
ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA

Volume 16, Number 2, 2012
Available online at www.math.ut.ee/acta/

Sharp theorems on multipliers in harmonic
function spaces in higher dimension

Miloš Arsenović and Romi F. Shamoyan

Abstract. We present new sharp results concerning multipliers in var-
ious spaces of harmonic functions on the unit ball of Rn.

1. Introduction and preliminaries

The aim of this paper is to describe spaces of multipliers between certain
spaces of harmonic functions on the unit ball. We note that so far there
are no results in this direction in the multidimensional case, where the use
of spherical harmonics is a natural substitute for power series expansion.
In fact, even the case of the unit disc has not been extensively studied in
this context. We refer the reader to [6], where multipliers between harmonic
Bergman type classes were considered, and to [4] and [3] for the case of
harmonic Hardy classes. Most of our results are present in these papers in
the special case of the unit disc.

Let B be the open unit ball in Rn, S = ∂B is the unit sphere in Rn, for x ∈
Rn we have x = rx′, where r = |x| =

√∑n
j=1 x

2
j and x′ ∈ S. The normalized

Lebesgue measure on B is denoted by dx = dx1 . . . dxn = rn−1drdx′, so that∫
B dx = 1. We denote the space of all harmonic functions in an open set Ω

by h(Ω). In this paper letter C designates a positive constant, which can
change its value even in the same chain of inequalities.

For 0 < p <∞, 0 ≤ r < 1 and f ∈ h(B) we set

Mp(f, r) =
(∫

S
|f(rx′)|pdx′

)1/p

,
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with the usual modification to cover the case p =∞. Weighted Hardy spaces
are defined, for α ≥ 0 and 0 < p ≤ ∞, by

Hp
α(B) = Hp

α = {f ∈ h(B) : ‖f‖p,α = sup
r<1

Mp(f, r)(1− r)α <∞}.

For α = 0 the space Hp
α is denoted simply by Hp.

For 0 < p ≤ ∞, 0 < q ≤ ∞ and α > 0 we consider mixed (quasi-)norms
‖f‖p,q;α defined by

‖f‖p,q;α =
(∫ 1

0
Mq(f, r)p(1− r2)αp−1rn−1dr

)1/p

, f ∈ h(B), (1)

again with the usual interpretation for p =∞, and the corresponding spaces

Bp,q
α (B) = Bp,q

α = {f ∈ h(B) : ‖f‖p,q;α <∞}.

It is not hard to show that these spaces are complete metric spaces and that
for min(p, q) ≥ 1 they are Banach spaces. These spaces include weighted
Bergman spaces Apβ(B) = Apβ = Bp,p

β+1
p

, where β > −1 and 0 < p < ∞. We

set A∞β = B∞,∞β for β > 0.
Note that A∞α = H∞α for α ≥ 0 and B∞,qα = Hq

α for 0 < q ≤ ∞, α > 0.
We also have, for 0 < p0 ≤ p1 ≤ ∞, Bp0,1

α ⊂ Bp1,1
α (see [1]).

Next we need certain facts on spherical harmonics and the Poisson kernel
(see [6] for a detailed exposition). Let Y (k)

j be the spherical harmonics of
order k, 1 ≤ j ≤ dk, on S. Let

Z
(k)
x′ (y′) =

dk∑
j=1

Y
(k)
j (x′)Y (k)

j (y′)

be the zonal harmonics of order k. Note that the spherical harmonics Y (k)
j ,

(k ≥ 0, 1 ≤ j ≤ dk) form an orthonormal basis of L2(S, dx′). Every f ∈ h(B)
has an expansion

f(x) = f(rx′) =
∞∑
k=0

rkbk · Y k(x′),

where bk = (b1k, . . . , b
dk
k ), Y k = (Y (k)

1 , . . . , Y
(k)
dk

) and bk · Y k is interpreted in

the scalar product sense: bk · Y k =
∑dk

j=1 b
j
kY

(k)
j . To stress dependence on

a function f ∈ h(B), we often write bk = bk(f) and bjk = bjk(f), in fact, we
have linear functionals bjk, k ≥ 0, 1 ≤ j ≤ dk on h(B).
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We denote the Poisson kernel for the unit ball by P (x, y′), it is defined by

