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Bilinear generating relations for a family of
q-polynomials and generalized basic

hypergeometric functions

S.D. Purohit, V.K. Vyas, and R.K. Yadav

Abstract. In this paper, we derive a bilinear q-generating function
involving basic analogue of Fox’s H-function and a general class of
q-hypergeometric polynomials. Applications of the main results are also
illustrated.

1. Introduction and preliminaries

For a, q ∈ C the q-shifted factorial (see [2]) is defined by

(a ; q)n =
{

1 ; n = 0
(1− a) (1− a q) · · · (1− a qn−1) ; n ∈ N ,

(1.1)

and its natural extension is

(a ; q)α =
(a ; q)∞

(aqα ; q)∞
, α ∈ C, |q| < 1. (1.2)

The definition (1.1) remains meaningful for n = ∞ as a convergent infinite
product

(a ; q)∞ =
∞∏
j=0

(1− a qj) . (1.3)

The q-analogue of the power (binomial) function (x ± y)n (cf. Ernst [1])
is given by

(x± y)(n) ≡ (x± y)n ≡ xn(∓y/x; q)n = xn
n∑
k=0

[
n
k

]
q

qk(k−1)/2 (±y/x)k ,

(1.4)
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where the q-binomial coefficient is defined as[
α
k

]
q

=
(q−α; q)k

(q; q)k
(−qα)kq−k(k−1)/2 (k ∈ N, α ∈ R). (1.5)

It satisfies [
n
k

]
q

=
(q; q)n

(q; q)n−k(q; q)k
. (1.6)

For a bounded sequence An of real or complex numbers, let f(x) =
∞∑
n=0

Anx
n

be a power series in x, (see, for instance, [1, page 502, equation (3.18)]), then
we have

f [(x± y)] =
∞∑
n=0

An x
n(∓y/x; q)n. (1.7)

The q-gamma function (cf. [2]) is defined by

Γq(x) =
(q; q)∞
(qx; q)∞

(1− q)1−x (x ∈ C, x /∈ {0,−1,−2, · · · }). (1.8)

And it satisfies

Γq(x+ 1) =
1− qx

1− q
Γq(x). (1.9)

In terms of a bounded complex sequence {Sk,q}∞k=0, the family of general
class of basic (or q-) polynomials fn,m(x; q) (cf. Srivastava and Agarwal [9])
is defined as

fn,m(x; q) =
[n/m]∑
k=0

[
n
mk

]
q

Sk,q x
k (n ∈ N), (1.10)

where m is a positive integer.

With the appropriate choice of the sequence {Sk,q}∞k=0, the q-polynomial
family fn,m(x; q) yields a number of known q-polynomials as its special cases.
These include, the q-Hermite polynomials, the q-Laguerre polynomials, the
q-Jacobi polynomials, the Wall polynomials, the q-Konhauser polynomials
and several others.

Following Saxena, Modi and Kalla [8], the basic analogue of the Fox’s
H-function is defined as

HM,N
P,Q

[
x; q

∣∣∣∣ (a, α)
(b, β)

]
=

1
2π i

∫
C
θ(s; q) xs dqs, (1.11)
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where

θ(s; q) =

{
M∏
j=1

G(qbj−βjs)

} {
N∏
j=1

G(q1−aj+αjs)

}
π{

Q∏
j=M+1

G(q1−bj+βjs)

}{
P∏

j=N+1

G(qaj−αjs)

}
G(q1−s) sinπ s

(1.12)
and

G(qa) =

{ ∞∏
n=0

(1− qa+n)

}−1

=
1

(qa; q)∞
. (1.13)

Also 0 ≤ M ≤ Q, 0 ≤ N ≤ P , αi’s and βj ’s are all positive integers. The
contour C is a line parallel to <(ω s) = 0 with indentations if necessary, in
such a manner that all the poles of G(qbj−βjs), 1 ≤ j ≤ M are to the right,
and those of G(q1−aj+αjs), 1 ≤ j ≤ N to the left of C. For large values of |s|,
the integral converges if <[s log(x)− log sinπs]< 0 on the contour C, i.e. if∣∣ { arg(x)− w2w

−1
1 log |x|

} ∣∣< π, where 0<|q|<1, log q = −w = −(w1 + iw2),
w1 and w2 being real.

