# Bilinear generating relations for a family of $q$-polynomials and generalized basic hypergeometric functions 

S. D. Purohit, V. K. Vyas, and R. K. Yadav


#### Abstract

In this paper, we derive a bilinear $q$-generating function involving basic analogue of Fox's $H$-function and a general class of $q$-hypergeometric polynomials. Applications of the main results are also illustrated.


## 1. Introduction and preliminaries

For $a, q \in \mathbb{C}$ the $q$-shifted factorial (see [2]) is defined by

$$
(a ; q)_{n}=\left\{\begin{array}{cc}
1 & ; \quad n=0  \tag{1.1}\\
(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right) & ; \quad n \in \mathbb{N}
\end{array}\right.
$$

and its natural extension is

$$
\begin{equation*}
(a ; q)_{\alpha}=\frac{(a ; q)_{\infty}}{\left(a q^{\alpha} ; q\right)_{\infty}}, \alpha \in \mathbb{C},|q|<1 \tag{1.2}
\end{equation*}
$$

The definition (1.1) remains meaningful for $n=\infty$ as a convergent infinite product

$$
\begin{equation*}
(a ; q)_{\infty}=\prod_{j=0}^{\infty}\left(1-a q^{j}\right) \tag{1.3}
\end{equation*}
$$

The $q$-analogue of the power (binomial) function $(x \pm y)^{n}$ (cf. Ernst [1]) is given by

$$
(x \pm y)^{(n)} \equiv(x \pm y)_{n} \equiv x^{n}(\mp y / x ; q)_{n}=x^{n} \sum_{k=0}^{n}\left[\begin{array}{l}
n  \tag{1.4}\\
k
\end{array}\right]_{q} q^{k(k-1) / 2}( \pm y / x)^{k}
$$

Received March 20, 2012.
2010 Mathematics Subject Classification. 33D45, 33D60, 33D90.
Key words and phrases. $q$-Generating function, basic analogue of Fox's $H$-function, $q$-polynomials.
where the $q$-binomial coefficient is defined as

$$
\left[\begin{array}{c}
\alpha  \tag{1.5}\\
k
\end{array}\right]_{q}=\frac{\left(q^{-\alpha} ; q\right)_{k}}{(q ; q)_{k}}\left(-q^{\alpha}\right)^{k} q^{-k(k-1) / 2}(k \in \mathbb{N}, \alpha \in \mathbb{R})
$$

It satisfies

$$
\left[\begin{array}{c}
n  \tag{1.6}\\
k
\end{array}\right]_{q}=\frac{(q ; q)_{n}}{(q ; q)_{n-k}(q ; q)_{k}}
$$

For a bounded sequence $A_{n}$ of real or complex numbers, let $f(x)=\sum_{n=0}^{\infty} A_{n} x^{n}$ be a power series in $x$, (see, for instance, [1, page 502, equation (3.18)]), then we have

$$
\begin{equation*}
f[(x \pm y)]=\sum_{n=0}^{\infty} A_{n} x^{n}(\mp y / x ; q)_{n} \tag{1.7}
\end{equation*}
$$

The $q$-gamma function (cf. [2]) is defined by

$$
\begin{equation*}
\Gamma_{q}(x)=\frac{(q ; q)_{\infty}}{\left(q^{x} ; q\right)_{\infty}}(1-q)^{1-x}(x \in \mathbb{C}, x \notin\{0,-1,-2, \cdots\}) \tag{1.8}
\end{equation*}
$$

And it satisfies

$$
\begin{equation*}
\Gamma_{q}(x+1)=\frac{1-q^{x}}{1-q} \Gamma_{q}(x) \tag{1.9}
\end{equation*}
$$

In terms of a bounded complex sequence $\left\{S_{k, q}\right\}_{k=0}^{\infty}$, the family of general class of basic (or $q-$ ) polynomials $f_{n, m}(x ; q)$ (cf. Srivastava and Agarwal [9]) is defined as

$$
f_{n, m}(x ; q)=\sum_{k=0}^{[n / m]}\left[\begin{array}{c}
n  \tag{1.10}\\
m k
\end{array}\right]_{q} S_{k, q} x^{k}(n \in \mathbb{N})
$$

where $m$ is a positive integer.
With the appropriate choice of the sequence $\left\{S_{k, q}\right\}_{k=0}^{\infty}$, the $q$-polynomial family $f_{n, m}(x ; q)$ yields a number of known $q$-polynomials as its special cases. These include, the $q$-Hermite polynomials, the $q$-Laguerre polynomials, the $q$-Jacobi polynomials, the Wall polynomials, the $q$-Konhauser polynomials and several others.