P (x, y′) = Py′(x) =
∞∑
k=0

rk
dk∑
j=1

Y
(k)
j (y′)Y (k)

j (x′)

=
1
nωn

1− |x|2

|x− y′|n
, x = rx′ ∈ B, y′ ∈ S,

where ωn is the volume of the unit ball in Rn. We are also going to use a
Bergman kernel for Apβ spaces, namely, the function

Qβ(x, y) = 2
∞∑
k=0

Γ(β + 1 + k + n/2)
Γ(β + 1)Γ(k + n/2)

rkρkZ
(k)
x′ (y′), x = rx′, y = ρy′ ∈ B.

(2)
For details on this kernel we refer to [1], where the following theorem can be
found.

Theorem 1 (see [1]). Let p ≥ 1 and β ≥ 0. Then for every f ∈ Apβ and
x ∈ B we have

f(x) =
∫ 1

0

∫
Sn−1

Qβ(x, y)f(ρy′)(1− ρ2)βρn−1dρdy′, y = ρy′.

The following lemma provides estimates for the kernel Qβ (see [1], [2]).

Lemma 1. 1) Let β > 0. Then for x = rx′, y = ρy′ ∈ B we have

|Qβ(x, y)| ≤ C

|ρx− y′|n+β
.

2) Let β > −1. Then∫
Sn−1

|Qβ(rx′, y)|dx′ ≤ C

(1− rρ)1+β
, |y| = ρ, 0 ≤ r < 1.

3) Let β > n− 1, , 0 ≤ r < 1 and y′ ∈ Sn−1. Then∫
Sn−1

dx′

|rx′ − y′|β
≤ C

(1− r)β−n+1
.

Lemma 2 (see [1]). Let α > −1 and λ > α+ 1. Then∫ 1

0

(1− r)α

(1− rρ)λ
dr ≤ C(1− ρ)α+1−λ, 0 ≤ ρ < 1.

Lemma 3. Let G(r), 0 ≤ r < 1, be a positive increasing function. Then
for α > −1, β > −1, γ ≥ 0 and 0 < q ≤ 1 we have(∫ 1

0
G(r)

(1− r)β

(1− ρr)γ
rαdr

)q
≤ C

∫ 1

0
G(r)q

(1− r)βq+q−1

(1− ρr)qγ
rαdr, 0 ≤ ρ < 1.

(3)
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A special case of the above lemma appears in [5]. For reader’s convenience
we present a proof.

Proof. We use a subdivision of I = [0, 1) into subintervals Ik = [rk, rk+1),
k ≥ 0, where rk = 1− 2−k. Since 1− ρrk � 1− ρrk+1, 0 ≤ ρ < 1, we have

J =
(∫ 1

0
G(r)

(1− r)β

(1− ρr)γ
rαdr

)q
=

∑
k≥0

∫
Ik

G(r)
(1− r)β

(1− ρr)γ
rαdr

q

≤
∑
k≥0

(∫
Ik

G(r)
(1− r)β

(1− ρr)γ
rαdr

)q
≤C

∑
k≥0

2−kqβGq(rk+1)
(∫

Ik

rαdr

(1− ρr)γ

)q
≤ C

∑
k≥0

2−kqβGq(rk+1)2−kq(1− ρrk+1)−qγ

≤ C
∑
k≥0

2−kqβGq(rk+1)2−kq(1− ρrk)−qγ

≤ C
∑
k≥0

Gq(rk+1)
∫
Ik+1

(1− r)βq+q−1rαdr

(1− ρr)qγ

≤ C
∫ 1

0
G(r)q

(1− r)βq+q−1

(1− ρr)qγ
rαdr.

�

Lemma 4. For δ > −1, γ > n+ δ and β > 0 we have∫
B
|Qβ(x, y)|

γ
n+β (1− |y|)δdy ≤ C(1− |x|)δ−γ+n, x ∈ B.