Further, if we set αi = βj = 1, ∀ i and j in (1.11), we obtain the basic
analogue of Meijer’s G-function due to Saxena, Modi and Kalla [8]:

GM,N
P,Q

[
x; q

∣∣∣∣ a1, a2, · · · , aP
b1, b2, · · · , bQ

]
=

1
2π i

∫
C
θ′(s; q) xs dqs, (1.14)

where

θ′(s; q) =

{
M∏
j=1

G(qbj−s)

}{
N∏
j=1

G(q1−aj+s)

}
π{

Q∏
j=M+1

G(q1−bj+s)

}{
P∏

j=N+1

G(qaj−s)

}
G(q1−s) sinπ s

.

(1.15)
A detailed account of Meijer’s G-function, Fox’s H-function and various

functions expressible in terms of Fox’s H-function can be found in the re-
search monographs due to Mathai and Saxena [4, 5], Mathai, Saxena and
Haubold [6] and Srivastava, Gupta and Goyal [10]. Further, the basic func-
tions of one variable (elementary and hypergeometric) expressible in terms
of the functions Gq(.) can be found in the works of Yadav and Purohit [12]
and [13].
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2. The q-generating relations

In this section, we shall derive certain bilinear q-generating relations in-
volving basic analogue of Fox’s H-function and a general class of q-hypergeo-
metric polynomials.

Theorem 1. Let {Sk,q}∞k=0 be an arbitrary bounded sequence, let M,N,P ,
Q be positive integers such that 0 ≤ M ≤ Q, 0 ≤ N ≤ P , let h > 0, and let
m be an arbitrary positive integer. Then the following bilinear q-generating
relation holds:

∞∑
n=0

fn,m(ρ x; q) HM,N+1
P+1,Q

[
y; q

∣∣∣∣ (1− λ− n, h), (a, α)
(b, β)

]
tn

(q; q)n

=
1

(1− t)(λ)

∞∑
k=0

Sk,q
(q; q)mk

(ρ x tm)k

(1− tqλ)(mk)

×HM,N+1
P+1,Q

[
y

(1− tqλ+mk)(h)
; q
∣∣∣∣ (1− λ−mk, h), (a, α)

(b, β)

]
, (2.1)

where |t| < 1, 0 < |q| < 1, and ρ and λ are arbitrary numbers.

Proof. Denoting, for convenience, the left-hand side of (2.1) by L and using
the contour integral representation (1.11) for the basic analogue of Fox’s
H-function and the definition (1.10) for the general class of q-polynomials
fn,m(ρ x; q), we get

L =
1

2π i

∞∑
n=0

[n/m]∑
k=0

[
n
mk

]
q

Sk,q (ρ x)k


×
{∫

C
θ(s; q)G(qλ+n+hs) ys dqs

}
tn

(q; q)n
.

Changing the order of summations and integration, we obtain

L =
1

2π i

∫
C
θ(s; q)

∞∑
n=0

[n/m]∑
k=0

G(qλ+n+hs)
(q; q)n

[
n
mk

]
q

Sk,q (ρ x)k tnys dqs ,

(2.2)
where θ(s; q) is given by (1.12). Using of the relation for q-gamma function,
namely

G(qa) =
Γq(a) (1− q)a−1

(q; q)∞
, (2.3)

we obtain

L =
1

2π i

∫
C
θ(s; q)

Γq(λ+ hs) (1− q)λ+hs−1

(q; q)∞
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×
∞∑
n=0

[n/m]∑
k=0

(qλ+hs; q)n
(q; q)n

[
n
mk

]
q

Sk,q (ρ x)k tn ys dqs .