Following Saxena, Modi and Kalla [8], the basic analogue of the Fox's $H$-function is defined as

$$
H_{P, Q}^{M, N}\left[x ; q \left\lvert\, \begin{array}{c}
(a, \alpha)  \tag{1.11}\\
(b, \beta)
\end{array}\right.\right]=\frac{1}{2 \pi i} \int_{C} \theta(s ; q) x^{s} d_{q} s
$$

where

$$
\begin{equation*}
\theta(s ; q)=\frac{\left\{\prod_{j=1}^{M} G\left(q^{b_{j}-\beta_{j} s}\right)\right\}\left\{\prod_{j=1}^{N} G\left(q^{1-a_{j}+\alpha_{j} s}\right)\right\} \pi}{\left\{\prod_{j=M+1}^{Q} G\left(q^{1-b_{j}+\beta_{j} s}\right)\right\}\left\{\prod_{j=N+1}^{P} G\left(q^{a_{j}-\alpha_{j} s}\right)\right\} G\left(q^{1-s}\right) \sin \pi s} \tag{1.12}
\end{equation*}
$$

and

$$
\begin{equation*}
G\left(q^{a}\right)=\left\{\prod_{n=0}^{\infty}\left(1-q^{a+n}\right)\right\}^{-1}=\frac{1}{\left(q^{a} ; q\right)_{\infty}} \tag{1.13}
\end{equation*}
$$

Also $0 \leq M \leq Q, 0 \leq N \leq P, \alpha_{i}$ 's and $\beta_{j}$ 's are all positive integers. The contour $C$ is a line parallel to $\Re(\omega s)=0$ with indentations if necessary, in such a manner that all the poles of $G\left(q^{b_{j}-\beta_{j} s}\right), 1 \leq j \leq M$ are to the right, and those of $G\left(q^{1-a_{j}+\alpha_{j} s}\right), 1 \leq j \leq N$ to the left of $C$. For large values of $|s|$, the integral converges if $\Re[s \log (x)-\log \sin \pi s]<0$ on the contour $C$, i.e. if $\left|\left\{\arg (x)-w_{2} w_{1}^{-1} \log |x|\right\}\right|<\pi$, where $0<|q|<1, \log q=-w=-\left(w_{1}+i w_{2}\right)$, $w_{1}$ and $w_{2}$ being real.

Further, if we set $\alpha_{i}=\beta_{j}=1, \forall i$ and $j$ in (1.11), we obtain the basic analogue of Meijer's $G$-function due to Saxena, Modi and Kalla [8]:

$$
G_{P, Q}^{M, N}\left[x ; q \left\lvert\, \begin{array}{c|c}
a_{1}, a_{2}, \cdots, a_{P}  \tag{1.14}\\
b_{1}, b_{2}, \cdots, b_{Q}
\end{array}\right.\right]=\frac{1}{2 \pi i} \int_{C} \theta^{\prime}(s ; q) x^{s} d_{q} s
$$

where

$$
\begin{equation*}
\theta^{\prime}(s ; q)=\frac{\left\{\prod_{j=1}^{M} G\left(q^{b_{j}-s}\right)\right\}\left\{\prod_{j=1}^{N} G\left(q^{1-a_{j}+s}\right)\right\} \pi}{\left\{\prod_{j=M+1}^{Q} G\left(q^{1-b_{j}+s}\right)\right\}\left\{\prod_{j=N+1}^{P} G\left(q^{a_{j}-s}\right)\right\} G\left(q^{1-s}\right) \sin \pi s} . \tag{1.15}
\end{equation*}
$$

A detailed account of Meijer's $G$-function, Fox's $H$-function and various functions expressible in terms of Fox's $H$-function can be found in the research monographs due to Mathai and Saxena [4, 5], Mathai, Saxena and Haubold [6] and Srivastava, Gupta and Goyal [10]. Further, the basic functions of one variable (elementary and hypergeometric) expressible in terms of the functions $G_{q}($.$) can be found in the works of Yadav and Purohit [12]$ and [13].

