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Bounds for the Riemann—Stieltjes integral via
s-convex integrand or integrator

MoHAMMAD WAJEEH ALOMARI

ABSTRACT. Several bounds in approximating the Riemann—Stieltjes in-
tegral in terms of s-convex integrands or integrator are given.

1. Introduction

A function f:RT — R, where RT = [0, 00), is said to be s-convex in the
second sense if

flax+ By) <o’ f (x) + 5°F (y)

for all z,y € [0,00), o, 3 > 0 with aw + § = 1 and for some fixed s € (0, 1].
This class of functions is denoted by K?2. It can be easily seen that for s = 1,
s-convexity reduces to the ordinary convexity of functions defined on [0, c0)
(see [6]).

In [2], Cerone and Dragomir have proved some error bounds in approx-
imating the Riemann—Stieltjes integral in terms of some moments of the
integrand. Among others, they proved the following result.

Theorem 1. Let u be p-convex with p > 0, f be monotonically increasing
on [a,b] and such that the Riemann—Stieltjes integral fff (t)du (t) and the

Riemann integrals fab (t—a)P L f(t)dt, f; (b— )P~ £ (t)dt exist. Then
b p b p—1
/a Fau > Gt {u(b)/a (t— )™ £ (1) dt
b
—u(a) / (b—t)P f(t) dt} .
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For other results concerning different bounds for the Riemann—Stieltjes
integral under various assumptions on f and u, see the recent papers [1]-[5]
and the references therein.

In this paper, several inequalities for the Riemann—Stieltjes integral
fff(:z) dg (z) are proved. Namely, the integrand f is assumed to be
s-convex (s-concave) and the integrator g is monotonically increasing, boun-
ded and s-convex (s-concave).

2. Inequalities for s-convex integrands or integrators
We may start with the following result.

Theorem 2. Let f,g : [a,b] C RT — R be such that f is s-convex on [a, b],
g 1s monotonically increasing on [a,b] and the Riemann—Stieltjes integral

f; f(x)dg(z) and the Riemann integrals fb (x —a)* g (z)dr,
fb (b—x)* ' g(x)dx exist. Then we have the inequalities

[ 1@ < L0 Jo-araw—s (9@ -0 ad]

)*
f( ) s b s—1
+(b—a)s [—(b—a)g(a)—l—s/a g(z)(b—x) dw}
<[g(0) —g(a)][f (a) + f ()] (2.1)

Proof. Since f is s-convex on [a,b] and by using the integration by parts
formula for Riemann—Stieltjes integral, we have

[ rwaste /a[(“Z)Sﬂbw(Z‘_j)?(a)]dg(m)
b(’; ) +f()/ab<l;:2>sdg(w)
/() /b dg (@) + 1 /ab<b—x>8dg<x>

[ S/abg(x) (z — a)81d4 (2.2)

T (b—a) {—(b—a) g(a )+3/abg($)(b—x)s_1dx:|,

which proves the first inequality in (2.1). To prove the second inequality in
(2.1)), using the monotonicity of g on [a, b], we get

b b
[ @@z g@ [ @0 =g (- ay
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and
b b
/ (b— 2y g (x)de < g (b) / b2y dr =) (- a)’.

Therefore by (2.2 ., we get

) s —s ’ z) (z —a)* da
/f )dg (z )[w 9 0)-s [ 9)-a) d]
f() S b s—1
+(b e [—(b—a) g(a)+s/a g(x)(b—1) d:n}
<5 <b)) (b~ a)* g (b) — g () (b — 0]
e AR TOR OIS

=g (b) =g (a)][f (a) + £ (b)],
which proves the second inequality in ([2.1)). ]
The following result holds.

Theorem 3. Let g : [a,b] C RT — R be a monotonically increasing
function on [a,b).

(1) If f : [a,b] — R* is convez on [a,b], then we have the inequality

b
[ £ @y <nin {515 @)+7 0)+17 @ 0] s O~ )]

[g (b) ; g(a) g(a)+g(b) (2.3)

-2
_b_la/abg< yasl | 7 @)+ s 01}

(2) If f is concave, then we have the inequality

b
[ @y @z max {515 @+ 01 @1 O] s ) )]

{g ©-s@) _ ‘g @+ 50) (2.4)
b
R dx} f () +f(b)]}

provided that the Riemann—Stieltjes integral ff f(z)dg (z) exists.
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Proof. (1) In (2.2)), set s = 1, then we get

b b
rds) < [ [T 0+ =2 @) e
g?ikb—®9®%—/iﬂwdﬂ g“a[(b—@gmy+4im@d4

sl 52 ] ol -]

b
/ [ (x)dg (z) <max{f(a), f(b)}[g(b) —g(a)]

s~

= % [f (@) + F(0) +1f (a) = f (B)[]]g (b) — g (a)]

and also
[ 1@ <mox{fow -1 [owad
o [war—g@] @+ ro
_ [g(b);g(a) N g(a)—;g(b) _ bia/abg(x)d:r] [f (@) + f (b)]
which proves (2.3).

(2) If f is concave, then we have

[ @@z [0+ =) e

So, similarly to the proof of (1),

b
/f@MM@EMMﬂijﬂmw—ﬂw

which proves ([2.4)).
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Theorem 4. Let f,g : [a,b] C RT — R be, respectively, si-,s2-conver
functions on [a,b], s1,s2 € (0,1]. Then we have the inequality

e 90 = [ (@) ()] 25)

+ 510 (s2+1,51) [f (a) g (b) — £ (b) g (a)]

provided that the Riemann—Stieltjes integral ff f(z)dg (z) exists. If f,qg are
s1-, S9-concave, then the inequality (2.5)) is reversed.

b
/ f (2)dg (x) <

Proof. Since f is sj-convex on [a,b], by using the integration by parts
formula for Riemann—Stieltjes integral, we have

[r@aes [[(=2) o+ (3=2) r@]aw
0 [ (=) wwsw [ (3=2) ww

I N 10 N
_(b—a)sl/a(x a)®™ dg ( )+(b—a)31/a(b )"t dg (x)
[(b— ¥ g (b)

_ (bf_(fﬁ& —sl/abg () (z — a)* ! d:c]
(2.6)
+ O o g @ o) 0 -0 aal.