Proof. Using Lemma 1 and Lemma 2 we obtain:∫
B
|Qβ(x, y)|

γ
n+β (1− |y|)δdy ≤ C

∫
B

(1− |y|)δ

|ρrx′ − y′|γ
dy

≤ C
∫ 1

0
(1− ρ)δ

∫
S

dy′

|ρrx′ − y′|γ
dy′dρ

≤ C
∫ 1

0
(1− ρ)δ(1− rρ)n−γ−1dρ

≤ C(1− r)n+δ−γ .

�

Lemma 5 (see [1]). For real s and t such that s > −1 and 2t+ n > 0 we
have ∫ 1

0
(1− r2)sr2t+n−1dr =

1
2

Γ(s+ 1)Γ(n/2 + t)
Γ(s+ 1 + n/2 + t)

.
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2. Multipliers on spaces of harmonic functions

In this section we present our results on multipliers between spaces of har-
monic functions on the unit ball. To formulate these theorems the following
definitions are needed.

Definition 1. We consider the double indexed sequence of complex num-
bers

c = {cjk : k ≥ 0, 1 ≤ j ≤ dk}
and a harmonic function f(rx′) =

∑∞
k=0

∑dk
j=1 r

kbjk(f)Y (k)
j (x′). We define

(c ∗ f)(rx′) =
∞∑
k=0

dk∑
j=1

rkcjkb
j
k(f)Y (k)

j (x′), rx′ ∈ B,

if the series converges in B. Similarly we define the convolution of f, g ∈ h(B)
by

(f ∗ g)(rx′) =
∞∑
k=0

dk∑
j=1

rkbjk(f)bjk(g)Y (k)
j (x′), rx′ ∈ B.

It is easily seen that f ∗ g is defined and harmonic in B.

Definition 2. For t > 0 and a harmonic function f(x)=
∑∞

k=0 bk(f)Y k(x′)
on the unit ball we define a fractional derivative of order t of f by the formula

(Λtf)(x) =
∞∑
k=0

rk
Γ(k + n/2 + t)
Γ(k + n/2)Γ(t)

bk(f) · Y k(x′), x = rx′ ∈ B.

Clearly, for f ∈ h(B) and t > 0 the function Λth is also harmonic in B.

Definition 3. Let X and Y be subspaces of h(B). We say that a double
indexed sequence c is a multiplier from X to Y if c ∗ f ∈ Y for every f ∈ X.
The vector space of all multipliers from X to Y is denoted by MH(X,Y ).

Clearly, every multiplier c ∈MH(X,Y ) induces a linear map Mc : X → Y .
If, in addition, X and Y are (quasi-)normed spaces such that all functionals
bjk are continuous on both spaces X and Y , then the map Mc : X → Y is
continuous, as is easily seen using the Closed Graph Theorem. We note that
this holds for all spaces which we consider in this paper: Apα, Bp,q

α and Hp
α.

Lemma 6. Let f, g ∈ h(B) have the expansions

f(rx′) =
∞∑
k=0

rk
dk∑
j=1

bjkY
(k)
j (x′), g(rx′) =

∞∑
l=0

rk
dk∑
i=1

cilY
(l)
i (x′).

Then we have∫
S
(g ∗ Py′)(rx′)f(ρx′)dx′ =

∞∑
k=0

rkρk
dk∑
j=1

bjkc
j
kY

(k)
j (y′), y′ ∈ S, 0 ≤ r, ρ < 1.
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Moreover, for every m > −1, y′ ∈ S and 0 ≤ r, ρ < 1 we have∫
S
(g ∗ Py′)(rx′)f(ρx′)dx′ = 2

∫ 1

0

∫
S

Λm+1(g ∗ Py′)(rRx′)f(ρRx′)

(1−R2)mRn−1dx′dR.