## 2. The q-generating relations

In this section, we shall derive certain bilinear $q$-generating relations involving basic analogue of Fox's $H$-function and a general class of $q$-hypergeometric polynomials.

Theorem 1. Let $\left\{S_{k, q}\right\}_{k=0}^{\infty}$ be an arbitrary bounded sequence, let $M, N, P$, $Q$ be positive integers such that $0 \leq M \leq Q, 0 \leq N \leq P$, let $h>0$, and let $m$ be an arbitrary positive integer. Then the following bilinear $q$-generating relation holds:

$$
\left.\begin{array}{c}
\sum_{n=0}^{\infty} f_{n, m}(\rho x ; q) H_{P+1, Q}^{M, N+1}[y ; q
\end{array} \begin{array}{c}
(1-\lambda-n, h),(a, \alpha) \\
(b, \beta)
\end{array}\right] \frac{t^{n}}{(q ; q)_{n}}
$$

where $|t|<1,0<|q|<1$, and $\rho$ and $\lambda$ are arbitrary numbers.
Proof. Denoting, for convenience, the left-hand side of (2.1) by $L$ and using the contour integral representation (1.11) for the basic analogue of Fox's $H$-function and the definition (1.10) for the general class of $q$-polynomials $f_{n, m}(\rho x ; q)$, we get

$$
\begin{aligned}
L & =\frac{1}{2 \pi i} \sum_{n=0}^{\infty}\left(\sum_{k=0}^{[n / m]}\left[\begin{array}{c}
n \\
m k
\end{array}\right]_{q} S_{k, q}(\rho x)^{k}\right) \\
& \times\left\{\int_{C} \theta(s ; q) G\left(q^{\lambda+n+h s}\right) y^{s} d_{q} s\right\} \frac{t^{n}}{(q ; q)_{n}} .
\end{aligned}
$$

Changing the order of summations and integration, we obtain

$$
L=\frac{1}{2 \pi i} \int_{C} \theta(s ; q) \sum_{n=0}^{\infty} \sum_{k=0}^{[n / m]} \frac{G\left(q^{\lambda+n+h s}\right)}{(q ; q)_{n}}\left[\begin{array}{c}
n  \tag{2.2}\\
m k
\end{array}\right]_{q} S_{k, q}(\rho x)^{k} t^{n} y^{s} d_{q} s
$$

where $\theta(s ; q)$ is given by (1.12). Using of the relation for $q$-gamma function, namely

$$
\begin{equation*}
G\left(q^{a}\right)=\frac{\Gamma_{q}(a)(1-q)^{a-1}}{(q ; q)_{\infty}} \tag{2.3}
\end{equation*}
$$

we obtain

$$
L=\frac{1}{2 \pi i} \int_{C} \theta(s ; q) \frac{\Gamma_{q}(\lambda+h s)(1-q)^{\lambda+h s-1}}{(q ; q)_{\infty}}
$$

$$
\times \sum_{n=0}^{\infty} \sum_{k=0}^{[n / m]} \frac{\left(q^{\lambda+h s} ; q\right)_{n}}{(q ; q)_{n}}\left[\begin{array}{c}
n \\
m k
\end{array}\right]_{q} S_{k, q}(\rho x)^{k} t^{n} y^{s} d_{q} s
$$

Again, changing the order of summations and making use of the series rearrangement relation (cf. Srivastawa and Manocha [11])

