Bounds for the Riemann–Stieltjes integral via s-convex integrand or integrator

Mohammad Wajeeh Alomari

ABSTRACT. Several bounds in approximating the Riemann–Stieltjes integral in terms of s-convex integrands or integrator are given.

1. Introduction

A function $f: \mathbb{R}^+ \to \mathbb{R}$, where $\mathbb{R}^+ = [0, \infty)$, is said to be s-convex in the second sense if

$$f(\alpha x + \beta y) \le \alpha^s f(x) + \beta^s f(y)$$

for all $x, y \in [0, \infty)$, $\alpha, \beta \ge 0$ with $\alpha + \beta = 1$ and for some fixed $s \in (0, 1]$. This class of functions is denoted by K_s^2 . It can be easily seen that for s = 1, s-convexity reduces to the ordinary convexity of functions defined on $[0, \infty)$ (see [6]).

In [2], Cerone and Dragomir have proved some error bounds in approximating the Riemann–Stieltjes integral in terms of some moments of the integrand. Among others, they proved the following result.

Theorem 1. Let u be p-convex with p > 0, f be monotonically increasing on [a,b] and such that the Riemann–Stieltjes integral $\int_a^b f(t) du(t)$ and the Riemann integrals $\int_a^b (t-a)^{p-1} f(t) dt$, $\int_a^b (b-t)^{p-1} f(t) dt$ exist. Then

$$\int_{a}^{b} f(t) du(t) \ge \frac{p}{(b-a)^{p}} \left[u(b) \int_{a}^{b} (t-a)^{p-1} f(t) dt - u(a) \int_{a}^{b} (b-t)^{p-1} f(t) dt \right].$$

Received February 27, 2012.

2010 Mathematics Subject Classification. 26A42, 26A51, 26D15.

Key words and phrases. Riemann-Stieltjes integral, s-convex function.

For other results concerning different bounds for the Riemann–Stieltjes integral under various assumptions on f and u, see the recent papers [1]–[5] and the references therein.

In this paper, several inequalities for the Riemann–Stieltjes integral $\int_a^b f(x) dg(x)$ are proved. Namely, the integrand f is assumed to be s-convex (s-concave) and the integrator g is monotonically increasing, bounded and s-convex (s-concave).

2. Inequalities for s-convex integrands or integrators

We may start with the following result.

Theorem 2. Let $f, g : [a, b] \subseteq \mathbb{R}^+ \to \mathbb{R}$ be such that f is s-convex on [a, b], g is monotonically increasing on [a, b] and the Riemann–Stieltjes integral $\int_a^b f(x) \, dg(x)$ and the Riemann integrals $\int_a^b (x-a)^{s-1} g(x) \, dx$, $\int_a^b (b-x)^{s-1} g(x) \, dx$ exist. Then we have the inequalities

$$\int_{a}^{b} f(x) dg(x) \leq \frac{f(b)}{(b-a)^{s}} \left[(b-a)^{s} g(b) - s \int_{a}^{b} g(x) (x-a)^{s-1} dx \right]$$

$$+ \frac{f(a)}{(b-a)^{s}} \left[-(b-a)^{s} g(a) + s \int_{a}^{b} g(x) (b-x)^{s-1} dx \right]$$

$$\leq \left[g(b) - g(a) \right] \left[f(a) + f(b) \right].$$
(2.1)