Proof. The first assertion of this lemma easily follows from the orthog-
onality relations for spherical harmonics Y

(k)
j . Using Lemma 5 and the

orthogonality relations we have

I = 2
∫ 1

0

∫
S

Λm+1(g ∗ Py′)(rRx′)f(ρRx′)(1−R2)mRn−1dx′dR

= 2
∫ 1

0

∞∑
k=0

rkρkR2k+n−1(1−R2)m
Γ(k + n/2 +m+ 1)
Γ(k + n/2)Γ(m+ 1)

dk∑
j=1

bjkc
j
kY

(k)
j dR

=
∞∑
k=0

rkρk
dk∑
j=1

bjkc
j
kY

(k)
j (y′),

which proves the second assertion. �

We note that
(g ∗ Py′)(rx′) = (g ∗ Px′)(ry′)

and
Λt(g ∗ Py′)(x) = (Λtg ∗ Py′)(x);

these easy-to-prove formulae are often used in our proofs.
In this section fm,y stands for the harmonic function fm,y(x) = Qm(x, y),

y ∈ B. We often write fy instead of fm,y. Let us collect some norm estimates
for fy.

Lemma 7. For 0 < p ≤ ∞ and m > 0 we have

M∞(fm,y, r) ≤ C(1− |y|r)−n−m. (4)

M1(fm,y, r) ≤ C(1− |y|r)−1−m. (5)

‖fm,y‖Bp,1α ≤ C(1− |y|)α−1−m, m > α− 1, α > 0. (6)

‖fm,y‖Bp,∞α ≤ C(1− |y|)α−n−m, m > α− n, α > 0. (7)

‖fm,y‖A1
α
≤ C(1− |y|)α−m, m > α > −1. (8)

‖fm,y‖H1
α
≤ C(1− |y|)α−1−m, m > α− 1, α ≥ 0. (9)

Proof. Using Lemma 1 we obtain

M∞(fm,y, r) = max
x′∈S
|Qm(y, rx′)| ≤ max

x′∈S

C

|ρrx′ − y′|n+m
= C(1− r|y|)−n−m,
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which gives (4). Estimate (5) follows from Lemma 1. Estimates (6), for
finite p, and (8) follow from Lemma 2 and (5). Similarly, for finite p, (7)
follows from (4) and Lemma 2. Next, using (5),

‖fm,y‖H1
α
≤ C sup

0≤r<1
(1− r)α(1− rρ)−m−1, ρ = |y|.

The function φ(r) = (1− r)α(1− rρ)−m−1 attains its maximum on [0, 1] at

r0 = 1− (1− ρ)
α

ρ(1 +m− α)
,

as is readily seen by a simple calculus. This suffices to establish (9) and
therefore (6) for p =∞. Finally, (7) directly follows from Lemma 1. �

In this section we are looking for sufficient and/or necessary conditions
for a double indexed sequence c to be in MH(X,Y ) for certain spaces X and
Y of harmonic functions. With such a sequence c we associate a harmonic
function

gc(x) = g(x) =
∑
k≥0

rk
dk∑
j=1

cjkY
(k)
j (x′), x = rx′ ∈ B, (10)

and express our conditions in terms of gc. Our main results provide condi-
tions in terms of fractional derivatives of gc. However, it is possible to obtain
some results on the basis of the following formula, contained in Lemma 6:

(c ∗ f)(r2x′) =
∫

S
(g ∗ Py′)(rx′)f(ry′)dy′. (11)

Using the continuous form of Minkowski’s inequality, or more generally
Young’s inequality, this formula immediately yields the following proposi-
tion.

Proposition 1. Let c = {cjk : k ≥ 0, 1 ≤ j ≤ dk} be a double indexed
sequence and let g(x) =

∑
k≥0 r

k
∑dk

j=1 c
j
kY

(k)
j (x′) be the corresponding har-

monic function. If∫
S
|(g ∗ Py′)(rx′)|pdx′ ≤ C, y′ ∈ S, 0 ≤ r < 1

for some 1 ≤ p <∞, then c ∈MH(H1, Hp). An analogous statement is true
for p =∞.

