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On supersaturated experimental design

Sven Ahlinder and Ivar Gustafsson

Abstract. In this article, optimization of a black box using designs of
experiments is studied. There are two fundamental different branches in
optimization using Design of Experiments; higher order Taylor expan-
sions, i.e., response surface methodology, and underdetermined experi-
mental designs, i.e., supersaturated designs. In this article, supersatu-
rated designs are studied.

Optimization using design of experiments is compared with direct
search. A system of linear equations has to be solved, Ax = b, where
A is the design matrix and b is a vector of experimental results. In
supersaturated design, the solution x̂ to this system is not in general the
gradient of the system but has a certain angle to it. This angle between
the correct gradient, x, and the one found by supersaturated design of
a linear approximation of a black box function, x̂, is investigated.

1. Introduction

In the business of construction (for instance of a car) the purpose is of-
ten to fulfill demands by changing parameters of the studied system. The
corresponding discipline in statistics is called design of experiments (DoE).
Usually in DoE, the number of observations is larger than the number of vari-
ables, and we have so called overdetermined designs. This gives a possibility
to estimate statistical properties of the coefficients that describe the influ-
ence of the variables such as standard deviation and possibility to perform
an F-test on the coefficients.

Already in 1935, R. A. Fisher published a book “The Design of Experi-
ments” [6] describing how to design experimental series in order to be able to
estimate coefficients in linear polynomials in several variables. These poly-
nomials then served as models to be able to maximize the yield of crops.

In vehicle industry, DoE is used in studying several problems such as
fuel consumption, emissions, noise, durability, handling, welding, painting,
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vibration, air resistance, cooling, heating, etc. The main problem is that a
modern vehicle is specified by say million parameters and each experimental
vehicle costs perhaps $1.000.000. The companies can not afford to make a
million experiments. This phenomenon has been identified already in the
1950ies and the solution to it was found by application of supersaturated
design. We will define this kind of designs below.

Suppose we have a physical system, for instance a car. Suppose also that
there is an influence on fuel consumption from the different parameters of the
car, such as shape of body, engine, wheels, and even different tyre pressure.
Suppose the influence of the different parameters on fuel consumption has
certain values. Then those values could be gathered in a vector x, which is
the true description of the system with (say) n parameters. We can alter
the parameters and see if the fuel consumption is increasing or decreasing.
The (say) m parameter settings of different cars could be gathered in row
vectors aj , j = 1, ...,m, and the whole experimental series would form a
matrix A, with the different vectors. For instance, we let the series of m
different fuel consumptions, from different experimental cars, be the vector
b, i.e., we operate on the system description x with our experimental design
A and get a result vector b, that is Ax = b, where A ∈ R

m×n, x ∈ R
n and

b ∈ R
m. Normally A is overdetermined, i.e., m > n, which means that the

number of experiments m is larger than the number of parameters n.
A supersaturated experimental design is a plan to create an experimental

series with fewer observations than unknown parameters, m < n, i.e., the
system Ax = b is underdetermined. It is well known that an underdeter-
mined system of linear equations could be solved by a generalized inverse
based on singular value decomposition (SVD), giving the smallest norm so-
lution.

At Volvo, supersaturated design (SSD) optimizations have been tested
on mathematical functions [11]. Some theoretical functions and a genuine
engine model were tested. In all cases about 100 variables were used and 50
evaluations were performed. The 50 evaluations were divided into 3 steps
with about 15 evaluations at each step. For each step, centre of the investi-
gation was moved in the direction of steepest ascent. In all cases the function
value was improved for each step. In fact, 2000 random experiments did not
beat 50 SSD experiments, which indicates that the method has potential.

In normal, overdetermined (nonsaturated) designs, the purpose is to ap-
proximately replicate the measured results, given by the vector b. This
results in methods for estimating predictions, b̂, which are given by experi-
mental series, say A, that have orthogonal columns since this gives the pos-
sibility to estimate the elements in x independently of each other. According
to Fisher, it is useful to add some extra rows to A, without destroying the
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orthogonality, to make the investigation less sensitive to measurement er-
rors. In overdetermined designs, the system of equations can be solved with
the standard method of least squares, i.e., x̂ is the solution to the problem
minx‖Ax − b‖2.