Proof. Since f is s-convex on [a, b] and by using the integration by parts formula for Riemann–Stieltjes integral, we have

$$\int_{a}^{b} f(x) dg(x) \leq \int_{a}^{b} \left[\left(\frac{x-a}{b-a} \right)^{s} f(b) + \left(\frac{b-x}{b-a} \right)^{s} f(a) \right] dg(x)
= f(b) \int_{a}^{b} \left(\frac{x-a}{b-a} \right)^{s} dg(x) + f(a) \int_{a}^{b} \left(\frac{b-x}{b-a} \right)^{s} dg(x)
= \frac{f(b)}{(b-a)^{s}} \int_{a}^{b} (x-a)^{s} dg(x) + \frac{f(a)}{(b-a)^{s}} \int_{a}^{b} (b-x)^{s} dg(x)
= \frac{f(b)}{(b-a)^{s}} \left[(b-a)^{s} g(b) - s \int_{a}^{b} g(x) (x-a)^{s-1} dx \right] (2.2)
+ \frac{f(a)}{(b-a)^{s}} \left[-(b-a)^{s} g(a) + s \int_{a}^{b} g(x) (b-x)^{s-1} dx \right],$$

which proves the first inequality in (2.1). To prove the second inequality in (2.1), using the monotonicity of g on [a, b], we get

$$\int_{a}^{b} (x-a)^{s-1} g(x) dx \ge g(a) \int_{a}^{b} (x-a)^{s-1} dx = \frac{1}{s} g(a) (b-a)^{s}$$

and

$$\int_{a}^{b} (b-x)^{s-1} g(x) dx \le g(b) \int_{a}^{b} (b-x)^{s-1} dx = \frac{1}{s} g(b) (b-a)^{s}.$$

Therefore by (2.2), we get

$$\int_{a}^{b} f(x) dg(x) \le \frac{f(b)}{(b-a)^{s}} \left[(b-a)^{s} g(b) - s \int_{a}^{b} g(x) (x-a)^{s-1} dx \right]$$

$$+ \frac{f(a)}{(b-a)^{s}} \left[-(b-a)^{s} g(a) + s \int_{a}^{b} g(x) (b-x)^{s-1} dx \right]$$

$$\le \frac{f(b)}{(b-a)^{s}} \left[(b-a)^{s} g(b) - g(a) (b-a)^{s} \right]$$

$$+ \frac{f(a)}{(b-a)^{s}} \left[-(b-a)^{s} g(a) + g(b) (b-a)^{s} \right]$$

$$= \left[g(b) - g(a) \right] \left[f(a) + f(b) \right],$$

which proves the second inequality in (2.1).

The following result holds.

Theorem 3. Let $g:[a,b]\subseteq \mathbb{R}^+\to \mathbb{R}$ be a monotonically increasing function on [a,b].

(1) If $f:[a,b] \to \mathbb{R}^+$ is convex on [a,b], then we have the inequality

$$\int_{a}^{b} f(x) dg(x) \leq \min \left\{ \frac{1}{2} \left[f(a) + f(b) + |f(a) - f(b)| \right] \left[g(b) - g(a) \right], \\ \left[\frac{g(b) - g(a)}{2} + \left| \frac{g(a) + g(b)}{2} \right| - \frac{1}{b - a} \int_{a}^{b} g(x) dx \right| \right] \left[f(a) + f(b) \right] \right\}.$$
(2.3)

(2) If f is concave, then we have the inequality

$$\int_{a}^{b} f(x) dg(x) \ge \max \left\{ \frac{1}{2} [f(a) + f(b) - |f(a) - f(b)|] [g(b) - g(a)], \\ \left[\frac{g(b) - g(a)}{2} - \left| \frac{g(a) + g(b)}{2} \right| \right. (2.4) \\ \left. - \frac{1}{b - a} \int_{a}^{b} g(x) dx \right| \left[f(a) + f(b) \right] \right\}$$

provided that the Riemann–Stieltjes integral $\int_{a}^{b} f(x) dg(x)$ exists.