Since g(x) is sa-convex on [a, b], we have

s = |(722) om+ (1=2) et

which, by (2.6, gives

b
/ f (x) dg ()
/

0 .
< o (0= g 0)

= [ (=) 00+ (52) 0@ -]

s - g

v [ ((=2) 00+ (522) " s@) 00 ae]

_l’_
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b

a b
—81 (bg—(a))52 / (b—2) (x —a)™ da
g(b)

+ /(@) (ba)slg(a)+51/b(aza)52 (b—x)* ' da
(b—a)” (b—a)* J,
g (a) b _ S1+s2—1
+51 b—a) /a (b—x) dx| .
Simple calculations yield that

b
/ (b—2)2(x—a) tde = (b—a) 23 (s1, 50+ 1),
and
b
/ (z—a)2(b—a2)" " de=b—0a)"T23(s2+1,51),

where,

b 1
x_ap _xq T = _ap+q+1 _ P 1q
/a< P (b 2)ide = (b a) /0(1 P 9t

=0b-a)f"" B(p+1,q+1)

and [ (-, -) is the Euler Beta function.
It follows that

b
/ f (z) dg (x)
SO [(b ) g () - s

= 0-a)

b= (0
(b—a)™ s

g(b) (b—a)t=
(b—a)™  s1+ 89

—51 (51,82 + 1)]

f(a) (b—a)"" g (b)

+ b=a) [— (b—a)™ g(a) + 51 b—a)" B(s2+1,51)

g(a) (b—a)"*
+Sl(b—a)s2 s1+ S2 ]
=F0)g(0) = F (D) g (0) =15 (51,5 + 1)  (b) g a)
~F @) g (@) + 15 (524 Ls1) f (@) g (0) + S f (@)g (@)
52

= [f(b) g (b)— [ (a) g (a)]+s18 (s2+1,51) [f (a) g (b)—f (b) g (a)],

S1+ S2
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since [ (s1,82 + 1) = B (s2 + 1, s1), which proves ({2.5). O

Corollary 1. In Theorem [, if s1 = so = 1, i.e., f,g are two convex
functions on [a,b], then we have

b a
[ 1@ds@ < MO0 0 g @,

Corollary 2. In Theorem [}, if f is convex and g is s-convez, then we
have
b) —
[ 1@y < s [2OO] g [1O0@] o

provided that the Riemann—Stieltjes integral fff(x) dg (x) exists. If f is
concave and g is s-concave, then the inequality (2.7) is reversed.

Theorem 5. Let f,g: [a,b] C RT — R be such that g satisfies ¢ < g (t) <
O for allt € [a,b].

(1) If f is s-convez on [a,b], then we have the inequality

b
/ fx)dg(x) < f(b)[g(b) — ]+ f(a) [P —g(a)]. (2.8)

(2) If f is s-concave on [a,b], then we have the inequality
b
[t@ds@=rml® -2+ f@b-g@  (@9)

provided that the Riemann—Stieltjes integral fab f(x)dg (x) exists.
Proof. (1) From (2.2)), we get

[ s 2y o-ram o

—a)’
(J(z {—@—a)g()+s@L @—xf*d4

s[(b—a)’g(b) =9 (b—a)’

<<

e RSO ORLIORDN
=f(0)[g () =]+ f(a)[®—g(a)]
which proves .
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(2) If f is s-concave, then, similarly,

/f ()) [(b— a)° (b)—s@/ab(x—a)s_ldx]

+(j(§[ w—afw@+w¢L?b—m*HM]

>3 “ﬁ[( g ()~ (b))
+(f<§[—w—afgw»+¢w—aﬂ
FB)g ()~ 2]+ f (@) [6— g (a)
which proves . ]

Remark 1. Define the function g : [a,b] — R, g(t) = f; u(s)ds. Then g
is differentiable on (a,b) and ¢'(t) = u(t). And we have

[ v - [ s

Therefore, we can point out some results for the Riemann integral of a
product.

(1) Under the assumptions of Theorem [2| we have
b
/ f@)u(x)de <[f(a)+ f (b)}/ u(z)dx.

(2) Under the assumptions of Theorem [3] we have the following.

(a) If f: [a,b] — R is convex on [a, b], then

/abf(x)u(x)dx < min{; [f (@) + £ (b) + | f (a) — f (b)]] /ab u(z)dz,
;[/b (x)dx + ’

u(z)dz
A wM} @+ 1)}
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(b) If f is concave, then

b b
[ 1@t dx>max{ 1O =1 @O [ utwds,
1
5

[/ e | [ e
2 [ [ woaa] i@+ o0}

) Under the assumptions of Theorem /4| ' we have

/f ) dz < [Szf(b)ﬂlﬁ(s?ﬂ,sl)f(a)] /abu(x)da:.

51+ S2

) Under the assumptions of Theorem |5, we have the following.
(a) If f is s-convex on [a, b], then

/f x<f()_/abu(a:)dx—¢]+<1>f(a).

) If f is s-concave, then

/f dx>f()_/{lbu(x)d:x—<1>}+¢f(a).
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