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sum_{k=0}^{[n / m]} B(k, n)=\sum_{k=0}^{\infty} \sum_{n=0}^{\infty} B(k, n+m k) \tag{2.4}
\end{equation*}
$$

we obtain

$$
\begin{gather*}
L=\frac{1}{2 \pi i} \int_{C} \theta(s ; q) \frac{\Gamma_{q}(\lambda+h s)(1-q)^{\lambda+h s-1}}{(q ; q)_{\infty}} \\
\times \sum_{k=0}^{\infty} S_{k, q} \frac{\left(\rho x t^{m}\right)^{k}}{(q ; q)_{m k}} \sum_{n=0}^{\infty} \frac{\left(q^{\lambda+h s} ; q\right)_{n+m k}}{(q ; q)_{n}} t^{n} y^{s} d_{q} s . \tag{2.5}
\end{gather*}
$$

Summing the inner series with the help of the $q$-binomial theorem (see [2]), namely

$$
\begin{equation*}
{ }_{1} \Phi_{0}(a ;-; q ; z)=\frac{(a z ; q)_{\infty}}{(z ; q)_{\infty}},|z|<1,0<|q|<1 \tag{2.6}
\end{equation*}
$$

we find that

$$
\begin{align*}
L & =\frac{1}{2 \pi i} \int_{C} \theta(s ; q) \frac{\Gamma_{q}(\lambda+h s)(1-q)^{\lambda+h s-1}}{(q ; q)_{\infty}} \\
& \times \sum_{k=0}^{\infty} \frac{\left(q^{\lambda+h s} ; q\right)_{m k}\left(\rho x t^{m}\right)^{k}}{(t ; q)_{\lambda+h s+m k}(q ; q)_{m k}} S_{k, q} y^{s} d_{q} s . \tag{2.7}
\end{align*}
$$

Now by interchanging the order of contour integral and summation, and using the $q$-identities (see [2]), namely

$$
\begin{equation*}
(a ; q)_{n+k}=(a ; q)_{n}\left(a q^{n} ; q\right)_{k} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
(a ; q)_{n}=\frac{\Gamma(a+n)(1-q)^{n}}{\Gamma(a)}(n>0) \tag{2.9}
\end{equation*}
$$

we obtain

$$
\begin{gather*}
L=\frac{1}{(t ; q)_{\lambda}} \sum_{k=0}^{\infty} \frac{\left(\rho x t^{m}\right)^{k}}{\left(t q^{\lambda} ; q\right)_{m k}(q ; q)_{m k}} S_{k, q} \\
\times \frac{1}{2 \pi i} \int_{C} \theta(s ; q) \frac{\Gamma_{q}(\lambda+h s+m k)(1-q)^{\lambda+h s+m k-1}}{\left(t q^{\lambda+m k} ; q\right)_{h s}(q ; q)_{\infty}} y^{s} d_{q} s . \tag{2.10}
\end{gather*}
$$

The desired result follows by interpreting the contour integral of (2.10) in light of the definition (1.11) and the notation (2.3). This completes the proof of Theorem 1 .

Observe that, if we set the bounded sequence $S_{k, q}=1$ and take $\rho=0$, then for the family of $q$-polynomials one has

$$
f_{n, m}(\rho x ; q)=1
$$

and thus in view of the right-hand side of $(2.1)$ for $k=0$, we obtain the following theorem.

Theorem 2. Let $M, N, P, Q$ be positive integers satisfying $0 \leq M \leq$ $Q, 0 \leq N \leq P$. Let $h>0$, let $\lambda$ be an arbitrary number, and let $m$ be an arbitrary positive integer. Then the q-generating relation for the basic analogue of Fox's $H$-function is given by

$$
\begin{gather*}
\sum_{n=0}^{\infty} H_{P+1, Q}^{M, N+1}\left[y ; q \left\lvert\, \begin{array}{c}
(1-\lambda-n, h),(a, \alpha) \\
(b, \beta)
\end{array}\right.\right] \frac{t^{n}}{(q ; q)_{n}}=\frac{1}{(1-t)^{(\lambda)}} \\
\times H_{P+1, Q}^{M, N+1}\left[\frac{y}{\left(1-t q^{\lambda}\right)^{(h)}} ; q \left\lvert\, \begin{array}{c}
(1-\lambda, h),(a, \alpha) \\
(b, \beta)
\end{array}\right.\right] \tag{2.11}
\end{gather*}
$$

where $|t|<1$ and $0<|q|<1$.