Proof. (1) In (2.2), set s = 1, then we get

$$\int_{a}^{b} f(x) dg(x) \le \int_{a}^{b} \left[\frac{x-a}{b-a} f(b) + \frac{b-x}{b-a} f(a) \right] dg(x)$$

$$= \frac{f(b)}{b-a} \left[(b-a) g(b) - \int_{a}^{b} g(x) dx \right] + \frac{f(a)}{b-a} \left[-(b-a) g(a) + \int_{a}^{b} g(x) dx \right]$$

$$= f(b) \left[g(b) - \frac{1}{b-a} \int_{a}^{b} g(x) dx \right] + f(a) \left[\frac{1}{b-a} \int_{a}^{b} g(x) dx - g(a) \right].$$

Thus

$$\int_{a}^{b} f(x) dg(x) \le \max \{f(a), f(b)\} [g(b) - g(a)]$$

$$= \frac{1}{2} [f(a) + f(b) + |f(a) - f(b)|] [g(b) - g(a)]$$

and also

$$\int_{a}^{b} f(x) dg(x) \le \max \left\{ \left[g(b) - \frac{1}{b-a} \int_{a}^{b} g(x) dx \right], \left[\frac{1}{b-a} \int_{a}^{b} g(x) dx - g(a) \right] \right\} [f(a) + f(b)]$$

$$= \left[\frac{g(b) - g(a)}{2} + \left| \frac{g(a) + g(b)}{2} - \frac{1}{b-a} \int_{a}^{b} g(x) dx \right| \right] [f(a) + f(b)]$$

which proves (2.3).

(2) If f is concave, then we have

$$\int_{a}^{b} f(x) dg(x) \ge \int_{a}^{b} \left[\frac{x-a}{b-a} f(b) + \frac{b-x}{b-a} f(a) \right] dg(x).$$

So, similarly to the proof of (1),

$$\int_{a}^{b} f(x) dg(x) \ge \min \{f(a), f(b)\} [g(b) - g(a)]$$

and

$$\int_{a}^{b} f(x) dg(x) \ge \min \left\{ \left[g(b) - \frac{1}{b-a} \int_{a}^{b} g(x) dx \right], \left[\frac{1}{b-a} \int_{a}^{b} g(x) dx - g(a) \right] \right\} [f(a) + f(b)]$$

which proves (2.4).

Theorem 4. Let $f, g : [a, b] \subseteq \mathbb{R}^+ \to \mathbb{R}$ be, respectively, s_1 -, s_2 -convex functions on [a, b], $s_1, s_2 \in (0, 1]$. Then we have the inequality

$$\int_{a}^{b} f(x) dg(x) \le \frac{s_{2}}{s_{1} + s_{2}} [f(b) g(b) - f(a) g(a)] + s_{1}\beta (s_{2} + 1, s_{1}) [f(a) g(b) - f(b) g(a)]$$
(2.5)

provided that the Riemann–Stieltjes integral $\int_a^b f(x) dg(x)$ exists. If f, g are s_1 -, s_2 -concave, then the inequality (2.5) is reversed.

Proof. Since f is s_1 -convex on [a, b], by using the integration by parts formula for Riemann–Stieltjes integral, we have

$$\int_{a}^{b} f(x) dg(x) \leq \int_{a}^{b} \left[\left(\frac{x-a}{b-a} \right)^{s_{1}} f(b) + \left(\frac{b-x}{b-a} \right)^{s_{1}} f(a) \right] dg(x)
= f(b) \int_{a}^{b} \left(\frac{x-a}{b-a} \right)^{s_{1}} dg(x) + f(a) \int_{a}^{b} \left(\frac{b-x}{b-a} \right)^{s_{1}} dg(x)
= \frac{f(b)}{(b-a)^{s_{1}}} \int_{a}^{b} (x-a)^{s_{1}} dg(x) + \frac{f(a)}{(b-a)^{s_{1}}} \int_{a}^{b} (b-x)^{s_{1}} dg(x)
= \frac{f(b)}{(b-a)^{s_{1}}} \left[(b-a)^{s_{1}} g(b) - s_{1} \int_{a}^{b} g(x) (x-a)^{s_{1}-1} dx \right]
+ \frac{f(a)}{(b-a)^{s_{1}}} \left[-(b-a)^{s_{1}} g(a) + s_{1} \int_{a}^{b} g(x) (b-x)^{s_{1}-1} dx \right].$$
(2.6)