Again, changing the order of summations and making use of the series re-
arrangement relation (cf. Srivastawa and Manocha [11])

∞∑
n=0

[n/m]∑
k=0

B(k, n) =
∞∑
k=0

∞∑
n=0

B(k, n+mk), (2.4)

we obtain

L =
1

2π i

∫
C
θ(s; q)

Γq(λ+ hs) (1− q)λ+hs−1

(q; q)∞

×
∞∑
k=0

Sk,q
(ρ x tm)k

(q; q)mk

∞∑
n=0

(qλ+hs; q)n+mk

(q; q)n
tn ys dqs . (2.5)

Summing the inner series with the help of the q-binomial theorem (see [2]),
namely

1Φ0(a;−; q; z) =
(az; q)∞
(z; q)∞

, |z| < 1, 0 < |q| < 1, (2.6)

we find that

L =
1

2π i

∫
C
θ(s; q)

Γq(λ+ hs) (1− q)λ+hs−1

(q; q)∞

×
∞∑
k=0

(qλ+hs; q)mk (ρ x tm)k

(t; q)λ+hs+mk(q; q)mk
Sk,q y

s dqs . (2.7)

Now by interchanging the order of contour integral and summation, and
using the q-identities (see [2]), namely

(a; q)n+k = (a; q)n(aqn; q)k (2.8)

and

(a; q)n =
Γ(a+ n)(1− q)n

Γ(a)
(n > 0), (2.9)

we obtain

L =
1

(t; q)λ

∞∑
k=0

(ρ x tm)k

(tqλ; q)mk(q; q)mk
Sk,q

× 1
2π i

∫
C
θ(s; q)

Γq(λ+ hs+mk) (1− q)λ+hs+mk−1

(tqλ+mk; q)hs(q; q)∞
ys dqs . (2.10)

The desired result follows by interpreting the contour integral of (2.10) in
light of the definition (1.11) and the notation (2.3). This completes the proof
of Theorem 1. �
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Observe that, if we set the bounded sequence Sk,q = 1 and take ρ = 0,
then for the family of q-polynomials one has

fn,m(ρ x; q) = 1,

and thus in view of the right-hand side of (2.1) for k = 0, we obtain the
following theorem.

Theorem 2. Let M,N,P,Q be positive integers satisfying 0 ≤ M ≤
Q, 0 ≤ N ≤ P . Let h > 0, let λ be an arbitrary number, and let m be
an arbitrary positive integer. Then the q-generating relation for the basic
analogue of Fox’s H-function is given by

∞∑
n=0

HM,N+1
P+1,Q

[
y; q

∣∣∣∣ (1− λ− n, h), (a, α)
(b, β)

]
tn

(q; q)n
=

1
(1− t)(λ)

× HM,N+1
P+1,Q

[
y

(1− tqλ)(h)
; q
∣∣∣∣ (1− λ, h), (a, α)

(b, β)

]
, (2.11)

where |t| < 1 and 0 < |q| < 1.

3. Concluding observations and remarks

In this section, we consider some consequences of the results derived in
previous section.

If we set αi = βj = 1 for all i and j, m = h = 1, and take (1.14) into
account, then Theorems 1 and 2 yield Corollaries 1 and 2 below, respectively.

Corollary 1. Let {Sk,q}∞k=0 be an arbitrary bounded sequence and let
M,N,P,Q be positive integers satisfying 0 ≤M ≤ Q, 0 ≤ N ≤ P . Then the
following bilinear generating relation for the function Gq(.) holds:

∞∑
n=0

fn,1(ρ x; q) GM,N+1
P+1,Q

[
y; q

∣∣∣∣ 1− λ− n, a1, · · · , aP
b1, · · · , bQ

]
tn

(q; q)n
=

1
(1− t)(λ)

×
∞∑
k=0

Sk,q
(q; q)k

(ρ x t)k

(1− tqλ)(k)
GM,N+1
P+1,Q

[
y

(1− tqλ+k)
; q
∣∣∣∣1− λ− k, a1, · · · , aP

b1, · · · , bQ

]
,

(3.1)
where |t| < 1, 0 < |q| < 1 and λ is an arbitrary number.

Corollary 2. Let M,N,P,Q be positive integers satisfying 0 ≤ M ≤ Q,
0 ≤ N ≤ P and let λ be an arbitrary number. Then the q-generating relation
for the basic analogue of Meijer’s G-function is given by

∞∑
n=0

GM,N+1
P+1,Q

[
y; q

∣∣∣∣ 1− λ− n, a1, · · · , aP
b1, · · · , bQ

]
tn

(q; q)n
=

1
(1− t)(λ)
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× GM,N+1
P+1,Q

[
y

(1− tqλ)
; q
∣∣∣∣ 1− λ, a1, · · · , aP

b1, · · · , bQ

]
, (3.2)

where |t| < 1 and 0 < |q| < 1.