In this paper a new method is introduced for studying supersaturated
designs. Here it is assumed that the first order Taylor series describing the
black box is known. The first order Taylor series is the sum of all parameters
each multiplied by a coefficient. The coefficients are the elements of x. The
coefficients give an ascent direction as our search direction in an optimization
step. When the ascent direction step has been taken, a new estimation of the
coefficients can be made in an iterative way. The method is focused on how
to estimate the coefficients, the elements of a vector x̂, using the experiments
A on the correct vector x. For an overdetermined (nonsaturated) A, x̂ = x
and this is not a problem, but for a supersaturated (underdetermined) A
this is vital since, in general, then x̂ is not equal to x.

If x lies in the row space of A, then the experimental series will be a
success, since then x̂ = x, but if x lies in the null space of A, it will be
a complete failure. In all practical cases, x has components in both, the
row space and the null space. The best we can do is to take an A with a
dimension of the row space as large as possible compared with the null space.
This means that the rank, or the number of independent rows of A, should
be as large as possible. This leads to the fact that in supersaturated designs,
A should have linearly independent rows, while in nonsaturated designs, A
should have linearly independent (or even orthogonal) columns.

One of the main results of this paper is that the total gain by using
supersaturated design correctly is expected to be

√
m · n. This means that

investigating four times more parameters with the same amount of tests
gives doubled information.

The main conclusions of this article are the following.· Designing an experimental series using minimum norm solution gives
different designs than designing it for variable selection.· The rank of the design matrix A is important for the information gain in
the system, not the angle between the columns of the design matrix A.· If A is m×n, m < n, x is a normally distributed vector, and x̂ = A+Ax,
where A+ is the Moore-Penrose pseudo inverse, then the mean

E(|x̂T x|/(‖x̂‖‖x‖)) →
√

m/n,

when m → ∞ and the quotient m/n is kept constant. Here ‖ · ‖ = ‖ · ‖2 is
the Euclidean norm of a vector.

· The expected information of a supersaturated design is
√

m · n.
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2. Basic background for design of experiments

2.1. Design of experiments and optimization. A gradient optimizer
calculates an approximate gradient of a system, for instance a function, at
some point p0 and goes in this direction, which is an approximation of the
steepest ascent when maximizing. The gradient could be approximated by
taking a small step δ > 0 from p0 in each variable one at a time and calculate
the influence on the function for each variable. In DoE terminology, all
experiments of one gradient evaluation form a matrix A that is diagonal
with diagonal elements equal to δ, i.e., A = δI. Since A is invertible, x =
A−1b = δ−1b which is the same as dividing all elements in b by δ. This
could be seen as numerical differentiation. Then a step, normally much
larger than δ, is taken in the direction of the gradient. This larger step
is normally repeated several times until an optimum is reached. Then the
system (function) is evaluated again and a new direction is computed.

In general, DoE basicly works in the same way as a gradient optimizer.
One calculates an approximation to the gradient by x̂ = A+b and moves in
the direction x̂, where A+ is a suitable inverse. The four major differences
regarding general DoE, compared to gradient opimization, are the following.

· Normally there is only one, reasonably large, step for each system evalu-
ation.· DoE takes a large step δ when evaluating the gradient which gives the
system a solid kick [2]. The choice of step length is crucial. The longer step is
taken when investigating the gradient, the more exactly the influence of the
variable is estimated. On the other hand, if the step is too long, we can miss
the curvature. The gradient solver investigates only a small surrounding of
the starting point and then takes a larger step. When taking the larger step
you get into an area that is not investigated. One compromise is to let the
step length in a gradient investigation be as long as the planned step length
in the improvement step.· In DoE, A is not just I, but it has balanced columns. This means that in
each column of A there are equally many steps in the positive direction, plus
ones, as in the negative direction, minus ones. This leads to the fact that
only certain combinations of rows and columns are orthogonal and those are
called experimental designs. One purpose of balanced designs is that the
influence of the experimental error is divided by the number of rows [2]. We
note that in this paper we only study designs for two-levels factors.· A is mostly overdetermined in DoE, i.e., A has more rows than columns,
so the influence of errors is decreased. Overdetermined systems of equations
are often solved by the method of least squares. Recall that A should be
chosen with regard to properties as cost of experiments and orthogonality.
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This means that in DoE one decides in advance which system of equations
should be solved by deciding which experiments should be performed on the
system.

