalently in θ, is contained in the eigenvalues of Σ
obtained in Theorem 3.1. The following theorem demonstrates the relation-
ship between distinct eigenvalues of the covariance matrix Σ and unknown
parameters in θ.

Theorem 3.2. Let η be the vector representing the distinct eigenvalues
of Σ given in (2.2), and let the vector of unknown parameters θ be specified
by (3.2). Then

η = Lθ, (3.3)

where L = (B1
... B2), the matrix B2 is given in Corollary 2.6,

B1 =


1 n1 n1(n2 − 1)
1[n1/2] 0[n1/2] 0[n1/2]

1 n1 −n1

1[n1/2] 0[n1/2] 0[n1/2]

 ,

and 1[n1/2] and 0[n1/2] are vectors of length
[
n1
2

]
.

4. Maximum likelihood estimation

In this section MLEs for the eigenvalues of Σ given in (2.2) will be derived.
Let y1, . . . ,yn be a random sample from Np(µ1p,Σ), and

Y = (y1, . . . ,yn) ∼ Np,n(µ1p1′n,Σ, In),

i.e., Y is matrix normally distributed which means that the columns of Y
are independent normally distributed p-vectors with an unknown covariance
matrix Σ and expectation of Y equals µ1p1′n. It is equivalent to

vecY ∼ Npn(µ1pn, In ⊗Σ),

where vec(Y ) denotes the vectorization of the matrix Y .
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The log-likelihood function is given by

lnL(µ,Σ) = c− 1
2
|In ⊗Σ|− 1

2
[
(vecY −µ1pn)′(In⊗Σ)−1(vecY −µ1pn)

]
,

where c = −1
2pn ln(2π).

First we consider the MLE of µ. The partial derivative,
∂ lnL
∂µ

= 1′pn(In ⊗Σ)−1vecY − 1′pn(In ⊗Σ)−11pnµ,

yields the normal equation

1′pn(In ⊗Σ)−1vecY = 1′pn(In ⊗Σ)−11pnµ,

and then the MLE of µ is given by

µ̂ =
[
1′pn(In ⊗Σ−1)1pn

]−1 1′pn(In ⊗Σ−1)vecY , (4.1)

if Σ is known. Since 1p is an eigenvector of Σ, (4.1) becomes the least
squares estimator (Szatrowski, 1980). Thus, the MLE for µ equals

µ̂ = (1′pn1pn)−11′pnvecY . (4.2)

Next, the eigenvalues of the covariance matrix Σ will be estimated. Since
Σ is a symmetric matrix, it can be decomposed as Σ = QD(η)Q′, where
Q is an orthogonal matrix whose p columns are orthonormal eigenvectors of
Σ, D(η) is a p × p diagonal matrix with the eigenvalues of Σ on the main
diagonal. Recall, that η =

(
η1, . . . , η2([

n1
2

]+1)

)
represent 2([n1

2 ] + 1) distinct
eigenvalues of Σ with the corresponding multiplicities mi given in Table 2.
Moreover, Q given in (3.1) is independent of D(η).

When µ is replaced by its MLE, µ̂, we have

L(µ,η) ≤ L(µ̂,η)

= (2π)−
1
2
pn|D(η)|−

n
2 e−

1
2
tr{[D(η)]−1[Q′(Y−µ̂1p1′n)(Y−µ̂1p1′n)′Q]},

where tr denotes the trace. Now,

L(µ̂,η) ≤ (2π)−
1
2
pn|D(η)|−

n
2 e
− 1

2
tr

{
[D(η)]−1H

}

=(2π)−
1
2
pn|D(η)|−

n
2 e
− 1

2
tr

{
[D(η)]−1Hd

}
,

where

H = Q′(Y − µ̂1p1′n)(Y − µ̂1p1′n)′Q and Hd = (hj) = diag(H). (4.3)

Thus,

L(µ̂,η) ≤ (2π)−
1
2
pn

2([
n1
2

]+1)∏
i=1

η
−(nmi/2)
i exp

−1
2

2([
n1
2

]+1)∑
i=1

η−1
i

mi∑
j=1

hj

 .
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By taking the derivative with respect to ηi, i = 1, . . . , 2([n1
2 ] + 1), the MLE

of ηi is obtained by solving the following normal equation

−nmi

2ηi
+

∑mi
j=1 hj

2η2
i

= 0,

since then the upper bound of L(µ̂,η) is obtained.

Theorem 4.1. The MLEs of the distinct eigenvalues ηi of Σ are

η̂i =

∑mi
j=1 hj

nmi
, i = 1, . . . , 2([n1/2] + 1), (4.4)

where hj is j-th diagonal element of the matrix Hd in (4.3) and mi is the
multiplicity of ηi given in Table 2.

Based on η̂ = (η̂1, . . . , η̂2([n1/2]+1)), an estimator of Σ is given by Σ̂ =
QD(η̂)Q′, where D(η̂) is a p× p diagonal matrix.

The elements of the covariance matrix Σ are functions of unknown param-
eters in θ = (σ2, a, b, τ0, . . . , τ2[n1/2]+1)′, i.e. Σ = Σ(θ). It can be shown that
the system of linear equations given in (3.3) is consistent. If the number of
distinct eigenvalues of Σ, i.e. the number of elements in η, equals the num-
ber of elements in θ, the MLE for θ has an explicit expression (Szatrowski
and Miller, 1980), which is obtained by solving the linear system in (3.3).
If the number of elements in η is less than the number elements in θ, θ is
estimable only under some constraints on θ.