Since g(x) is s_2 -convex on [a, b], we have

$$g\left(x\right) \le \left[\left(\frac{x-a}{b-a}\right)^{s_2} g\left(b\right) + \left(\frac{b-x}{b-a}\right)^{s_2} g\left(a\right)\right],$$

which, by (2.6), gives

$$\int_{a}^{b} f(x) dg(x)
\leq \frac{f(b)}{(b-a)^{s_{1}}} [(b-a)^{s_{1}} g(b)
-s_{1} \int_{a}^{b} \left(\left(\frac{x-a}{b-a} \right)^{s_{2}} g(b) + \left(\frac{b-x}{b-a} \right)^{s_{2}} g(a) \right) (x-a)^{s_{1}-1} dx \right]
+ \frac{f(a)}{(b-a)^{s_{1}}} [-(b-a)^{s_{1}} g(a)
+s_{1} \int_{a}^{b} \left(\left(\frac{x-a}{b-a} \right)^{s_{2}} g(b) + \left(\frac{b-x}{b-a} \right)^{s_{2}} g(a) \right) (b-x)^{s_{1}-1} dx \right]$$

$$= \frac{f(b)}{(b-a)^{s_1}} \left[(b-a)^{s_1} g(b) - s_1 \frac{g(b)}{(b-a)^{s_2}} \int_a^b (x-a)^{s_1+s_2-1} dx - s_1 \frac{g(a)}{(b-a)^{s_2}} \int_a^b (b-x)^{s_2} (x-a)^{s_1-1} dx \right] + \frac{f(a)}{(b-a)^{s_1}} \left[-(b-a)^{s_1} g(a) + s_1 \frac{g(b)}{(b-a)^{s_2}} \int_a^b (x-a)^{s_2} (b-x)^{s_1-1} dx + s_1 \frac{g(a)}{(b-a)^{s_2}} \int_a^b (b-x)^{s_1+s_2-1} dx \right].$$

Simple calculations yield that

$$\int_{a}^{b} (b-x)^{s_2} (x-a)^{s_1-1} dx = (b-a)^{s_1+s_2} \beta(s_1, s_2+1),$$

and

$$\int_{a}^{b} (x-a)^{s_2} (b-x)^{s_1-1} dx = (b-a)^{s_1+s_2} \beta (s_2+1, s_1),$$

where,

$$\int_{a}^{b} (x-a)^{p} (b-x)^{q} dx = (b-a)^{p+q+1} \int_{0}^{1} (1-t)^{p} t^{q} dt$$
$$= (b-a)^{p+q+1} \beta (p+1, q+1)$$

and $\beta(\cdot, \cdot)$ is the Euler Beta function.

It follows that

$$\int_{a}^{b} f(x) dg(x)
\leq \frac{f(b)}{(b-a)^{s_{1}}} \left[(b-a)^{s_{1}} g(b) - s_{1} \frac{g(b)}{(b-a)^{s_{2}}} \frac{(b-a)^{s_{1}+s_{2}}}{s_{1}+s_{2}} - s_{1} \frac{(b-a)^{s_{1}+s_{2}} g(a)}{(b-a)^{s_{2}}} \beta(s_{1}, s_{2}+1) \right]
+ \frac{f(a)}{(b-a)^{s_{1}}} \left[-(b-a)^{s_{1}} g(a) + s_{1} \frac{(b-a)^{s_{1}+s_{2}} g(b)}{(b-a)^{s_{2}}} \beta(s_{2}+1, s_{1}) + s_{1} \frac{g(a)}{(b-a)^{s_{2}}} \frac{(b-a)^{s_{1}+s_{2}}}{s_{1}+s_{2}} \right]
= f(b) g(b) - \frac{s_{1}}{s_{1}+s_{2}} f(b) g(b) - s_{1} \beta(s_{1}, s_{2}+1) f(b) g(a) - f(a) g(a) + s_{1} \beta(s_{2}+1, s_{1}) f(a) g(b) + \frac{s_{1}}{s_{1}+s_{2}} f(a) g(a)
= \frac{s_{2}}{s_{1}+s_{2}} [f(b) g(b) - f(a) g(a)] + s_{1} \beta(s_{2}+1, s_{1}) [f(a) g(b) - f(b) g(a)],$$

since
$$\beta(s_1, s_2 + 1) = \beta(s_2 + 1, s_1)$$
, which proves (2.5).