2.2. Optimization with supersaturated designs. A supersaturated de-
sign (SSD) is an experimental series with fewer observations than variables.
The derived underdetermined system of equations can be solved by the
Moore–Penrose pseudo inverse, x̂ = A+b. The Moore–Penrose pseudo in-
verse is defined by A+ = AT (AAT )−1 if A has full rank, i.e., if rank(A) = m,
and by a singular value decomposition of A (SVD) in case rank(A) < m.
For a short introduction to SVD, see Section 3.2. This pseudo inverse gives
the minimum norm solution of Ax = b, i.e., the solution with the smallest
(Euclidean) norm ‖x̂‖2 [5]. Note that the scaling of the problem is vital.

Except for using pseudo inverse solution, optimization with SSD does
not differ from ordinary (overdetermined) DoE. The solution x, the correct
gradient or steepest descent, is estimated by x̂ and a step along this direction
is taken with a reasonable step length [11].

The traditional methods for generating supersaturated designs, see for
instance [8], mainly focus on low pairwise correlation between the columns.
This is called E(s2) technique, which means that the maximal correlation of
the columns of A should be as small as possible. This is good in the typical
case of (overdetermined) DoE, since b̂ not neccessarily equals b. However,
SSD is underdetermined and thus atypical in DoE as will be shown later,
since b̂ = b. The important concern in SSD is that A has linearly independent
rows, not columns, i.e., A should have full rank or almost full rank.

3. Theory for supersaturated designs

3.1. Solving the system of equations. In order to estimate the coeffi-
cients x we have to solve a system of linear equations to get an approximation
x̂. In the case of supersaturated designs the system is underdetermined and
we will use a pseudo inverse based on SVD in order to compute the minimal
norm solution to the system, see [5]. However, computing SVD of a large
system is expensive. This is not a severe problem in our applications, since
supersaturated designs are aimed for expensive experiments which dominate
the total cost anyway.

3.2. Singular value decomposition (SVD). Any matrix A ∈ R
m×n can

be factorized into a product of three matrices A = UΣV T , where U ∈ R
m×m

and V ∈ R
n×n are orthogonal and Σ ∈ R

m×n is nonnegative and quasi-
diagonal, i.e., all elements but σii, i = 1, . . . , n, are zeroes, see [5]. The
diagonal elements σii, i = 1, . . . , n, of Σ are called singular values of A.
Since the inverse of an orthogonal matrix is its transpose, we may define
a generalized inverse by A+ = V Σ+UT , where Σ+ is the transpose of Σ
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with all nonzero elements replaced by their inverted values, i.e., Σ+ ∈ R
n×m

is a quasi-diagonal matrix with diagonal elements 1
σii

, i = 1, . . . , n. Here

we assume that A has full rank. It follows that x̂ = A+b is the unique
solution (except from rounding errors) to the system Ax = b if m = n with
rank(A) = m = n (i.e., the full rank case with A+ = A−1), least square
solution to Ax = b if m > n and minimum norm solution to Ax = b if
m < n. In the latter case A+ is the Moore–Penrose pseudo inverse. We note
that there exists a compact form for SVD, A = U1ΣrV

T
1 , where Σr ∈ R

r×r,
r = rank(A), and U1 ∈ R

m×r, V T
1 ∈ R

r×n. This form is used when A is
rank defective, i.e., when rank(A) < min(n,m).

3.3. Estimates. In this paper we assume x as a property of the object
studied. The estimated gradient is called x̂. For supersaturated designs, x
and x̂ are not necessary the same. The vector x is regarded as the correct
gradient, the first order Taylor expansion of the object studied which in
this paper is assumed to be known. The matrix A ∈ R

m×n includes the
experiments conducted on the object. Let b be the results of the experiments.
If we want to estimate the first order Taylor expansion of the behaviour of
the object, then we compute x̂ = A+b, where A+ is the Moore–Penrose
pseudo inverse. If we then want to check if the object behaves linearly, i.e.,
if Ax = b, we may calculate b̂ = Ax̂ and see if b̂ = b. The total calculation

may be summarized as b̂ = AA+Ax.
For m > n, A+ = (AT A)−1AT is a left inverse so A+A = I. This means

that x̂ = A+Ax = Ix = x and b̂ = Ax̂ = AA+b, which is not b if the system
is not linear or b has noise in the measurements, so in least squares you get
correct coefficients but (in general) wrong estimates, i.e., b̂ 6= b. The matrix
AA+ is very well studied and is called the hat matrix, H = AA+ [12]. The
matrix A+A is not very well studied. Some properties of it are included in
this paper. We call A+A = C the cap matrix and it is as important for
underdetermined estimation as H is for overdetermined estimation.