## 3. Concluding observations and remarks

In this section, we consider some consequences of the results derived in previous section.

If we set $\alpha_{i}=\beta_{j}=1$ for all $i$ and $j, m=h=1$, and take (1.14) into account, then Theorems 1 and 2 yield Corollaries 1 and 2 below, respectively.

Corollary 1. Let $\left\{S_{k, q}\right\}_{k=0}^{\infty}$ be an arbitrary bounded sequence and let $M, N, P, Q$ be positive integers satisfying $0 \leq M \leq Q, 0 \leq N \leq P$. Then the following bilinear generating relation for the function $G_{q}($.$) holds:$

$$
\begin{align*}
& \sum_{n=0}^{\infty} f_{n, 1}(\rho x ; q) G_{P+1, Q}^{M, N+1}\left[y ; q \left\lvert\, \begin{array}{c}
1-\lambda-n, a_{1}, \cdots, a_{P} \\
b_{1}, \cdots, b_{Q}
\end{array}\right.\right] \frac{t^{n}}{(q ; q)_{n}}=\frac{1}{(1-t)^{(\lambda)}} \\
& \times \sum_{k=0}^{\infty} \frac{S_{k, q}}{(q ; q)_{k}} \frac{(\rho x t)^{k}}{\left(1-t q^{\lambda}\right)^{(k)}} G_{P+1, Q}^{M, N+1}\left[\frac{y}{\left(1-t q^{\lambda+k}\right)} ; q \left\lvert\, \begin{array}{c}
1-\lambda-k, a_{1}, \cdots, a_{P} \\
b_{1}, \cdots, b_{Q}
\end{array}\right.\right], \tag{3.1}
\end{align*}
$$

where $|t|<1,0<|q|<1$ and $\lambda$ is an arbitrary number.
Corollary 2. Let $M, N, P, Q$ be positive integers satisfying $0 \leq M \leq Q$, $0 \leq N \leq P$ and let $\lambda$ be an arbitrary number. Then the $q$-generating relation for the basic analogue of Meijer's G-function is given by

$$
\sum_{n=0}^{\infty} G_{P+1, Q}^{M, N+1}\left[y ; q \left\lvert\, \begin{array}{c}
1-\lambda-n, a_{1}, \cdots, a_{P} \\
b_{1}, \cdots, b_{Q}
\end{array}\right.\right] \frac{t^{n}}{(q ; q)_{n}}=\frac{1}{(1-t)^{(\lambda)}}
$$

$$
\times G_{P+1, Q}^{M, N+1}\left[\begin{array}{c|c}
\frac{y}{\left(1-t q^{\lambda}\right)} ; q & \begin{array}{c}
1-\lambda, a_{1}, \cdots, a_{P} \\
b_{1}, \cdots, b_{Q}
\end{array} \tag{3.2}
\end{array}\right]
$$

where $|t|<1$ and $0<|q|<1$.
Further, it is interesting to observe that in view of the following limiting cases:

$$
\begin{equation*}
\lim _{q \rightarrow 1^{-}} \Gamma_{q}(a)=\Gamma(a) \text { and } \lim _{q \rightarrow 1^{-}} \frac{\left(q^{a} ; q\right)_{n}}{(1-q)^{n}}=(a)_{n} \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
(a)_{n}=a(a+1) \cdots(a+n-1) \tag{3.4}
\end{equation*}
$$

the $q$-generating relation (2.1) of Theorem 1 provides the $q$-extension of the known result due to Raina [7, page 301, equation (2.1)].

By assigning suitable special values to the sequence $\left\{S_{k, q}\right\}_{k=0}^{\infty}$, our main result (Theorem 1) can be applied to derive certain bilinear $q$-generating relations for the product of orthogonal $q$-polynomials and the basic analogue of Fox's $H$-function. To illustrate this, we consider the following example.