More generally, if 1/q+ 1/p = 1 + 1/r, where 1 ≤ p, q, r ≤ ∞, α+ γ = β,
α, β, γ ≥ 0 and g ∈ Hp

γ , then c ∈MH(Hq
α, Hr

β).

Lemma 8. Let 0 < p, q ≤ ∞, 1 ≤ s ≤ ∞ and m > α − 1. Assume a
double indexed sequence c = {cjk : k ≥ 0, 1 ≤ j ≤ dk} is a multiplier from
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Bp,1
α to Bq,s

β and g = gc is defined by (10). Then the following condition is
satisfied:

Ns(g) = sup
0≤ρ<1

sup
y′∈S

(1− ρ)m+1−α+β

(∫
S
|Λm+1(g ∗ Px′)(ρy′)|sdx′

)1/s

<∞,

(12)
where the case s =∞ requires the usual modification.

Also, let 0 < p ≤ ∞, 1 ≤ s ≤ ∞ and m > α − 1. If a double indexed
sequence c = {cjk : k ≥ 0, 1 ≤ j ≤ dk} is a multiplier from Bp,1

α to Hs
β, then

the function g defined above satisfies condition (12).

Proof. Let c ∈ MH(Bp,1
α , Bq,s

β ) and assume that both p and q are finite
(the infinite cases require only small modifications). We have ‖Mcf‖Bq,sβ ≤
C‖f‖

Bp,1α
for f in Bp,1

α . Set hy = Mcfy, then we have

hy(x) =
∑
k≥0

rkρk
k∑
j=1

Γ(k + n/2 +m+ 1)
Γ(k + n/2)Γ(m+ 1)

cjkY
(k)
j (y′)Y (k)

j (x′), x = rx′ ∈ B,

(13)
moreover,

‖hy‖Bq,sβ ≤ C‖fy‖Bp,1α . (14)

This estimate and Lemma 7 imply

‖hy‖Bq,sβ ≤ C(1− |y|)α−m−1, y ∈ B. (15)

Note that hy(x) = Λm+1(g ∗ Py′)(ρx). Using the monotonicity of Ms(hy, r)
we obtain:

Iy′(ρ2) =
(∫

S
|Λm+1(g ∗ Px′)(ρ2y′)|sdx′

)1/s

=
(∫ 1

ρ
(1− r)βq−1rn−1dr

)−1/q

×

(∫ 1

ρ
(1− r)βq−1rn−1

(∫
S
|Λm+1(g ∗ Py′)(ρ2x′)|sdx′

)q/s
dr

)1/q

≤ C(1− ρ)−β
(∫ 1

ρ
(1− r)βq−1rn−1M q

s (hy, r)dr
)1/q

≤ C(1− ρ)−β‖hy‖Bq,sβ . (16)

Combining (16) and (15) we get(∫
S
|Λm+1(g ∗ Px′)(ρ2y′)|sdx′

)1/s

≤ C(1− ρ)α−β−m−1,

which is equivalent to (12). The case s =∞ is treated similarly.
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Next we consider c ∈ MH(Bp,1
α , Hs

β), assuming 0 < p ≤ ∞. Set hy =
Mcfy = g ∗ fy. We have, by Lemma 7,

‖fy‖Bp,1α ≤ C(1− |y|)α−m−1, y ∈ B,

and, by the continuity of Mc, ‖hy‖Hs
β
≤ C‖fy‖Bp,1α . Therefore

‖hy‖Hs
β
≤ C(1− |y|)α−m−1, y ∈ B.

Setting y = ρy′ we have

Iy′(ρ2) =
(∫

S
|Λm+1(g ∗ Px′)(ρ2y′)|sdx′

)1/s

=
(∫

S
|Λm+1(g ∗ Py)(ρx′)|sdx′

)1/s

= Ms(hy, ρ) ≤ (1− |y|)−β‖hy‖Hs
β
.