Further, it is interesting to observe that in view of the following limiting
cases:

lim
q→1−

Γq(a) = Γ(a) and lim
q→1−

(qa; q)n
(1− q)n

= (a)n , (3.3)

where
(a)n = a(a+ 1) · · · (a+ n− 1), (3.4)

the q-generating relation (2.1) of Theorem 1 provides the q-extension of the
known result due to Raina [7, page 301, equation (2.1)].

By assigning suitable special values to the sequence {Sk,q}∞k=0, our main
result (Theorem 1) can be applied to derive certain bilinear q-generating
relations for the product of orthogonal q-polynomials and the basic analogue
of Fox’s H-function. To illustrate this, we consider the following example.

Setting m = 1 and

Sk,q =
(−1)kqk(k−1)(αq; q)n

(αq; q)k(q; q)n
, (3.5)

we find from (1.10) that

fn,1(x; q) = L(α)
n (x; q),

where L(α)
n (x; q) denotes the q-Laguerre polynomial defined by (cf. [9])

L(α)
n (x; q) =

(αq; q)n
(q; q)n

1Φ1

 q−n ;
−xqn

αq ;

 . (3.6)

Thus in view of the above relations, Theorem 1 yeilds the q-generating re-
lation involving q-Laguerre polynomial and the basic Fox’s H-function as
below:

∞∑
n=0

L(α)
n (ρ x; q) HM,N+1

P+1,Q

[
y; q

∣∣∣∣ (1− λ− n, h), (a, α)
(b, β)

]
tn

(q; q)n

=
(αq; q)n

(1− t)(λ)(q; q)n

∞∑
k=0

(−1)kqk(k−1)

(q; q)k(αq; q)k

(ρ x t)k

(1− tqλ)(k)

× HM,N+1
P+1,Q

[
y

(1− tqλ+k)(h)
; q
∣∣∣∣ (1− λ− k, h), (a, α)

(b, β)

]
. (3.7)

Again, if we set m = 1 and

Sk,q =
(αq; q)n(αβqn+1; q)k(−1)kqk(k+1)/2−nk

(αq; q)k(q; q)n
, (3.8)
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we find from (1.10) that

fn,1(x; q) = P (α,β)
n (x; q),

where P (α,β)
n (x; q) denotes the q-Jacobi polynomial defined by (cf. [9])

P (α,β)
n (x; q) =

(αq; q)n
(q; q)n

2Φ1

 q−n, αβqn+1 ;
xq

αq ;

 . (3.9)

Then, Theorem 1 provides the q-generating relation involving q-Jacobi poly-
nomial and the basic Fox’s H-function, namely

∞∑
n=0

P (α,β)
n (ρ x; q) HM,N+1

P+1,Q

[
y; q

∣∣∣∣ (1− λ− n, h), (a, α)
(b, β)

]
tn

(q; q)n

=
(αq; q)n

(1− t)(λ)(q; q)n

∞∑
k=0

(αβqn+1; q)k(−1)kqk(k+1)/2−nk

(q; q)k(αq; q)k

(ρ x t)k

(1− tqλ)(k)

×HM,N+1
P+1,Q

[
y

(1− tqλ+k)(h)
; q
∣∣∣∣ (1− λ− k, h), (a, α)

(b, β)

]
. (3.10)

A detailed account of various hypergeometric orthogonal q-polynomials
can be found in the research monograph by Koekoek, Lesky and Swarttouw
[3] and in [9]. It is worth mentioning that the definitions of q-Laguerre and
q-Jacobi polynomials given by the equations (3.6) and (3.9), respectively, are
slightly different from those given in the seminal work [3]. Therefore, one
can derive similar type of results by taking into consideration the definitions
of the q-polynomials given in [3].

We conclude with the remark that by suitably assigning values to the
sequence {Sk,q}∞k=0, the q-generating relation (2.1) being of general nature,
will lead to several generating relations for the product of orthogonal q-
polynomials and the basic analogue of the Fox’s H-functions.
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