For m < n and A having full rank, A+ = AT (AAT )−1 is a right inverse so

AA+ = I. This means that b̂ = AA+Ax = IAx = Ib = b, which means that
the estimates given by the model is exact at the measured points. Hence,
the residuals are zero and give no information. Note that C = A+A is not
necessarily equal to I. This means that x̂ = A+Ax = Cx is not necessarily
equal to x and the model gets (in general) wrong coefficients, i.e., x̂ 6= x,
although Ax̂ = Ax. Still it is possible to estimate an approximative angle,
v, between x̂ and x. The expected value of cos v, where v is this angle, is
√

m/n for large values of m and n, see Section 4.
If we have a new observation vector a0, which is a linear combination of

the rows of A, i.e., a0 ∈ Row(A), the row space of A, then a0x̂ = a0x. Hence,
the quality of A dependends on rank(A) = dim(Row(A)) and not on the
correlations of the columns as it is indicated in [8].
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3.4. Some properties regarding pseudo inverses and estimates. In
the following we let the vector norm be the Euclidean 2-norm, and the matrix

norm be the corresponding norm, i.e., ‖A‖2 = supx 6=0
‖Ax‖2

‖x‖2
. It is well known

that 0 ≤ ‖Ax‖ ≤ ‖A‖‖x‖, ‖Ax‖ = 0 if x ∈ Nul(A), and ‖Ax‖ = ‖A‖‖x‖ if
x is parallel to the column in V T (the factor in the SVD of A, see Section
3.2) that corresponds to the largest singular value of A [5].

We consider the general, possibly not full rank, case for supersaturated
designs, so A+ = V Σ+UT , the Moore–Penrose pseudo inverse from Sec-
tion 3.2. Let C = A+A = V Σ+UT UΣV T = V Σ+ΣV T . The matrix C
is symmetric since Σ+Σ is diagonal, see Section 3.2. Obviously, CC = C,
i.e., C is idempotent, so the eigenvalues of C are zeroes or ones. It follows
that ‖C‖ =

√

λmax(C2) = 1, where λmax is the largest eigenvalue. Since
x ∈ Nul(A) implies x ∈ Nul(C), we also get ‖Cx‖ = 0 if x ∈ Nul(A).

Consider now the compact SVD of A, A = U1ΣrV
T
1 , see Section 3.2.

Then AT = V1ΣrU
T
1 and the column spaces of AT and V1 are the same,

i.e., Col(AT ) = Col(V1). Further, C = A+A = V1Σ
−1
r UT

1 U1ΣrV
T
1 = V1V

T
1

is then the orthogonal projection on Col(AT ) = Row(A), the row space of
A. In particular, if x belongs to Row(A), then x̂ = Cx = x. From the fact
that C = V1V

T
1 , with V1 having r linearly independent columns, it follows

that C has r eigenvalues equal to 1 and n − r eigenvalues equal to 0. Thus
r = rank(C) is the sum of the eigenvalues of C, i.e., r = trace(C), the sum
of the diagonal elements of C.

3.5. Volvo data and Pareto principle. In 1906, Vilfredo Pareto ob-
served that 80% of the property in Italy was owned by 20% of the popula-
tion. In 1941, Dr. Joseph Moses Juran expanded the observation to “80% of
your sales come from 20% of your clients”. This is also known as the 80–20
rule or the vital few and the trivial many [9].

In Figure 1 we present a so-called Pareto diagram. The analytic function
behind the graph for the normal probability distribution (the thick line),
and also its inverse function, are given in Lemma 3.1 below. As we will see
in the Lemma, the inverse function is much easier to use when drawing the
function in a diagram.

We can see that the data gathered here is more close to a normal proba-
bility distribution than the Pareto principle. Therefore we are going to use
normally distributed x in the further reasoning.