The last two estimates yield(∫
S
|Λm+1(g ∗ Px′)(ρ2y′)|sdx′

)1/s

≤ C(1− |y|)α−β−m−1, |y| = ρ,

which is equivalent to (12). �

One of the main results of this paper is a characterization of the multiplier
space MH(Bp,1

α , Bq,1
β ) for 0 < p ≤ q ≤ ∞. The following theorem treats the

case p > 1, while Theorem 5 below covers the case 0 < p ≤ 1.

Theorem 2. Let 1 < p ≤ q ≤ ∞ and m > α − 1. Then for a double
indexed sequence c = {cjk : k ≥ 0, 1 ≤ j ≤ dk} the following conditions are
equivalent:

1) c ∈MH(Bp,1
α , Bq,1

β ).

2) The function g(x) =
∑

k≥0 r
k
∑dk

j=1 c
j
kY

(k)
j (x′) is harmonic in B and

N1(g) <∞. (17)

Proof. Since the necessity of (17) follows from Lemma 8, we prove the suf-
ficiency of condition (17). We assume that p and q are finite (the remaining
cases can be treated in a similar manner). Take f ∈ Bp,1

α and set h = Mcf .
Applying the operator Λm+1 to both sides of equation (11) we obtain

Λm+1h(rx) =
∫

S
Λm+1(g ∗ Py′)(x)f(ry′)dy′. (18)
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Now we estimate the L1 norm of the above function on |x| = r:

M1(Λm+1h, r
2) ≤

∫
S
M1(Λm+1(g ∗ Py′), r)|f(ry′)|dy′

≤M1(f, r) sup
y′∈S

∫
S
|Λm+1(g ∗ Py′)(rx′)|dx′

≤M1(f, r)N1(g)(1− r)α−β−m−1. (19)

Since∫ 1

0
Mp

1 (h, r2)(1− r)βp−1rn−1dr ≤C
∫ 1

0
(1− r)p(m+1)Mp

1 (Λm+1h, r
2)

(1− r)βp−1rn−1dr

(see [1]), we have

‖h‖p
Bp,1β
≤ C

∫ 1

0
(1− r)p(m+1)Mp

1 (Λm+1h, r
2)(1− r)βp−1rn−1dr

≤ CNp
1 (g)

∫ 1

0
Mp

1 (f, r)(1− r)αp−1rn−1dr

= CNp
1 (g)‖f‖p

Bp,1α
,

and therefore ‖h‖
Bp,1β

≤ ‖f‖
Bp,1α

. Since ‖h‖
Bq,1β

≤ C‖h‖
Bp,1β

, the proof is
complete. �

Next we consider the multipliers from Bp,1
α to Hs

β. In the case 0 < p ≤ 1
we obtain a characterization of the corresponding space.

Theorem 3. Let β ≥ 0, 0 < p ≤ 1, s ≥ 1 and m > α − 1. Then for
a double indexed sequence c = {cjk : k ≥ 0, 1 ≤ j ≤ dk} the following two
conditions are equivalent:

1) c ∈MH(Bp,1
α , Hs

β).

2) The function g(x) =
∑

k≥0 r
k
∑dk

j=1 c
j
kY

(k)
j (x′) is harmonic in B and

Ns(g) <∞. (20)

Proof. The necessity of condition (20) follows from Lemma 8. Now we
turn to the sufficiency of (20). We choose f ∈ Bp,1

α and set h = c ∗ f . Then,
by Lemma 6,

h(r2x′) = 2
∫ 1

0

∫
S

Λm+1(g ∗ Pξ)(rRx′)f(rRξ)(1−R2)mRn−1dξdR. (21)
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This allows us to obtain the following estimate:

Ms(h, r2) ≤ 2
∫ 1

0
(1−R2)mRn−1

∥∥∥∥∫
S

Λm+1(g ∗ Pξ)(rRx′)f(rRξ)dξ
∥∥∥∥
Ls(S,dx′)

dR

≤ 2
∫ 1

0
(1−R2)mRn−1M1(f, rR) sup

ξ∈S
‖Λm+1(g ∗ Pξ)(rRx′)‖Ls(S,dx′)dR

≤ CNs(g)
∫ 1

0
(1−R)mM1(f, rR)(1− rR)α−β−m−1dR

≤ CNs(g)(1− r)−β
∫ 1

0
M1(f, rR)(1−R)m(1− rR)α−m−1dR.

Note that M1(f, rR) is increasing in 0 ≤ R < 1. Therefore, we can combine
Lemma 3 and the above estimate to obtain:

Mp
s (h, r2) ≤ CNp

s (g)(1− r)−βp
∫ 1

0
Mp

1 (f, rR)
(1−R)mp+p−1

(1− rR)pm−αp+p
dR

≤ CNp
s (g)(1− r)−pβ

∫ 1

0
Mp

1 (f,R)(1−R)αp−1dR

≤ CNp
s (g)(1− r)−pβ‖f‖p

Bp,1α

Hence, Ms(h, r2) ≤ CNs(g)(1−r)−β‖f‖
Bp,1α

, which completes the proof. �

The omitted case p = ∞ is treated in our next theorem, which gives a
characterization of the space MH(H1

α, H
p
β).

Theorem 4. Let α ≥ 0, β > 0, 1 ≤ p ≤ ∞ and m > α − 1. Then for a
double indexed sequence c = {cjk : k ≥ 0, 1 ≤ j ≤ dk} the following conditions
are equivalent:

1) c ∈MH(H1
α, H

p
β).

2) The function g(x) =
∑

k≥0 r
k
∑dk

j=1 c
j
kY

(k)
j (x′) is harmonic in B and

Np(g) <∞. (22)

In the case p =∞ condition (22) is interpreted in the usual manner.

Proof. Let us assume c ∈ MH(H1
α, H

p
β) and set hy = Mcfy for y ∈ B.

Then by the continuity of Mc and by Lemma 7 we have

‖hy‖Hp
β
≤ C‖fy‖H1

α
≤ C(1− |y|)α−m−1.

On the other hand,

‖hy‖Hp
β
≥ (1− ρ)βMp(hy, ρ) ≥ (1− ρ)β

(∫
S
|Λm+1(g ∗ Px′)(ρ2y)|pdx′

)1/p

,

(23)
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and the above estimates imply (22). Now we prove the sufficiency of condi-
tion (22). Choose f ∈ H1

α and set h = c ∗ f . We apply the continuous form
of Minkowski’s inequality to (18) and obtain

Mp(Λm+1h, r
2) ≤M1(f, r) sup

y′∈S
Mp(Λm+1(g ∗ Py′), r)

≤ Np(g)(1− r)α−β−m−1M1(f, r).

Therefore supr<1(1 − r)m+1+βMp(Λm+1h, r) ≤ C‖f‖H1
α
. It follows (see [1])

that supr<1(1 − r)βMp(h, r) ≤ C‖f‖H1
α
, as required. The case p = ∞ is

treated in the same way. �

Since H∞β = A∞β , the case p = ∞ of this theorem gives a complete de-
scription of the spaceMH(H1

α, A
∞
β ). The next proposition provides necessary

conditions for c to be in MH(X,A∞β ) for some spaces X.

Proposition 2. Let m > α. Consider the following conditions for a
double indexed sequence c = {cjk : k ≥ 0, 1 ≤ j ≤ dk}:

1) c ∈MH(A1
α, A

∞
β ).

2) c ∈MH(Bp,1
α , A∞β ).

3) The function g(x) =
∑

k≥0 r
k
∑dk

j=1 c
j
kY

(k)
j (x′) is harmonic in B and

Mt(g) = sup
0≤ρ<1

sup
x′,y′∈S

(1− ρ)t|Λm+1(g ∗ Px′)(ρy′)| <∞. (24)

Then we have: 1)⇒ 3) with t = m+β−α and 2)⇒ 3) with t = m+1+β−α.