Corollary 1. In Theorem 4, if $s_1 = s_2 = 1$, i.e., f, g are two convex functions on [a, b], then we have

$$\int_{a}^{b} f(x) dg(x) \leq \frac{f(a) + f(b)}{2} \left[g(b) - g(a) \right].$$

Corollary 2. In Theorem 4, if f is convex and g is s-convex, then we have

$$\int_{a}^{b} f(x) dg(x) \le f(b) \left[\frac{sg(b) - g(a)}{s+1} \right] + f(a) \left[\frac{g(b) - sg(a)}{s+1} \right]$$
 (2.7)

provided that the Riemann–Stieltjes integral $\int_a^b f(x) dg(x)$ exists. If f is concave and g is s-concave, then the inequality (2.7) is reversed.

Theorem 5. Let $f, g : [a, b] \subseteq \mathbb{R}^+ \to \mathbb{R}$ be such that g satisfies $\phi \leq g(t) \leq \Phi$ for all $t \in [a, b]$.

(1) If f is s-convex on [a,b], then we have the inequality

$$\int_{a}^{b} f(x) dg(x) \le f(b) [g(b) - \phi] + f(a) [\Phi - g(a)]. \tag{2.8}$$

(2) If f is s-concave on [a,b], then we have the inequality

$$\int_{a}^{b} f(x) dg(x) \ge f(b) [g(b) - \Phi] + f(a) [\phi - g(a)]$$
 (2.9)

provided that the Riemann–Stieltjes integral $\int_{a}^{b} f(x) dg(x)$ exists.

Proof. (1) From (2.2), we get

$$\int_{a}^{b} f(x) dg(x) \le \frac{f(b)}{(b-a)^{s}} \left[(b-a)^{s} g(b) - s\phi \int_{a}^{b} (x-a)^{s-1} dx \right]$$

$$+ \frac{f(a)}{(b-a)^{s}} \left[-(b-a)^{s} g(a) + s\Phi \int_{a}^{b} (b-x)^{s-1} dx \right]$$

$$\le \frac{f(b)}{(b-a)^{s}} \left[(b-a)^{s} g(b) - \phi (b-a)^{s} \right]$$

$$+ \frac{f(a)}{(b-a)^{s}} \left[-(b-a)^{s} g(a) + \Phi (b-a)^{s} \right]$$

$$= f(b) \left[g(b) - \phi \right] + f(a) \left[\Phi - g(a) \right]$$

which proves (2.8).

(2) If f is s-concave, then, similarly,

$$\int_{a}^{b} f(x) dg(x) \ge \frac{f(b)}{(b-a)^{s}} \left[(b-a)^{s} g(b) - s\Phi \int_{a}^{b} (x-a)^{s-1} dx \right]$$

$$+ \frac{f(a)}{(b-a)^{s}} \left[-(b-a)^{s} g(a) + s\phi \int_{a}^{b} (b-x)^{s-1} dx \right]$$

$$\ge \frac{f(b)}{(b-a)^{s}} \left[(b-a)^{s} g(b) - \Phi (b-a)^{s} \right]$$

$$+ \frac{f(a)}{(b-a)^{s}} \left[-(b-a)^{s} g(a) + \phi (b-a)^{s} \right]$$

$$= f(b) \left[g(b) - \Phi \right] + f(a) \left[\phi - g(a) \right]$$

which proves (2.9).