3.6. Creating lean designs. It was made clear in Sections 3.3 and 3.4
that x̂ = Cx is the orthogonal projection of x on Row(A) and that the
dimension of this space should be as large as possible. The most common
idea in supersaturated designs so far has been having correlations as small as
possible between the columns of A using the E(s2)-technique, see for instance
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Figure 1. The Pareto principle versus normal distribution.
The scaled accumulated coefficients of a number of massive
industrial investigations (regarding handling, noise, NOx and
soot) have been plotted in size order. The star is the point
that the Pareto principle indicates. The thick line is the
normal probability distribution, i.e., for all coefficients being
N(0, 1).

[8], but from our analysis it becomes clear that it is the independency of the
rows that is important, not the independency of the columns.

Orthogonal rows can easily be created by transposing classical designs.
In Appendix 1 we present a MATLAB program for generating designs of
this kind, so called lean designs. The special kind given by this algorithm
is denoted AG-designs in [7], thereby refering to the authors of this paper
(Ahlinder and Gustafsson).

Another way is to concatenate a suitable number of unit matrices I so that
A = [I, I, I, ..., I]. This is equivalent to lumping variables together so that
the first row consists of ones for the probably most influential variables and
zeroes for the other, then the next row is ones for some of the less probable
variables and zeroes for the others and so on.

The thick line in the Pareto diagram, Figure 1, represents the normal
probability distribution. The line is generated by reordering the elements of
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x, where xi is N(0, 1), in decreasing order of magnitude, defining a vector

y by yi =
∑i

k=1 |xk| and finally is plotted y. In order to find an analytical
function behind this graph we consider

F (x) =

∫ ∞

z
te−t2/2dt, (1)

where x and z are related by the following equality

x =
2√
2π

∫ ∞

z
e−t2/2dt.

Here the factor t in the integrand in (1) represents the size of an element

and the factor e−t2/2 represents the corresponding probability density.
In the following Lemma we derive an implicit formula for the function

F (x) in (1), involving the normal distribution function. For the inverse of
F we obtain an explicit formula.

Lemma 3.1. The function F in (1) is given by the implicit formula

F (x) = e−[Φ−1( 2−x
2

)]2/2,

where Φ is the normal distribution function, and its inverse function is given

by

F−1(y) =
2√
2π

∫ ∞

√
−2 ln y

e−t2/2dt. (2)

Proof. The values x and z in (1) should be related by x = 2√
2π

∫ ∞
z e−t2/2dt,

where the integrand represents the probability density and 2√
2π

is the re-

quired normalizing factor. By the normal distribution function

Φ(x) =
1√
2π

∫ x

−∞
e−t2/2dt = 0.5 +

1√
2π

∫ x

0
e−t2/2dt

and since

x =
2√
2π

∫ ∞

z
e−t2/2dt = 1 − 2√

2π

∫ z

0
e−t2/2dt,

we get

2Φ(z) = 1 +
2√
2π

∫ z

0
e−t2/2dt = 2 − x ⇔ z = Φ−1(

2 − x

2
).

We also note that
∫ ∞
z te−t2/2dt = e−z2/2 so we may write the desired function

F (x) = e−[Φ−1( 2−x
2

)]2/2.

For the inverse of this function we obtain a simpler, explicit formula (2). Let

y =

∫ ∞

z
te−t2/2dt, 0 ≤ y ≤ 1.
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Then y = e−z2/2, ln y = −z2/2 and z =
√−2 ln y. Further

x =
2√
2π

∫ ∞

z
e−t2/2dt =

2√
2π

∫ ∞

√
−2 ln y

e−t2/2dt

so the inverse function of F is defined by

F−1(y) =
2√
2π

∫ ∞

√
−2 ln y

e−t2/2dt.

�

4. Results from the present study

4.1. Information using supersaturated designs. In [3], designs are dis-
cussed that maximize the probability to identify active factors. This discus-
sion leads to orthogonal columns so that the authors can make variable
selection. In this paper, we solve the system by using the Moore–Penrose
pseudo inverse giving the minimum norm solution. It turns out that not the
columns should be independent, but the rows. It is the rows that carry the
information further into the coefficients of the solution.