Proof. Let X be one of the spaces A1
α, Bp,1

α . As in the previous theorems,
we choose a multiplier c from X to A∞β and note that ‖c ∗ f‖A∞β ≤ C‖f‖X .
We apply this inequality to fy, y = ρy′ ∈ B, with hy = c ∗ fy, and obtain the
estimate

‖hy‖A∞β ≤ C‖fy‖X .

Next,

‖hy‖A∞β ≥ (1− ρ)βM∞(hy, ρ) = (1− ρ)β sup
x′∈S
|hy(ρx′)|

= (1− ρ)β sup
x′∈S
|Λm+1(g ∗ Px′)(ρ2y′)|.

Now both implications follow from Lemma 7. �

Theorem 5 below complements Theorem 2. Its less general form appeared
in [5]. For the completeness of the exposition and with permission of the
authors we present a proof.
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Theorem 5. Let 0 < p ≤ 1, m > α − 1 and p ≤ q ≤ ∞. Then for a
double indexed sequence c = {cjk : k ≥ 0, 1 ≤ j ≤ dk} the following conditions
are equivalent:

1) c ∈MH(Bp,1
α , Bq,1

β ).

2) The function g(x) =
∑

k≥0 r
k
∑dk

j=1 c
j
kY

(k)
j (x′) is harmonic in B and

N1(g) <∞. (25)

Proof. The necessity of the condition (25) follows from Lemma 8. Now
we prove the sufficiency of condition (25). Let f ∈ Bp,1

α (B) and set h = c∗f .
Then, using Lemma 6, we have∫

S
|h(rρx′)|dx′ ≤

∫ 1

0

∫
S

∫
S
|Λm+1(g ∗ Px′)(rRξ)||f(ρRξ)|

(1−R2)mRn−1dξdx′dR

≤ C
∫ 1

0

(
sup
ξ∈S

∫
S
|Λm+1(g ∗ Px′)(rRξ)|dx′

)∫
S
|f(ρRξ)|dξ

(1−R2)mRn−1dR.

Letting ρ→ 1 in the above inequality yields∫
S
|h(rx′)|dx′ ≤ C

∫ 1

0

(
sup
ξ∈S

∫
S
|Λm+1(g ∗ Px′)(rRξ)|dx′

)∫
S
|f(Rξ)|dξ

(1−R2)mRn−1dR.

Since for each fixed ξ ∈ S the function uξ(x) = |Λm+1(g ∗ Pξ)(rx)| is sub-
harmonic, we see that

ψξ(R) =
∫

S
|Λm+1(g ∗ Px′)(rRξ)|dx′ =

∫
S
|Λm+1(g ∗ Pξ)(rRx′)|dx′

is increasing for 0 ≤ R < 1. Therefore the function

Gr(R) =

(
sup
ξ∈S

∫
S
|Λm+1(g ∗ Px′)(rRξ)|dx′

)∫
S
|f(Rξ)|dξ, 0 ≤ R < 1,

is increasing and we can apply Lemma 3 to obtain(∫
S
|h(rx′|dx′

)p
≤ C

(∫ 1

0
Gr(R)(1−R2)mRn−1dR

)p
≤ C

∫ 1

0
Gr(R)p(1−R)mp+p−1Rn−1dR.
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Since Gr(R) ≤ N1(g)M1(f,R)(1− rR)α−β−m−1 for 0 ≤ r < 1, using Lemma
2 we get

‖h‖p
Bp,1β

=
∫ 1

0

(∫
S
|h(rx′)|dx′

)p
(1− r)pβ−1rn−1dr

≤ CN1(g)p
∫ 1

0
M1(f,R)p(1−R)mp+p−1Rn−1

∫ 1

0

(1− r)pβ−1rn−1dr

(1− rR)p(m+1+β−α)
dR

≤ CN1(g)p
∫ 1

0
M1(f,R)p(1−R)pα−1dR = C‖f‖p

Bp,1α
.

Hence, ‖h‖
Bp,1β

≤ C‖f‖
Bp,1α

. This, together with the inequality ‖h‖
Bq,1β
≤

C‖h‖
Bp,1β

, finishes the proof. �
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