In the last theorem we prove that in the circular symmetric model with
patterned blocks given in (2.1), θ is non-estimable unless some constraints
will be imposed.

Theorem 4.2. Let s1 be the number of the distinct eigenvalues of Σ
defined in (2.2), and s2 be the number of unknown parameters in Σ, then
s2 − s1 = 3.

Proof. According to the definition of Σ in (2.2), the number of unknown
parameters is 3 + 2([n1/2] + 1), i.e. it is n1 + 4 for odd n1 and n1 + 5 for even
n1. Moreover, recall that Σ given in (2.2) is the sum of three matrices:

Σ = σ2I︸︷︷︸
1 parameter

+ Z1Σ1Z
′
1︸ ︷︷ ︸

2 parameters

+ Σ2.︸︷︷︸
2([

n1
2

]+1) parameters

From Table 2, it follows that Σ has 2([n1
2 ] + 1) distinct eigenvalues. Thus,

s2 − s1 = 3. �

We may note that the model given in (2.1) belongs to the class of invariant
normally distributed models, see Andersson (1975). Jensen (1988) remarked
that the invariant normal models belonged to normally distributed models
where the covariance matrix was parametrized according to a Jordan algebra
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structure. Indeed, Jensen referred to the seminal paper by Seely (1971) on
quadratic subspaces characterization which is a special Jordan algebra. One
of the interesting results in Seely’s work is that he connects optimal results
of the obtained estimators with the Jordan algebra, especially commutative
Jordan algebra. The use of Jordan algebra in statistical inference and appli-
cations has been further discussed by many authors, see for instance Malley
(1986). However, in this work, we are more focused on explicit estimators,
because the given models are overparametrized, and postpone optimality
consideration for a following publication.

5. Example

In the section, an example will illustrate the obtained results. Let us
consider model (2.1) when n2 =2 and n1 =4, i.e.

yj = 18µ+ (I2 ⊗ 14)γ1 + I8γ2 + ε.

In this case yj∼N8(18µ,Σ), j = 1, . . . , n, and

Σ = σ2I8 + Σ1 ⊗ J4 + Σ2,

where

Σ1 ⊗ J4 =



a a a a b b b b
a a a a b b b b
a a a a b b b b
a a a a b b b b
b b b b a a a a
b b b b a a a a
b b b b a a a a
b b b b a a a a


,

Σ2 =



τ0 τ1 τ2 τ1 τ3 τ4 τ5 τ4
τ1 τ0 τ1 τ2 τ4 τ3 τ4 τ5
τ2 τ1 τ0 τ1 τ5 τ4 τ3 τ4
τ1 τ2 τ1 τ0 τ4 τ5 τ4 τ3
τ3 τ4 τ5 τ4 τ0 τ1 τ2 τ1
τ4 τ3 τ4 τ5 τ1 τ0 τ1 τ2
τ5 τ4 τ3 τ4 τ2 τ1 τ0 τ1
τ4 τ5 τ4 τ3 τ1 τ2 τ1 τ0


.

The vector of the unknown (co)variance components is the following

θ = (σ2, a, b, τ0, τ1, τ2, τ3, τ4, τ5)′
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and the eigenvalues of Σ are given by

η1 = σ2 + 4(a+ b) + τ0 + 2τ1 + τ2 + τ3 + 2τ4 + τ5,

η2 = σ2 + τ0 − 2τ1 + τ2 + τ3 − 2τ4 + τ5,

η3 = σ2 + τ0 − τ2 + τ3 − τ5,
η4 = σ2 + 4(a− b) + τ0 + 2τ1 + τ2 − τ3 − 2τ4 − τ5,
η5 = σ2 + τ0 − 2τ1 + τ2 − τ3 + 2τ4 − τ5,
η6 = σ2 + τ0 − τ2 − τ3 + τ5.

The multiplicities of the eigenvalues are 1, 1, 2, 1, 1 and 2, respectively.
Using (4.2), the MLE for µ is

µ̂ =

n∑
j=1

8∑
i=1

yij

8n
,

and the MLEs for ηk, k = 1, . . . , 6, given in (4.4) are

η̂1 =
1
n

n∑
j=1

(v′1yj)
2 − 8µ̂2, η̂4 =

1
n

n∑
j=1

(v′5yj)
2,

η̂2 =
1
n

n∑
j=1

(v′2yj)
2, η̂5 =

1
n

n∑
j=1

(v′6yj)
2,

η̂3 =
1

2n

n∑
j=1

(v′3yj)
2 +

1
2n

n∑
j=1

(v′4yj)
2, η̂6 =

1
2n

n∑
j=1

(v′7yj)
2 +

1
2n

n∑
j=1

(v′8yj)
2,

where vp, p = 1, . . . , 8, are the orthonormal eigenvectors of Σ.
An estimator of Σ can been calculated as follows

Σ̂ =
6∑

k=1

η̂kEk,

where

E1 =
1
8
J8, E2 =

1
8
J4 ⊗

(
1 −1
−1 1

)
,

E3 =
1
4
J2 ⊗

(
1 −1
−1 1

)
⊗ I2, E4 =

1
4
I2 ⊗ J4 −

1
8
J8,

E5 =
1
8
I2 ⊗ J2 ⊗

(
1 −1
−1 1

)
+

1
8

(J2 − I2)⊗ J2 ⊗

(
−1 1

1 −1

)
,

E6 =
1
4
I2 ⊗

(
1 −1
−1 1

)
⊗ I2 +

1
4

(J2 − I2)⊗

(
−1 1

1 −1

)
⊗ I2.
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