Recall that C = A+A, where A ∈ R
m×n with m < n, is a projection

matrix that projects x on Row(A). A measure of the efficiency of a design
A is cos v, where v is the angle between x and x̂ = Cx. If, for instance, cos v
is 0.5, the gain is half the distance we are going. Let s be the saturation,
i.e., s = n

rank(A) . One of the main results of the present study is that cos v

goes to 1√
s

when n goes to ∞. This statement is proved in Theorem 4.1

below. At first we state and prove a lemma. We consider vectors x ∈ R
n

with components being independent normally distributed random variables
with expectation 0 and variance 1, i.e., xj ∼ N(0, 1), j = 1, ... , n. We
use the notation x ∼ N(0, In) for such vectors. It is just for simplicity we
consider the variance equal to 1. Similar results can be given for a general
variance.

Lemma 4.1. Let x ∈ R
n be such that x ∼ N(0, In). Then the expected

value of the norm of x is

E(‖x‖) =







k!2k+1√
2π(2k−1)!!

, n = 2k + 1
√

2π(2k−1)!!
2(2k−2)!! , n = 2k

.

Here, n!! = n(n − 2)(n − 4)...

Proof. This is a well-known classical result. It could be derived from the

frequency function for the square root
√

∑n
i=1 x2

i given already in [4], Section

18.1. For completeness, we give a proof based on just elementary calculus.
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Since the probability density function for each component xj is f(xj) =
1√
2π

e−x2
j/2 and the components are independent, we get by standard proba-

bility analysis:

E(‖x‖) =
1

(2π)n/2

∫ ∞

−∞
...

∫ ∞

−∞
‖x‖e−‖x‖2/2dx1 ... dxn.

By changing to spherical coordinates we readily get:

E(‖x‖) =
1

(2π)n/2

∫ ∞

0

∫ 2π

0

∫ π

0
...

∫ π

0
rne−r2/2 sinφ2 sin2 φ3 ...

sinn−2 φn−1dφn−1 ... dφ2dφ1dr

=
2π

(2π)n/2

∫ ∞

0

∫ π

0
...

∫ π

0
rne−r2/2 sin φ2 sin2 φ3 ...

sinn−2 φn−1dφn−1 ... dφ2dr.

(3)

For evaluating the integrals in (3) we use some standard definite integrals,
see for instance [10]:

∫ π

0
sinn x dx =

{

2(n−1)!!
n!! , n = 1, 3, 5, ...

π(n−1)!!
n!! , n = 2, 4, 6, ...

(4)

and
∫ ∞

0
xne−x2/2 dx =

{

(2k−1)!!
√

2π
2 , n = 2k

k!2k, n = 2k + 1
. (5)

By using (4) and (5) for the separate integrals in (3) the formulas for the
expected norm arise. �

Theorem 4.1. Let x ∼ N(0, In). Then for x̂ = A+Ax we get the mean

of the norm

(i) E(‖x̂‖) = E(‖z1‖), where z1 ∈ R
m and z1 = N(0, Im).

Further, for n and m even, the mean of the angle v between x and x̂ is given

by

(ii) E(cos v) = π(n−3)!!(m−1)!!
2(n−2)!!(m−2)!! .

In the limit for large dimensions, we get with fixed s = n/m the mean

(iii) limm→∞ E(cos v) =
√

m
n =

√

1
s .

A similar formula to (ii) is valid also for n and m being odd and for the

mixed odd-even case.

Proof. The SVD of A ∈ R
m×n, with full rank, can be written A =

U [Σ O]V T , where Σ ∈ R
m×m is non-singular and O is the m × (n − m)
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zero matrix. The orthogonal projection PAT onto Col(AT ) = Nul(A)⊥ can
be expressed by

PAT = A+A = V

[

Im O
O O

]

V T .

Furthermore, we have x̂ = PAT x = A+Ax. Consider the orthogonal trans-
formation z = V T x. Since V is orthogonal, it follows that z = N(0, In), see
for instance [4], Section 24.4. Let z be splitted according to the SVD, i.e.,

z =

[

z1

z2

]

. Then we may write ẑ = V T x̂ =

[

z1

O

]

. Since V is orthogonal,

E(‖ẑ‖) = E(‖x̂‖), and apparently E(‖ẑ‖) = E(‖z1‖) so E(‖x̂‖) = E(‖z1‖)
and part (i) of the theorem is proved.