Setting $m=1$ and

$$
\begin{equation*}
S_{k, q}=\frac{(-1)^{k} q^{k(k-1)}(\alpha q ; q)_{n}}{(\alpha q ; q)_{k}(q ; q)_{n}} \tag{3.5}
\end{equation*}
$$

we find from (1.10) that

$$
f_{n, 1}(x ; q)=L_{n}^{(\alpha)}(x ; q)
$$

where $L_{n}^{(\alpha)}(x ; q)$ denotes the $q$-Laguerre polynomial defined by (cf. [9])

$$
L_{n}^{(\alpha)}(x ; q)=\frac{(\alpha q ; q)_{n}}{(q ; q)_{n}}{ }_{1} \Phi_{1}\left[\begin{array}{ll}
q^{-n} & ;  \tag{3.6}\\
\alpha q & ; x q^{n}
\end{array}\right]
$$

Thus in view of the above relations, Theorem 1 yeilds the $q$-generating relation involving $q$-Laguerre polynomial and the basic Fox's $H$-function as below:

$$
\begin{align*}
& \sum_{n=0}^{\infty} L_{n}^{(\alpha)}(\rho x ; q) H_{P+1, Q}^{M, N+1}\left[y ; q \left\lvert\, \begin{array}{c}
(1-\lambda-n, h),(a, \alpha) \\
(b, \beta)
\end{array}\right.\right] \frac{t^{n}}{(q ; q)_{n}} \\
& \quad=\frac{(\alpha q ; q)_{n}}{(1-t)^{(\lambda)}(q ; q)_{n}} \sum_{k=0}^{\infty} \frac{(-1)^{k} q^{k(k-1)}}{(q ; q)_{k}(\alpha q ; q)_{k}} \frac{(\rho x t)^{k}}{\left(1-t q^{\lambda}\right)^{(k)}} \\
& \quad \times H_{P+1, Q}^{M, N+1}\left[\frac{y}{\left(1-t q^{\lambda+k}\right)^{(h)}} ; q \left\lvert\, \begin{array}{c}
(1-\lambda-k, h),(a, \alpha) \\
(b, \beta)
\end{array}\right.\right] . \tag{3.7}
\end{align*}
$$

Again, if we set $m=1$ and

$$
\begin{equation*}
S_{k, q}=\frac{(\alpha q ; q)_{n}\left(\alpha \beta q^{n+1} ; q\right)_{k}(-1)^{k} q^{k(k+1) / 2-n k}}{(\alpha q ; q)_{k}(q ; q)_{n}} \tag{3.8}
\end{equation*}
$$

we find from (1.10) that

$$
f_{n, 1}(x ; q)=P_{n}^{(\alpha, \beta)}(x ; q),
$$

where $P_{n}^{(\alpha, \beta)}(x ; q)$ denotes the $q$-Jacobi polynomial defined by (cf. [9])

$$
P_{n}^{(\alpha, \beta)}(x ; q)=\frac{(\alpha q ; q)_{n}}{(q ; q)_{n}}{ }_{2} \Phi_{1}\left[\begin{array}{ll}
q^{-n}, \alpha \beta q^{n+1} & ;  \tag{3.9}\\
\alpha q & ;
\end{array}\right] .
$$

Then, Theorem 1 provides the $q$-generating relation involving $q$-Jacobi polynomial and the basic Fox's $H$-function, namely