Remark 1. Define the function $g:[a,b]\to\mathbb{R}^+,\ g(t)=\int_a^t u(s)ds$. Then g is differentiable on (a,b) and g'(t)=u(t). And we have

$$\int_{a}^{b} f(x) dg(x) = \int_{a}^{b} f(x) u(x) dx.$$

Therefore, we can point out some results for the Riemann integral of a product.

(1) Under the assumptions of Theorem 2, we have

$$\int_{a}^{b} f(x) u(x) dx \leq [f(a) + f(b)] \int_{a}^{b} u(x) dx.$$

(2) Under the assumptions of Theorem 3, we have the following.

(a) If
$$f:[a,b]\to\mathbb{R}^+$$
 is convex on $[a,b]$, then

$$\int_{a}^{b} f(x) u(x) dx \le \min \left\{ \frac{1}{2} \left[f(a) + f(b) + |f(a) - f(b)| \right] \int_{a}^{b} u(x) dx, \right.$$
$$\left. \frac{1}{2} \left[\int_{a}^{b} u(x) dx + \left| \int_{a}^{b} u(x) dx \right| \right.$$
$$\left. - \frac{2}{b - a} \int_{a}^{b} \int_{a}^{x} u(t) dt dx \right| \left. \left[f(a) + f(b) \right] \right\}.$$

(b) If f is concave, then

$$\int_{a}^{b} f(x) u(x) dx \ge \max \left\{ \frac{1}{2} \left[f(a) + f(b) - \left| f(a) - f(b) \right| \right] \int_{a}^{b} u(x) dx, \right.$$
$$\left. \frac{1}{2} \left[\int_{a}^{b} u(x) dx - \left| \int_{a}^{b} u(x) dx \right| \right.$$
$$\left. - \frac{2}{b-a} \int_{a}^{b} \int_{a}^{x} u(t) dt dx \right| \left[\left| f(a) + f(b) \right| \right\}.$$

(3) Under the assumptions of Theorem 4, we have

$$\int_{a}^{b} f(x) u(x) dx \le \left[\frac{s_2}{s_1 + s_2} f(b) + s_1 \beta (s_2 + 1, s_1) f(a) \right] \int_{a}^{b} u(x) dx.$$

- (4) Under the assumptions of Theorem 5, we have the following.
 - (a) If f is s-convex on [a, b], then

$$\int_{a}^{b} f(x) u(x) dx \leq f(b) \left[\int_{a}^{b} u(x) dx - \phi \right] + \Phi f(a).$$

(b) If f is s-concave, then

$$\int_{a}^{b} f(x) u(x) dx \ge f(b) \left[\int_{a}^{b} u(x) dx - \Phi \right] + \phi f(a).$$

References

- [1] N.S. Barnett and S.S. Dragomir, The Beesack-Darst-Pollard inequalities and approximations of the Riemann-Stieltjes integral, Appl. Math. Lett. 22 (2009), 58-63.
- [2] P. Cerone and S. S. Dragomir, Approximating the Riemann–Stieltjes integral via some moments of the integrand, Math. Comput. Modelling 49 (2009), 242–248.
- [3] P. Cerone and S. S. Dragomir, Approximation of the Stieltjes integral and applications in numerical integration, Appl. Math. **51**(1) (2006), 37–47.
- [4] S. S. Dragomir, Inequalities for Stieltjes integrals with convex integrators and applications, Appl. Math. Lett. 20(1) (2007), 123–130.
- [5] S.S. Dragomir, Inequalities of Grüss type for the Stieltjes integral and applications, Kragujevac J. Math. **26** (2004), 89–122.
- [6] H. Hudzik and M. Maligranda, Some remarks on s-convex functions, Aequationes Math. 48(1) (1994), 100–111.

Department of Mathematics, Faculty of Science, Jerash University, 26150 Jerash, Jordan

 $E ext{-}mail\ address: mwomath@gmail.com}$