In order to prove part (ii) of the theorem we first calculate E( 1
‖x‖ ) in a

similar way that we calculated E(‖x‖) in Lemma 4.1. We readily find that
E( 1

‖x‖ ) differs from E(‖x‖) in (3) just by the factor rn−2 in place of rn in

the integral and we conclude that E( 1
‖x‖ ) = E(‖x‖)/(n−1). Note that cos v

is independent of the norm ‖x‖. Using part (i) we now get

E(cos v) = E(
‖x̂‖
‖x‖ ) = E(

1

‖x‖ )E(‖x̂‖) = E(‖z1‖)E(‖x‖)/(n − 1),

where x = N(0, In) and z1 = N(0, Im).
From Lemma 4.1 we then get, for n and m even, the desired result (ii):

E(cos v) =
π(n − 3)!!(m − 1)!!

2(n − 2)!!(m − 2)!!
.

For part (iii), we use asymptotic behaviors (when n → ∞) of the gamma
function

Γ(
n − 1

2
) = Γ(

n − 3

2
+ 1) ∼

√
2π(

n − 2

2
)

n−2

2 e−(n−2

2
) (6)

and for the factorial

(n − 2)! ∼
√

2π(n − 2)(
n − 2

e
)n−2 (7)

see for instance [10].
We also use the well-known relation between !! and the gamma function, see
for instance [1]:

(n − 3)!! = Γ(
n − 1

2
)2

n−2

2 /
√

π, (8)

By the equations (6), (7) and (8) we now get

(n − 3)!!

(n − 2)!!
=

((n − 3)!!)2

(n − 2)!
∼ 2n−22π(n−2

2 )n−2e−2(n−2

2
)en−2

π
√

2π(n − 2)(n − 2)n−2
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=
2n−1(n−2

2 )n−2

√

2π(n − 2)(n − 2)n−2
=

√
2

√

π(n − 2)
. (9)

From (ii) we have

E(cos v) =
π(n − 3)!!(m − 1)(m − 3)!!

2(n − 2)!!(m − 2)!!
,

and by using (9) for n and m, respectively, the desired result (iii) for fixed
s = n/m with m → ∞ is derived as follows:

E(cos v) ∼ m − 1
√

(n − 2)(m − 2)
∼

√

m

n
=

√

1

s
.

�

4.2. Examples. For instance, if we have twice as many columns than (in-
dependent) rows, then s = 2 and cos v is 1√

2
≈ 0.7. This means that we

expect the relative gain, compared to steepest descent, to be 70% with 50%
of the effort if we take a reasonably large step in the direction of x̂. This
result is proven only for a normally distributed x but it seems to be valid
also if the components of x are equally distributed random numbers in the
interval (0, 1), see Figure 4 below.

It follows that the expected relative gain per parameter is
√

m
n (when A

has full rank). The gain for more columns is proportional to the number
of columns so the total gain for a full rank investigation with supersatu-
rated design on a linear system is

√

m
n · n =

√
m · n. In the case of not

full rank, m should be replaced by r = rank(A) in these formulas. This
says that including some extra parameters is always a gain when doing an
investigation.

In Figure 2 we present the expected relative gain as a function of 1/s,
where 1/s = m/n in the full rank case. We see that the less experiment we
do, the bigger is the relative gain per experiment. We can see, for instance,
that with a saturation of 4 one gets 50% of the relative gain instead of
expected 25%.

Figure 3 shows the expected value of cos v = ‖x̂‖/‖x‖ for different sat-
urations and different ranks of the design matrix. We use the results from
Theorem 4.1 for drawing this graph. It is observed that the rank needs to
be at least 5 to get close to the full effect of the method.

Figure 4 shows the spread in lean optimization simulations compared to
expected value. Ten experiments (rows) are used for 100000 parameters
(columns), i.e., the saturation is 10000. 1000 simulations were done with
equally distributed coefficients in the interval (−1, 1) and we see that the
lowest relative gain is about 0.004. In average we gain about 100 times the
value m

n = 1
s (in the full rank case). The result, proved in Theorem 4.1 for

normally distributed coefficients, says that the expected relative gain should
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Figure 2. Expected relative gain per parameter in Super-
saturated Design as a function of 1/s, where s = n/m is the
saturation and the coefficients are normally distributed

be
√

1
s =

√

m
n = 0.01 and we conclude from this experiment that the same

expected value seems to be valid also if the components of x are equally
distributed random values in the interval (−1, 1).