$$
\begin{align*}
& \sum_{n=0}^{\infty} P_{n}^{(\alpha, \beta)}(\rho x ; q) H_{P+1, Q}^{M, N+1}\left[y ; q \left\lvert\, \begin{array}{c}
(1-\lambda-n, h),(a, \alpha) \\
(b, \beta)
\end{array}\right.\right] \frac{t^{n}}{(q ; q)_{n}} \\
&= \frac{(\alpha q ; q)_{n}}{(1-t)^{(\lambda)}(q ; q)_{n}} \sum_{k=0}^{\infty} \frac{\left(\alpha \beta q^{n+1} ; q\right)_{k}(-1)^{k} q^{k(k+1) / 2-n k}}{(q ; q)_{k}(\alpha q ; q)_{k}} \frac{(\rho x t)^{k}}{\left(1-t q^{\lambda}\right)^{(k)}} \\
& \quad \times H_{P+1, Q}^{M, N+1}\left[\frac{y}{\left(1-t q^{\lambda+k}\right)^{(h)}} ; q \left\lvert\, \begin{array}{c}
(1-\lambda-k, h),(a, \alpha) \\
(b, \beta)
\end{array}\right.\right] . \tag{3.10}
\end{align*}
$$

A detailed account of various hypergeometric orthogonal $q$-polynomials can be found in the research monograph by Koekoek, Lesky and Swarttouw [3] and in [9]. It is worth mentioning that the definitions of $q$-Laguerre and $q$-Jacobi polynomials given by the equations (3.6) and (3.9), respectively, are slightly different from those given in the seminal work [3]. Therefore, one can derive similar type of results by taking into consideration the definitions of the $q$-polynomials given in [3].

We conclude with the remark that by suitably assigning values to the sequence $\left\{S_{k, q}\right\}_{k=0}^{\infty}$, the $q$-generating relation (2.1) being of general nature, will lead to several generating relations for the product of orthogonal $q$ polynomials and the basic analogue of the Fox's $H$-functions.

## Acknowledgments

The authors would like to thank the anonymous referee for the critical review and comments on the manuscript, leading to the present form of the paper.

## References

[1] T. Ernst, A method for q-calculus, J. Nonlinear Math. Phys. 10(4) (2003), 487-525.
[2] G. Gasper and M. Rahman, Basic Hypergeometric Series (2nd edition), Cambridge University Press, Cambridge, 2004.
[3] R. Koekoek, P. A. Lesky, and R. F. Swarttouw, Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2010.
[4] A. M. Mathai and R. K. Saxena, Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences, Lecture Series in Mathematics, Vol. 348, Springer-Verlag, Berlin-New York, 1973.
[5] A. M. Mathai and R.K. Saxena, The H-Function with Applications in Statistics and Other Disciplines, Halsted Press [John Willey and Sons], New York - London-Sidney, 1978.
[6] A. M. Mathai, R. K. Saxena, and H. J. Haubold, The H-function. Theory and Applications, Springer, New York, 2010.
[7] R. K. Raina, A formal extension of certain generating functions, Proc. Nat. Acad. Sci. India Sec. A 46(IV) (1976), 300-304.
[8] R. K. Saxena, G. C. Modi, and S. L. Kalla, A basic analogue of Fox's H-function, Rev. Tec. Ing. Univ. Zulia, 6 (1983), 139-143.
[9] H. M. Srivastava and A. K. Agarwal, Generating functions for a class of $q$-polynomials, Ann. Mat. Pura Appl. 154 (1989), 99-109.
[10] H. M. Srivastava, K. C. Gupta, and S.P. Goyal, The H-Functions of One and Two Variables with Applications, South Asian Publications, New Delhi, 1982.
[11] H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Halsted Press [John Wiley and Sons], New York, 1984.
12] R. K. Yadav and S. D. Purohit, On applications of Weyl fractional q-integral operator to generalized basic hypergeometric functions, Kyungpook Math. J., 46 (2006), 235245.
[13] R. K. Yadav, S. D. Purohit, and S. L. Kalla, On generalized Weyl fractional q-integral operator involving generalized basic hypergeometric functions, Fract. Calc. Appl. Anal. 11(2) (2008), 129-142.
(S.D. Purohit) Department of Basic Sciences (Mathematics), College of Technology and Engineering, M.P. University of Agriculture and Technology, Udaipur-313001, India

E-mail address: sunil_a_purohit@yahoo.com
(V.K. Vyas, R.K. Yadav) Department of Mathematics and Statistics, J.N. Vyas University, Jodhpur-342005, India

E-mail address: rkmdyadav@gmail.com