Since the null space of C has dimension at least n − m > 0, there always
is a possibility that ‖Cx‖ = 0. This happens if x ∈ Nul(A), and in this case
one gets no information from the experiments. However, the expected value
of the information is, relative to the number of experiments, higher than for
a saturated experimental series.

For completeness we include, in Appendix 2, a MATLAB-function for
testing the main result of Theorem 4.1, namely part (iii). This program was
run for producing Figure 4.

5. Conclusions and discussion

The conclusions of this paper are as follows:· Our Volvo data do not follow the Pareto principle.· In SSD the rows should be linearly independent, not the columns.
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Figure 3. The expected value of cos v as a function of the
rank of A for normally distributed coefficients and different
values of the saturation s

· The expected relative gain per parameter with SSD is 1√
s
, where s = n

r ,

n is the number of columns (parameters) and r is the rank of the design
matrix. For the full rank case, this gain is

√

m
n , where m is the number of

rows (experiments).· The total gain in lean optimization is expected to be
√

m
n · n =

√
m · n,

in the full rank case.· SSD is good only for reasonably many experiments, say m > 5.

One can understand our result as that the first observation gives the most
information and then the information per observation decreases.

It is some kind of symmetry that nonsaturated design matrices A should
have independent columns and supersaturated design matrices A should have
independent rows.

Based on this article we conclude that the usual trend in DoE approach,
to have more rows than columns, is not necessarily most efficient.

Our conclusion is that an experimental series should include as many
parameters as are possible to investigate (change) and make a lean design
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Figure 4. The relative gain per parameter for 100000
equally distributed cofficients in (-1,1) and ten experiments
i.e., s = 10000. 1000 simuations are sorted in order of ob-
tained gain.

for the experimental series. The direction of improvement is not the steepest
descent but is still much better than m/n.

To further improve the product in a new experimental series, which can
be afforded in the lean case, the lean design should be rotated which means
the columns should be scrambled. Probably there is an optimal method to
rearrange the columns for many experimental series, but this is outside the
scope of this article.

In this study, perturbations have not been included. Probably such a
study would result in that the rows in a supersaturated A should not only
be independent but orthogonal to minimize the influence of the perturbations
on b.

Appendix 1: Algorithm for AG-design

function L=AG design(m,optional n)
%Ahlinder-Gustafsson design
%m is the number of experiments in lean design, m > 4 to get it supersatu-
rated.



ON SUPERSATURATED EXPERIMENTAL DESIGN 165

%optional n is optional number of variables
%The rank of the design matrix is m-1.

%Full factor design
M=[-1,1]’;
for i=2:m % Loop for all variables except the first
M=[M;M]; %Stacking two matrices M
M=[M,[-ones(size(M,1)/2,1);ones(size(M,1)/2,1)]];
%Add a column with upper half being -1’s and lower half being 1’s
end;

%Full factor design to supersaturated design
v=2̂ m; %The number of rows is m
L=M(v/2+1:v,:); %Last half to avoid total correlation
L=L’; %Transpose to get it supersaturated
s=sum(L); %The sum of variables should be -1,0 or 1
L=L(:,or(s==0,s==1)); %To get balanced designs
if nargin==2 %If the number of arguments is =2
L=L(:,1:optional n); %Cut from end if optional n is given.
end

Appendix 2: The function leantest

function leantest
%Test of Ahlinder-Gustafssons theorem
%Solve a system of n varables with m rows and do it p times
m=10; %Number of rows each time
n=10000; %Number of variables each time
p=1000; %Number of sets run
c=zeros(p,1); %Correlation each time
A=randn(m,n); %The supersaturated design
C=pinv(A)*A; %The cap matrix, xhat=Cx
for i=1:p
x=randn(n,1); %The correct x
xhat=C*x; %The estimated x
c(i)=norm(x’*xhat)/(norm(x)*norm(xhat)); %correlation
end
plot(1:p,sort(c))
e=sqrt(m/n); %expected correlation
hold on
plot([0,p],[e,e],’:’)
plot(p/2,e,’*’)
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